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Physical context : the ITER project

I Tokamak construction at Cadarache in France
I Aim : gain of energy by fusion of atoms with magnetic confinement

I Modelisation of plasma by PDE
I MHD (fluid model)

I Long time dynamic
I Instabilities can destroy the machine

I Multi-species Vlasov-Maxwell and gyrokinetic approximation
I Short time dynamic
I Micro-instabilities can degrade confinement quality

I Interest of numerical simulations :
I Understand how heat flux due to turbulence vary with respect to the

size of the plasma
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Vlasov equation

f (t , x , v) solution of Vlasov equation
f (t , x , v)dxdv represents the probability of finding particules in a
volume dxdv at time t at point (x , v) (position, velocity)

∂t f + v · ∇x f + F (t , x) · ∇v f = 0

I Transport equation
I Non linearity through F that depends on f (Poisson, Maxwell) :

F = E + v ∧ B
I Description of the dynamic of charged particules in a plasma

1d × 1d 2d × 0d 3d × 1d 3d × 1d + µ

Vlasov-Poisson Euler-2d drift-kinetic gyrokinetic

Numerical methods : PIC/eulerian/semi-Lagrangian
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The semi-Lagrangian method

The case of 1d constant advection

∂tu + a∂x u = 0, u = u(t , x)

t`

t`+1 = t` + ∆t xi

xi − a∆txi∗ xi∗+1

un
i∗ u`i∗+1u`+1

i

u`+1
i ' u(t`+1, xi ) = u(t`, xi − a∆t)

I Characteristics are exact
I Lagrange interpolation :

I Degree 1 (linear) : xi∗ , xi∗+1
I Degree 3 (cubic) : xi∗−1, xi∗ , xi∗+1, xi∗+2

I Some known results
I L2 stability Strang, 1962
I Lq , q ≥ 1 stability for odd degree Després, 2009
I The scheme is equivalent to a Lagrange Galerkin scheme

(Pironneau, 1982) for odd degree ≤ 13 Ferretti, 2010
⇒ other proof of L2stability
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Motivation

I Presence of strong magnetic field B
I ⇒ Alignment of the solution along direction of B

I Need to take this into account in the numerics
I ⇒ Design of a numerical method that can avoid to take too much

poloidal planes without loosing precision

Numerical tools : PIC/eulerian/semi-Lagrangian
New idea (Hariri-Ottaviani,2013) : aligned interpolation
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History of the method

I Aligned mesh in Strasbourg : Brauenig et al 2012
I 1D conservative method
I Curvilinear mesh
I Question of boundary conditions

I Flux Coordinate Independent method (FCI) Hariri-Ottaviani
2013, Stegmeier et al 2014

I Classical mesh (for example)
I Aligned interpolation
I Reduction in the number of poloidal planes

I Our approach (initiated end of 2013)
I we remain on a flux surface (here r = cte)
I FCISL method on each flux surface

First results of FCISL : Kwon-Yi-Piao-Kim 2015

I Lagrange interpolation of degre 3
I no splitting (4D interpolation)
I curvilinear approach for the geometry
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Oblic interpolation

Interpolation along a fixed oblic direction

⇒ Reconstruction of the values necessary by interpolation in θ
⇒ Reconstruction in the aligned direction
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Constant oblic advection
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Convergence result

Constant advection along b = (bθ, bϕ)

∂t f + vb · ∇f = 0, f (t = 0, θ, ϕ) = e(imθ+inϕ)

Lagrange interpolation of odd degree dθ in θ and
I Standard method : Lagrange of odd degree dϕ in ϕ∥∥∥e(k)

∥∥∥
2
≤ Cdθ

T (|m|∆θ)dθ+1

∆t
+ Cdϕ

T (|n|∆ϕ)dϕ+1

∆t
I Aligned method : Lagrange of odd degree dϕ in aligned direction b

∥∥∥e(k)
∥∥∥

2
≤ GdθCdθ

T (|m|∆θ)dθ+1

∆t
+ Cdϕ

T
(
|n + bθ

bϕ
m|∆ϕ

)dϕ+1

∆t
I Same accuracy for

∆ϕaligned '
∣∣∣∣bϕ∇ϕf

b · ∇f

∣∣∣∣∆ϕstandard.
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If the error in θ is dominated

