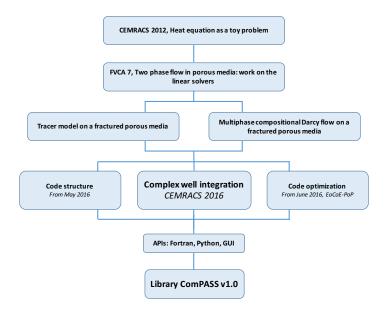
Some aspects and current needs for geothermal reservoir modeling First results obtained with ComPASS platform

Simon Lopez², Roland Masson¹, Feng Xing^{1,2}

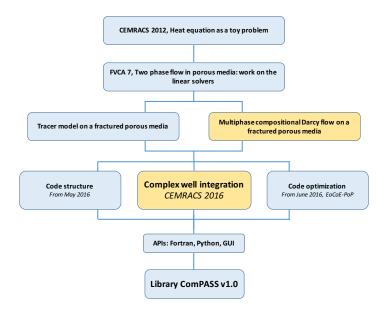
- (1) INRIA & Laboratory J.A. Dieudonné, University of Nice
- (2) BRGM (Bureau de Recherches Géologiques et Minières)

To answer the needs, we need to do something both in mathematics and in computer science.

ComPASS : Computing Parallel Architecture to Speed up Simulations



ComPASS : Computing Parallel Architecture to Speed up Simulations



Outline

- Model introduction
- ComPASS
- Numerical results
- ComPASS CEMRACS 2016

Model introduction - recall - Two phase immiscible

Mass conservation

$$\begin{cases} \partial_t(\phi\zeta^w S^w) + \operatorname{div}(\mathbf{V}^w) = 0, & (H_2 O) \\ \partial_t(\phi\zeta^o S^o) + \operatorname{div}(\mathbf{V}^o) = 0, & (HC) \end{cases}$$

together with the Darcy flow

$$\mathbf{V}^{w} = -\frac{\zeta^{w} k_{r_{w}}}{\mu^{w}} \Lambda \nabla P,$$
$$\mathbf{V}^{o} = -\frac{\zeta^{o} k_{r_{o}}}{\mu^{o}} \Lambda \nabla P,$$

and closure equation

$$S^w + S^o = 1,$$

where P is pressure, Λ is permeability, ϕ is porosity and

	water phase	oil phase
Saturation (volume fraction)	Sw	S°
Molar density	ζw	ζ°
Viscosity	μ^w	μ°
Relative permeability	k _{rw}	k _{ro}

Model introduction - recall - Two phase immiscible

Mass conservation

$$\begin{cases} \partial_t(\phi\zeta^w S^w) + \operatorname{div}(\mathbf{V}^w) = 0, & (H_2 O) \\ \partial_t(\phi\zeta^o S^o) + \operatorname{div}(\mathbf{V}^o) = 0, & (HC) \end{cases}$$

together with the Darcy flow

$$\mathbf{V}^{w} = -\frac{\zeta^{w} k_{r_{w}}}{\mu^{w}} \Lambda \nabla P,$$
$$\mathbf{V}^{o} = -\frac{\zeta^{o} k_{r_{o}}}{\mu^{o}} \Lambda \nabla P,$$

and closure equation

$$S^w + S^o = 1,$$

where P is pressure, Λ is permeability, ϕ is porosity and

	water phase	oil phase
Saturation (volume fraction)	Sw	S°
Molar density	ζw	ζ°
Viscosity	μ^w	μ°
Relative permeability	k _{rw}	k _{ro}

 $\bullet \ \mathcal{C} = \{ H_2 O, HC \}, \ \mathcal{P} = \{ \mathrm{water}, \mathrm{oil} \},$

water oil • $M_{CP} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{array}{c} H_2 O \\ \rightarrow HC \end{array}$ • $C = \{H_2O, HC\}, P = \{\text{water, oil}\}$ water oil • $M_{CP} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rightarrow H_2O$ $\rightarrow HC$

Mass conservation

$$\begin{cases} \partial_t n_{H_2O} + \operatorname{div} \left(\sum_{\alpha \in Q \cap \{w\}} C^w_{H_2O} \mathbf{V}^w \right) = 0, \quad (H_2O) \\ \partial_t n_{HC} + \operatorname{div} \left(\sum_{\alpha \in Q \cap \{w\}} C^w_{HC} \mathbf{V}^w \right) + \operatorname{div} \left(\sum_{\alpha \in Q \cap \{o\}} C^o_{HC} \mathbf{V}^o \right) = 0, \quad (HC) \end{cases}$$

	water phase	oil phase
Molar composition	$C_{H_2O}^w, C_{HC}^w$	$C_{HC}^{o} = 1$
Saturation (volume fraction)	2 Sw	S°

where $Q \subset \{w, o\}$ is set of present phases and the mole of $H_2O(HC)$ are

$$n_{H_2O} = \phi \zeta^w S^w C^w_{H_2O}, \quad n_{HC} = \phi \zeta^w S^w C^w_{HC} + \phi \zeta^o S^o C^o_{HC}$$

together with the Darcy flow and the algebraic equilibrium.

