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Motivation

To answer the needs, we need to do something both in mathematics
and in computer science.
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Model introduction - recall - Two phase immiscible

Mass conservation {
∂t(φζwSw ) + div(Vw ) = 0, (H2O)
∂t(φζoSo) + div(Vo) = 0, (HC)

together with the Darcy flow 
Vw = −

ζwkrw
µw

Λ∇P,

Vo = −
ζokro
µo

Λ∇P,

and closure equation
Sw + So = 1,

where P is pressure, Λ is permeability, φ is porosity and

water phase oil phase
Saturation (volume fraction) Sw So

Molar density ζw ζo

Viscosity µw µo

Relative permeability krw kro

• C = {H2O,HC}, P = {water, oil},

water oil

• MCP =

(
1 0
0 1

)
→ H2O
→ HC
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Model introduction - recall - Black oil

• C = {H2O,HC}, P = {water, oil}

water oil

• MCP =

(
1 0
1 1

)
→ H2O
→ HC

Mass conservation
∂tnH2O + div

( ∑
α∈Q∩{w}

Cw
H2O

Vw
)

= 0, (H2O)

∂tnHC + div
( ∑
α∈Q∩{w}

Cw
HCV

w
)

+ div
( ∑
α∈Q∩{o}

Co
HCV

o
)

= 0, (HC)

water phase oil phase
Molar composition Cw

H2O
, Cw

HC Co
HC = 1

Saturation (volume fraction) Sw So

where Q ⊂ {w , o} is set of present phases and the mole of H2O (HC) are

nH2O = φζwSwCw
H2O

, nHC = φζwSwCw
HC + φζoSoCo

HC

together with the Darcy flow and the algebraic equilibrium.



Model introduction - recall - vapor liquid two phase thermal model

• C = {H2O}, P = {water, gas}
water gas

• MCP =
(
1 1

)
Mass conservation

∂tnH2O + div
( ∑
α∈Q

CαH2O
Vα
)

= 0, (H2O)

Energy conservation

∂tE + div
( ∑
α∈Q

hαVα − λ∇T
)

= 0,

where the energy is

E = φ
∑
α∈Q

ζαeαSα + (1− φ)ζr er ,

together with Darcy flow Vα and algebraic equilibrium, where hα: molar enthalpy, λ: thermal
conductivity, eα: internal energy.



Multiphase compositional thermal Darcy flow model

Extended Coats’ formulation

• Set of phases:
• Set of components:
• Model matrix:

P
C
MCP ∈ {0, 1}#C×#P

• Mass conservation
∂tni + div

(∑
α∈Q

Cαi Vα
)

= 0, i ∈ C,

• Energy conservation

∂tE + div
(∑
α∈Q

hαVα − λ∇T
)

= 0,

with the energy

E = φ
∑
α∈Q

ζαeαSα + (1− φ)ζr er .

• Thermal dynamic equilibrium



ComPASS

Physical specifications

• Multiphase compositional thermal Darcy flow model

• 2D discrete fracture or fault network coupled with the surrounding 3D matrix
domain

Hybrid dimensional models for Discrete Fracture Network
dim(Γ)=dim(Ω)-1, df � diam(Ω), [Alboin-Jaffré-Roberts-Serres 2002]

Mesh

• General meshes (polyhedral cells, possibly non planar faces)



ComPASS

Challenges

• Non-linear strong coupling

- elliptic/parabolic for pressure and temperature, hyperbolic for saturation
- phase appearance and disappearance

liquid	
  +	
  gas

gasliquid

Flash

Figure: Example: vapor liquid two phases thermal model.



ComPASS

Challenges

• Strong heterogeneity

- matrix-fracture geometry
- strong contrast of matrix and fracture:

ratio =
Permeability in fractures

Permeability in matrix domain
can be very large (ex .106)



ComPASS

Numerical specifications - discretization

• Fully implicit in time

• Parallel Vertex Approximate Gradient (VAG) scheme accounting for the flow in
the 3D matrix and the 2D fault network

? Unknowns:
cells, nodes, fractures faces

? Flux:
In the matrix : FK ,s, FK ,σ nodes and fracture faces connected to cell.
In the fracture : Fσ,s nodes connected to fracture face.



