Godunov Type Schemes for Low Froude Flows with Coriolis Term

E. Audusse, D.M. Hieu S. Dellacherie, P. Omnes, Y. Penel

LAGA, UMR 7569 Institut Galilée, Univ. Paris 13

ANGE group CEREMA – INRIA – UPMC - CNRS

August 11, 2016

Coriolis effect in the atmosphere

Met Office / Bureau of Meteorology

< □ > < @ > < 注 > < 注 > ... 注

Coriolis effect in the ocean

http://www.emse.fr/ bouchardon/

イロト イヨト イヨト イヨト

Coriolis effect in the ocean

Equations

$$\partial_t H + \nabla \cdot (H\mathbf{U}) = 0$$

$$\partial_t (H\mathbf{U}) + \nabla \cdot (H\mathbf{U} \otimes \mathbf{U}) + \nabla \frac{gH^2}{2}$$

$$= -gH\nabla B - 2\Omega \times (H\mathbf{U})$$

Source terms

- Topography
- Coriolis Force

★ E ► ★ E ►

æ

Dimensionless Equations

$$S_t \partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$S_t \partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \frac{1}{F_r^2} \nabla \frac{h^2}{2}$$

$$= -\frac{1}{F_r^2} h \nabla b - \frac{1}{R_o} 2\omega \times (h\mathbf{u})$$

Dimensionless Numbers

$$S_t = \frac{L}{UT}, \ F_r = \frac{U}{\sqrt{gH}}, \ R_o = \frac{U}{\|\Omega\|L}$$

- Strouhal : Advection vs. Non stationarity
- Froude : Advection vs. Pressure Gradient
- Rossby : Advection vs. Rotation

A 3 1 A 3 1

Dimensionless Equations

$$S_t \partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$S_t \partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \frac{1}{F_r^2} \nabla \frac{h^2}{2}$$

$$= -\frac{1}{F_r^2} h \nabla b - \frac{1}{R_o} 2\omega \times (h\mathbf{u})$$

Typical values in lakes or ocean

$$U = 1m/s$$
, $L = 10 - 10^3 km$, $H = 10 - 10^3 m$, $\|\Omega\| = 10^{-4} rad/s$

- Lakes or Oceanic bay : $F_r \approx 10^{-1}$, $R_o \approx 1$
- Deep Ocean : $F_r \approx 10^{-2}$, $R_o \approx 10^{-2}$

.

Dimensionless Equations

$$S_t \partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$S_t \partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \frac{1}{F_r^2} \nabla \frac{h^2}{2}$$

$$= -\frac{1}{F_r^2} h \nabla b - \frac{1}{R_o} 2\omega \times (h\mathbf{u})$$

Lake at rest

$$\nabla(\boldsymbol{h}+\boldsymbol{b})=0\,,\,\boldsymbol{u}=0$$

A fast and stable WB scheme with hydrostatic reconstruction for SW flows ABBKP, SIAM JSC, 2004.

向下 イヨト イヨト

æ

Dimensionless Equations

$$S_t \partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$S_t \partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \frac{1}{F_r^2} \nabla \frac{h^2}{2}$$

$$= -\frac{1}{F_r^2} h \nabla b - \frac{1}{R_o} 2\omega \times (h\mathbf{u})$$

Lake at rest

$$abla(\mathbf{h}+\mathbf{b})=0\,,\,\mathbf{u}=0$$

Geostrophic Equilibrium

$$\nabla h + 2\omega \times \mathbf{u} = 0, \ \nabla \cdot \mathbf{u} = 0$$

(4) (5) (4) (5) (4)

Dimensionless Equations

$$S_t \partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$S_t \partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \frac{1}{F_r^2} \nabla \frac{h^2}{2}$$

$$= -\frac{1}{F_r^2} h \nabla b - \frac{1}{R_o} 2\omega \times (h\mathbf{u})$$

Lake at rest

$$abla(h+b)=0\,,\,\mathbf{u}=0$$

Geostrophic Equilibrium

$$\nabla h + 2\omega \times \mathbf{u} = 0, \ \nabla \cdot \mathbf{u} = 0$$

(4) (5) (4) (5) (4)

Numerical Simulations

Stability of the scheme

- OK for classical treatment of the homogeneous part
- Modifications due to source terms
- Linear and/or non linear studies
- Hability to preserve stationary states
 - Kernels of the continuous and discrete space operators
 - Impact on transient and long time results
- Accuracy at Low Froude / Low Rossby
 - Stability of the kernel of the discrete space operator
 - Spurious numerical waves

Dispersion laws

- Linear case
- More important for high order schemes

Finite Difference Approach

- ROMS, NEMO, HYCOM...
- Semi-implicit in time schemes
- Arakawa grids (MCP, 1977)

On the Approx. of Coriolis Terms in C-Grid Model, Nechaev et al., AMS, 2004.