•
$$C = \{H_2O\}, P = \{\text{water, gas}\}$$

water gas
• $M_{CP} = \begin{pmatrix} 1 & 1 \end{pmatrix}$

Mass conservation

$$\partial_t n_{H_2O} + \operatorname{div}\left(\sum_{\alpha \in Q} C^{\alpha}_{H_2O} \mathbf{V}^{\alpha}\right) = 0, \quad (H_2O)$$

Energy conservation

$$\partial_t E + \operatorname{div}\Big(\sum_{\alpha \in Q} h^{\alpha} \mathbf{V}^{\alpha} - \lambda \nabla T\Big) = 0,$$

where the energy is

$$E = \phi \sum_{lpha \in Q} \zeta^{lpha} e^{lpha} S^{lpha} + (1 - \phi) \zeta^{r} e^{r},$$

together with Darcy flow \mathbf{V}^{α} and algebraic equilibrium, where h^{α} : molar enthalpy, λ : thermal conductivity, e^{α} : internal energy.

Multiphase compositional thermal Darcy flow model

Extended Coats' formulation

- Set of phases:
- \bullet Set of components: $\ensuremath{\mathcal{C}}$
- Model matrix: $M_{CP} \in \{0,1\}^{\#\mathcal{C} \times \#\mathcal{P}}$

 \mathcal{P}

• Mass conservation

$$\partial_t n_i + \operatorname{div}\left(\sum_{\alpha \in Q} C_i^{\alpha} \mathbf{V}^{\alpha}\right) = 0, \ i \in \mathcal{C},$$

• Energy conservation

$$\partial_t E + \operatorname{div}\left(\sum_{\alpha \in Q} h^{\alpha} \mathbf{V}^{\alpha} - \lambda \nabla T\right) = \mathbf{0},$$

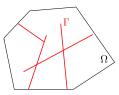
with the energy

$$E = \phi \sum_{lpha \in Q} \zeta^{lpha} e^{lpha} S^{lpha} + (1 - \phi) \zeta^{r} e^{r}.$$

• Thermal dynamic equilibrium

Physical specifications

- Multiphase compositional thermal Darcy flow model
- 2D discrete fracture or fault network coupled with the surrounding 3D matrix domain



Hybrid dimensional models for Discrete Fracture Network dim(Γ)=dim(Ω)-1, $d_f \ll \operatorname{diam}(\Omega)$, [Alboin-Jaffré-Roberts-Serres 2002]

Mesh

• General meshes (polyhedral cells, possibly non planar faces)

Challenges

- Non-linear strong coupling
 - elliptic/parabolic for pressure and temperature, hyperbolic for saturation
 - phase appearance and disappearance

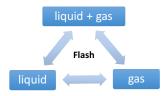


Figure: Example: vapor liquid two phases thermal model.

Challenges

- Strong heterogeneity
 - matrix-fracture geometry
 - strong contrast of matrix and fracture:

ratio = $\frac{\text{Permeability in fractures}}{\text{Permeability in matrix domain}}$ can be very large (ex.10⁶)

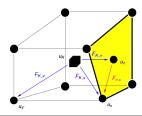
Numerical specifications - discretization

- Fully implicit in time
- Parallel Vertex Approximate Gradient (VAG) scheme accounting for the flow in the 3D matrix and the 2D fault network
 - * Unknowns:

cells, nodes, fractures faces

* Flux:

In the matrix : $F_{K,s}$, $F_{K,\sigma}$ nodes and fracture faces connected to cell. In the fracture : $F_{\sigma,s}$ nodes connected to fracture face.



Numerical specifications - Solver

• Newton Raphson algorithm with phase appearance and disappearance

Numerical specifications - Solver

- Newton Raphson algorithm with phase appearance and disappearance
- Two ways to reduce the size of the Jacobian system
 - Preelimination of the secondary unknowns before assembly of the Jacobian matrix

 $(P, T, C_i^{\alpha}, S^{\alpha}, ...) \rightarrow$ primary unknowns \cup secondary unknowns

Schur complement of the Jacobian matrix

(nodes, fracture faces, cells) \rightarrow (nodes, fracture faces)

Numerical specifications - Solver

- Newton Raphson algorithm with phase appearance and disappearance
- Two ways to reduce the size of the Jacobian system
 - Preelimination of the secondary unknowns before assembly of the Jacobian matrix