ComPASS

Numerical specifications - Solver

• Newton Raphson algorithm with phase appearance and disappearance

• Two ways to reduce the size of the Jacobian system

I Preelimination of the secondary unknowns before assembly of the Jacobian
matrix

(P,T ,Cαi , S
α, ...) → primary unknowns ∪ secondary unknowns

I Schur complement of the Jacobian matrix

(nodes, fracture faces, cells) → (nodes, fracture faces)

• Iterative linear solver with CPR-AMG preconditioner
I Multiplicative preconditioner: AMG for pressure part + ILU(0) for complete
system
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ComPASS

Implementation specifications

• Parallel programming with MPI using Fortran 2003 and C/C++

• Mesh participation with METIS library

• One layer of ghost cells

• Connected to the linear solver libraries PETSc + Hypre + Trilinos (+Dune)

• Visualization ouputs using parallel vtk format

• Checkpointing using HDF5



Numerical test 1 - Two phase immiscible

• Two phases water and oil and two components H2O and HC .

• Reservoir of size 100m × 100m × 100m with fractures of width 1 cm.

• Hexahedral mesh.

• Permeability ratio between the fracture network and the matrix of 10000.

• Reservoir initially saturated with pure water and injection of oil from the bottom
boundary with a gravity dominant flow.

• 20000 days of simulation.

cluster Cicada: http://calculs.unice.fr/ - 72 Cpu nodes: 16 cores (2 Intel Sandy Bridge
E5-2670), 64 GB, GCC 4.9.1, OpenMPI 1.8.2, 1 core/MPI



Numerical test 1 - Two phase immiscible

Oil saturation in the matrix and in the fracture network


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Numerical test 1 - Two phase immiscible
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Numerical test 2 - Black oil

• Two phases water and oil and two components H2O and HC .

• Dissolution of the HC component in the water phase.

• Reservoir of size 100m × 100m × 100m with fractures of width 1 cm.

• 3D Mesh with 6× 106 tetrahedra.

• Permeability ratio between the fracture network and the matrix of 10000.

• Reservoir initially saturated with pure water and injection of oil from the bottom
boundary with a gravity dominant flow.

• 10000 days of simulation.



Numerical test 2 - Black oil

Oil saturation in the matrix and in
the fracture network

Molar fraction of HC in the water
phase in the matrix and in the

fracture network


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Numerical test 2 - Black oil
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Numerical test 3 - Thermal convection

• Gas liquid thermal model with a single component H2O.

• Reservoir of size 3km × 3km × 3km initially at hydrostatic pressure and 293 K (liquid
phase).

• Temperature fixed to be 623 K at the bottom boundary (liquid phase) and to be 293 K
at the top boundary.

• Homogeneous matrix of permeability 1 mDarcy with four fractures of width 1 m and
permeability 1 Darcy.

• 3D Cartesian mesh of size 240× 240× 240 (≈ 14M).

• 2× 107 days of simulation.



Numerical test 3 - Thermal convection

Temperature Saturation of Gas


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




CEMRACS 2016 - ComPASS

We focus on thermal well integration, which is a central feature of
geothermal exploitation and it is not implemented in the current
version.

The code will be brought to a level where operational use is possible
and real geothermal cases can be considered.



CEMRACS 2016 - ComPASS
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CEMRACS 2016 - ComPASS

Brief working topics

• Thermal well model (Bibliography).

• Geometry of wells.

• Peaceman numerical indices with VAG scheme.

• Jacobian system with wells.

• Solver and preconditioner adaptation.

• Validation tests.

• ......



Ongoing works

• Physics

� Wells (CEMRACS 2016)

• Applications

� Real case studies, geothermal reservoir simulation in Guadeloupe

• Code

� Optimization
� User-friendly interface



Thanks

Thanks for your attention!

http://compass.gforge.inria.fr
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