Num. Represent. of Geostrophic Modes on Arbitrarily Structured C-Grids, Thuburn et al., JCP, 2009.

Finite Difference Approach

ANR COMODO test cases

Galerkin Framework

- Semi-implicit in time schemes
- Many possible choices for the FE-DG element

Fig. 1. Typical node locations represented by the symbols • for the RT_0 , BDM_1 , P_1 , P_1^g , P_1 iso P_2 , P_2 , P_0 , P_1^{xc} , P_1^{xc} and P_2^{yc} finite elements.

Spurious Inertial Oscillations in SW Models, LeRoux, JCP, 2012.

(4回) (4回) (4回)

æ

Galerkin Framework

Study of the kernel of space operator / Fourier analysis

- Not the same number of velocity and pressure points
- Spurious inertial oscillations

	FE pair	(p,q)	nr	Geost	rophic	Inertial (±f,mult.)	Spurious η modes	Inertia-gravity	
				0	0(h ²)			0(1)	$O\left(\frac{1}{h}\right)$
1	$P_1 - P_1$	(1,1)	3	1			Yes	2	
	$P_1^B - P_1$	(3,1)	7	1		4 (2,2)	No	2	
	P_1 iso $P_2 - P_1$	(4,1)	9	1		6 (2,3)	No	2	
	$P_2 - P_0$	(4,2)	10		2	4 (2,2)	No	2	2
	$P_2 - P_1$	(4,1)	9	1		6 (2,3)	No	2	
	$P_1^{NC} - P_0$	(3,2)	8	2		2 (2,1)	No	2	2
	$P_1^{NC} - P_1$	(3,1)	7	1		4 (2,2)	No	2	
	$P_0 - P_1$	(2,1)	5	1		2 (2,1)	No	2	
	$P_1^{DG} - P_1$	(6,1)	13	1		10 (2,5)	No	2	
	$P_1^{DG} - P_2$	(6,4)	16	4		4 (2,2)	No	2	6
2	$RT_0 - P_0$	(3,2)	5	1			No	2	2
	$RT_0 - P_1$	(3,1)	4	2			Yes	2	
	$BDM_1 - P_0$	(6,2)	8	4			No	2	2
	$BDM_1 - P_1$	(6,1)	7	3	2		Yes	2	

"We recommend to employ the same finite-element bases leading to p = q [...] to approximate surface-elevation and velocity."

Finite Volume Framework

WB Schemes with Coriolis terms

Frontal Geostrophic Adjustment in 1D-Rotating SW Bouchut et al., JFM, 2004.

WB FV Evolution Galerkin Methods for the SWE Lukacova et al., JCP, 2007.

FV Simulation of the Geostrophic Adjustment in a Rotating SW System Castro et al., SIAM JSC, 2008

Preservation of the Discrete Geostrophic Equilibrium in SW Flows AKNV, FVCA VI Proc., 2011.

> WB Schemes for the SW Equations with Coriolis Forces Chertock et al., preprint, 2016.

Finite Volume Framework

• WB Schemes with Coriolis terms : $\nabla h + 2\omega \times \mathbf{u} = \mathbf{0}$

Frontal Geostrophic Adjustment in 1D-Rotating SW Bouchut et al., JFM, 2004.

WB FV Evolution Galerkin Methods for the SWE Lukacova et al., JCP, 2007.

FV Simulation of the Geostrophic Adjustment in a Rotating SW System Castro et al., SIAM JSC, 2008

Preservation of the Discrete Geostrophic Equilibrium in SW Flows AKNV, FVCA VI Proc., 2011.

> WB Schemes for the SW Equations with Coriolis Forces Chertock et al., preprint, 2016.

Stationary vortex : Numerical Accuracy

Э

Stationary vortex : Numerical Accuracy

E. Audusse Numerics around Geostrophic Equilibrium

Finite Volume Framework

• Accuracy at low Mach number : $\nabla \cdot \mathbf{u} = \mathbf{0}$

FV Compres. Flow Solvers for Multi-D, Var. Dens. Zero Mach Number Flows, Schneider et al., JCP, 1999.

Dissipation mechanism of upwind-schemes in the low Mach number regime, Rieper, JCP, 2009.

Stability of a Cartesian Grid Projection Meth. for Zero Froude SW Flows, Klein & Vater, Num. Math., 2009.

Godunov type schemes for compressible Euler system at Low Mach Number, Dellacherie, JCP, 2010.

> A Weakly AP Low Mach Number Scheme for the Euler Equations Noelle et al., SIAM JSC, 2014.