 $(P, T, C_i^{\alpha}, S^{\alpha}, ...) \rightarrow$ primary unknowns \cup secondary unknowns

Schur complement of the Jacobian matrix

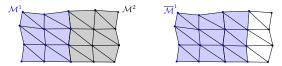
(nodes, fracture faces, cells) \rightarrow (nodes, fracture faces)

Iterative linear solver with CPR-AMG preconditioner

▶ Multiplicative preconditioner: AMG for pressure part + ILU(0) for complete system

Implementation specifications

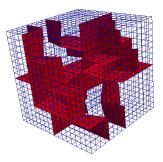
- $\bullet\,$ Parallel programming with MPI using Fortran 2003 and C/C++
- Mesh participation with METIS library
- One layer of ghost cells



- Connected to the linear solver libraries PETSc + Hypre + Trilinos (+Dune)
- Visualization ouputs using parallel vtk format
- Checkpointing using HDF5

Numerical test 1 - Two phase immiscible

- Two phases water and oil and two components H_2O and HC.
- Reservoir of size $100m \times 100m \times 100m$ with fractures of width 1 cm.
- Hexahedral mesh.
- Permeability ratio between the fracture network and the matrix of 10000.
- Reservoir initially saturated with pure water and injection of oil from the bottom boundary with a gravity dominant flow.
- 20000 days of simulation.

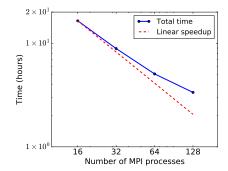


cluster Cicada: http://calculs.unice.fr/ - 72 Cpu nodes: 16 cores (2 Intel Sandy Bridge E5-2670), 64 GB, GCC 4.9.1, OpenMPI 1.8.2, 1 core/MPI

Numerical test 1 - Two phase immiscible

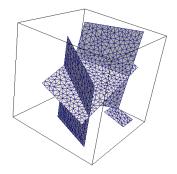
Oil saturation in the matrix and in the fracture network

Numerical test 1 - Two phase immiscible



Numerical test 2 - Black oil

- Two phases water and oil and two components H_2O and HC.
- Dissolution of the HC component in the water phase.
- Reservoir of size $100m \times 100m \times 100m$ with fractures of width 1 cm.
- 3D Mesh with 6×10^6 tetrahedra.
- Permeability ratio between the fracture network and the matrix of 10000.
- Reservoir initially saturated with pure water and injection of oil from the bottom boundary with a gravity dominant flow.
- 10000 days of simulation.

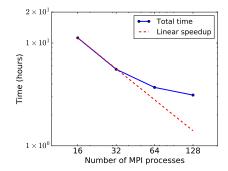


Numerical test 2 - Black oil

Oil saturation in the matrix and in the fracture network

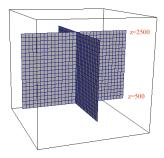
Molar fraction of HC in the water phase in the matrix and in the fracture network

Numerical test 2 - Black oil



Numerical test 3 - Thermal convection

- Gas liquid thermal model with a single component H_2O .
- Reservoir of size $3km \times 3km \times 3km$ initially at hydrostatic pressure and 293 K (liquid phase).
- Temperature fixed to be 623 K at the bottom boundary (liquid phase) and to be 293 K at the top boundary.
- Homogeneous matrix of permeability 1 mDarcy with four fractures of width 1 m and permeability 1 Darcy.
- 3D Cartesian mesh of size $240 \times 240 \times 240$ ($\approx 14M$).
- 2×10^7 days of simulation.



Numerical test 3 - Thermal convection

Temperature

Saturation of Gas

We focus on thermal well integration, which is a central feature of geothermal exploitation and it is not implemented in the current version.

The code will be brought to a level where operational use is possible and real geothermal cases can be considered.

CEMRACS 2016 - ComPASS

Member:

Laurence Beaude (INRIA-LJAD) Konstantin Brenner (LJAD) Roland Masson (INRIA-LJAD) Jean-Frédéric Thebault (Storengy)

Thibaud Beltzung (CEA) Simon Lopez (BRGM) Farid Smai (BRGM) Feng Xing (BRGM-INRIA-LJAD)

Funding:

BRGM, INRIA, Storengy, CEA

Brief working topics

- Thermal well model (Bibliography).
- Geometry of wells.
- Peaceman numerical indices with VAG scheme.
- Jacobian system with wells.
- Solver and preconditioner adaptation.
- Validation tests.
-

- Physics
 - ◊ Wells (CEMRACS 2016)
- Applications
 - \diamond Real case studies, geothermal reservoir simulation in Guadeloupe
- Code
 - \diamond Optimization
 - ◊ User-friendly interface

Thanks

Thanks for your attention!

http://compass.gforge.inria.fr