・ 同 ト ・ ヨ ト ・ ヨ ト

Stationary vortex : Numerical Accuracy

E. Audusse Numerics around Geostrophic Equilibrium

Э

Stationary vortex : Numerical Accuracy

E. Audusse Numerics around Geostrophic Equilibrium

Linearization of the SW model

- Deep ocean study $F_r = R_o = \epsilon$
- Flat topography

$$\partial_t h + \nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla h = \mathbf{u}^{\perp}$$

Collocated Finite Volume Study

- Hability to capture equilibrium states
- Accuracy at Low Froude / Low Rossby
- Stability

Linearization of the SW model

- Deep ocean study $F_r = R_o = \epsilon$
- Flat topography

$$\partial_t h + \nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla h = \mathbf{u}^{\perp}$$

Collocated Finite Volume Study

$$h_{i}^{n+1} = h_{i}^{n} + \frac{\Delta t}{|C_{i}|} \sum_{j} F^{h}(h_{i}^{n}, \mathbf{u}_{i}^{n}, h_{j}^{n}, \mathbf{u}_{j}^{n}) \mathbf{n}_{ij}$$
$$\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} + \frac{\Delta t}{|C_{i}|} \sum_{j} F^{\mathbf{u}}(h_{i}^{n}, \mathbf{u}_{i}^{n}, h_{j}^{n}, \mathbf{u}_{j}^{n}) \mathbf{n}_{ij} + (\mathbf{u}^{\perp})_{i}^{n,n+1}$$

Linearization of the SW model

- Deep ocean study $F_r = R_o = \epsilon$
- Flat topography

$$\partial_t h + \nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla h = \mathbf{u}^{\perp}$$

Collocated Finite Volume Study

$$h_{i}^{n+1} = h_{i}^{n} + \frac{\Delta t}{|C_{i}|} \sum_{j} F^{h}(h_{i}^{n}, \mathbf{u}_{i}^{n}, h_{j}^{n}, \mathbf{u}_{j}^{n}) \mathbf{n}_{ij}$$
$$F^{h}(h_{i}^{n}, \mathbf{u}_{i}^{n}, h_{j}^{n}, \mathbf{u}_{j}^{n}) \mathbf{n}_{ij} = \frac{\mathbf{u}_{i}^{n} + \mathbf{u}_{j}^{n}}{2} \mathbf{n}_{ij} - |D| (h_{i}^{n} - h_{j}^{n})$$

Study of the Modified Equation

- Semi discrete Godunov type scheme
- Numerical viscosity of size Δx

$$\partial_t h + \nabla \cdot \mathbf{u} - \mu_h \Delta h = 0$$

$$\partial_t \mathbf{u} + \nabla h - \mu_\mathbf{u} \Delta \mathbf{u} = \mathbf{u}^{\perp}$$

Collocated Finite Volume Study

$$h_{i}^{n+1} = h_{i}^{n} + \frac{\Delta t}{|C_{i}|} \sum_{j} F^{h}(h_{i}^{n}, \mathbf{u}_{i}^{n}, h_{j}^{n}, \mathbf{u}_{j}^{n}) \mathbf{n}_{ij}$$
$$F^{h}(h_{i}^{n}, \mathbf{u}_{i}^{n}, h_{j}^{n}, \mathbf{u}_{j}^{n}) \mathbf{n}_{ij} = \frac{\mathbf{u}_{i}^{n} + \mathbf{u}_{j}^{n}}{2} \mathbf{n}_{ij} - |D| (h_{i}^{n} - h_{j}^{n})$$

Case with no Coriolis force

Equilibrium states associated to constant h

$$\partial_t h + \nabla \cdot \mathbf{u} - \mu_h \Delta h = 0$$

$$\partial_t \mathbf{u} + \nabla h - \mu_\mathbf{u} \Delta \mathbf{u} = 0$$

個 と く ヨ と く ヨ と …

æ

Case with no Coriolis force

Equilibrium states associated to constant h

$$\partial_t h + \nabla \cdot \mathbf{u} - \mu_h \Delta h = 0$$

$$\partial_t \mathbf{u} + \nabla h - \mu_\mathbf{u} \Delta \mathbf{u} = 0$$

個 と く ヨ と く ヨ と …

æ

Case with no Coriolis force

Equilibrium states associated to constant h

$$\partial_t h + \nabla \cdot \mathbf{u} - \mu_h \Delta h = 0$$

$$\partial_t \mathbf{u} + \nabla h - \mu_{\mathbf{u}} \Delta \mathbf{u} = 0$$

- Modification of the numerical viscosity
 - Low (All) Froude scheme : $\mu_{\mathbf{u}} = 0 \ (\mathcal{O}(\epsilon))$
 - Dellacherie scheme : $\Delta u \rightsquigarrow \nabla (\nabla \cdot \mathbf{u})$

Godunov type schemes for compressible Euler system at Low Mach Number, Dellacherie, JCP, 2010.

Quasi 1d case

- Flow variables independent of y direction
- Equilibrium states associated to null u_x component

$$\partial_t h + \partial_x u - \mu_h \Delta h = 0$$

$$\partial_t u + \partial_x h - \mu_u \Delta u = v$$

$$\partial_t v - \mu_v \Delta v = -u$$

白 ト イヨト イヨト

Quasi 1d case

- Flow variables independent of y direction
- Equilibrium states associated to null u_x component

$$\partial_t h + \partial_x u - \mu_h \Delta h = 0$$

$$\partial_t u + \partial_x h - \mu_u \Delta u = v$$

$$\partial_t v - \mu_v \Delta v = -u$$

白 ト イヨト イヨト

Quasi 1d case

- Flow variables independent of y direction
- Equilibrium states associated to null u_x component

$$\partial_t h + \partial_x u - \mu_h \Delta h = 0$$

$$\partial_t u + \partial_x h - \mu_u \Delta u = v$$

$$\partial_t v - \mu_v \Delta v = -u$$

- Modification of the numerical viscosity
 - Low (All) Rossby scheme : $\mu_{\mathbf{h}} = 0$ ($\mathcal{O}(\epsilon)$)
 - Bouchut scheme : $\Delta h \rightsquigarrow \Delta(h + \tilde{b})$ with $\partial_x \tilde{b} = -v$

Godunov type schemes for Quasi 1d Wave Eq. with Coriolis Term, ADHOP, to appear in ESAIM Proc., 2016.

Kernel of the schemes

Classical scheme

$$\ker L_{\kappa_r \neq 0,h} = \left\{ q = (r, u, v) \in \mathbb{R}^{3N} \mid \exists C \in \mathbb{R} : r_i = C, u_i = 0, v_i = 0 \right\}$$

Low Froude scheme

$$\ker L_{\kappa_r=0,h} = \left\{ q = (r,u,v) \in \mathbb{R}^{3N} \mid u_i = 0, \ \frac{a_{\star}}{2\Delta x} (r_{i+1} - r_{i-1}) = \omega v_i \right\}$$

Bouchut scheme

$$\ker L_{Bc,h} = \left\{ q = (r, u, v) \in \mathbb{R}^{3N} \mid u_i = 0, \ \frac{a_{\star}}{2\Delta x} (r_{i+1} - r_i) = \omega \frac{v_i + v_{i+1}}{2} \right\}$$

Godunov type schemes for Quasi 1d Wave Eq. with Coriolis Term, ADHOP, to appear in ESAIM Proc., 2016.

E + 4 E +

Stability properties

Godunov type schemes for Quasi 1d Wave Eq. with Coriolis Term, ADHOP, to appear in ESAIM Proc., 2016.

個 と く き と く き と … き

Fully 2d case

- Equilibrium states associated to variable h and u
- Necessary to modify all components of the numerical viscosity

$$\partial_t h + \nabla \cdot \mathbf{u} - \mu_h \Delta h = 0$$

$$\partial_t \mathbf{u} + \nabla h - \mu_\mathbf{u} \Delta \mathbf{u} = \mathbf{u}^{\perp}$$

Modification of the numerical viscosity

- Many possible choices
- Accuracy and Stability issues
 - Classical Classical : Stable
 - Low Rossby Low Froude : Unstable
 - Other choices...

Stationary vortex : Numerical Accuracy

E. Audusse Numerics around Geostrophic Equilibrium

Э

Stationary vortex : Numerical Accuracy

E. Audusse Numerics around Geostrophic Equilibrium

Water column : Stability and Accuracy

・ロン ・回と ・ヨン・

æ

Water column : Stability and Accuracy

<回と < 目と < 目と

Perspectives

- 2d Linear & Non linear studies
- Staggered FV schemes
- Extension to 3d (through multilayer models)

$$\partial_t H + \nabla \cdot \left(H \sum \mathbf{U}_\alpha \right) = 0$$

$$\partial_t \left(H \mathbf{U}_\alpha \right) + \nabla \cdot \left(H \mathbf{U}_\alpha \otimes \mathbf{U}_\alpha \right) + \nabla \frac{g H^2}{2}$$

$$= -g H \nabla B - 2\Omega \times \left(H \mathbf{U}_\alpha \right)$$

$$+ \mathbf{U}_{\alpha+1/2} G_{\alpha+1/2} - \mathbf{U}_{\alpha-1/2} G_{\alpha-1/2}$$

A multilayer Saint-Venant system with mass exchanges for SW flows, ABPS, M2AN, 2011. A hierarchy of non-hydrostatic models for free surface flows, Fernandez Nieto et al., 2016.

(日) (四) (王) (王) (王)

Perspectives

- 2d Linear & Non linear studies
- Staggered FV schemes
- Extension to 3d (through multilayer models)

Finite Volume for Complex Application, FVCA 8 Lille Learning Center, France, 12-16 June 2017

▶ < ∃ >