FCISL is interesting when f does not much vary along b, while varying
a lot along ϕ :

|∇f · b| = |bθmθ + bϕnϕ||f | << |nϕ|||f | = |∇ϕf |

Gain factor is
|nϕ|

|nϕ + bθ
bϕ

mθ|
.
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Error versus Nϕ/n ; Nθ = 200 (or 400 for n = 23)

Lagrange interpolation of degree 9
n = 5 n + m bθ

bϕ
= 5− 34/

√
2 ' −19

n = 12 n + m bθ
bϕ

= 12− 34/
√

2 ' −12
n = 23 n + m bθ

bϕ
= 23− 34/

√
2 ' −1

n = 30 n + m bθ
bϕ

= 30− 34/
√

2 ' 6
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Theoretical overhead for the interpolation in θ

Majoration by the constant of Landau (Landau, 1913)

Gd = max
0≤α≤1

d+1∑
k=−d

|Lk (α)| =
d+1∑

k=−d

|Lk (
1
2

)|,

with Lk (x) =
d+1∏
` = −d
` 6= k

x − `
k − ` elementary Lagrange polynomial

G0 = 1, G1 = 1.25, G2 = 1.390625

G3 = 1.48828125, G4 = 1.56304931640625

G18 < 1.999356, G20 < 2.031608

The constant of Landau is smaller than the constant of Lebesgue for
polynomial interpolation with Chebychev points : we only consider the

middle region for the interpolation
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Some references on the constant of Landau

I Landau, 1913

Gd ∼
ln(d)

π

1

I Watson, 1930

Gd =
1

π

(
ln(d + 1) + γ + 4 ln(2) −

1

4(d + 1)
+

5

192(d + 1)2
+ Rd

)

with Rd = o(d−2) ; 0 < Rd <
3

128(d+1)3 Zhao, 2009

I Brutman, 1978

1 +
ln(d + 1)

π
≤ Gd < 1.0663 +

ln(d + 1)

π

I Schönhage, 1962

Gd <
2

π
(ln(d + 2) + ln(2) + γ) , γ ' 0.577, constante d’Euler

I Mills-Smith, 1990 (d ≥ 1)

0.8964675 +
ln(d + 1.5)

π
< Gd < 1.0778 +

ln(d + 1)

π

I Cvijovic-Srivastava, 2009 link between several formulae

1. constant of Lebesgue for Chebychev’s points : 2 ln(d)
π (result of Féjer)
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Stability

How to prove that the symbol is smaller than one ?
I Numerical approach (not rigorous)

I enumeration of intervals where symbol is C∞ (20 cases for dϕ = 1 ;
7872 for dϕ = 8)

I use of a maximize function on each interval (systematic and permits
to detect unstable cases)

I formal approach (for fixed degree of interest)
I identification on an equality that gives the inequality
I prove the identity with computer algebra software

I Mathematical approach (for arbitrary degree)
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Stability of the aligned method

I We first treat the case of λ = bθNθ
bϕNϕ

rational

I 2d symbol writes as a convex combination of 1d symbols in aligned
direction

I coefficients are discrete Fourier transform
I Discrete Fourier transform is real
I Discrete Fourier transform is nonnegative

I Case of λ real by density
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More precisely

The symbol can be written as

ρλ,rϕ,αϕ(ωθ, ωϕ) =

q−1∑
p=0

tp exp(irϕωp)

dϕ+1∑
k=−dϕ

Ldϕ
k (αϕ) exp(ikωp),

with ωp = 2πpλ+ ωϕ + λωθ, qλ ∈ Z,

tp =
1
q

q−1∑
p1=0

dθ+1∑
`=−dθ

Ldθ
`

(
p1

q

)
exp

(
i
(
`− p1

q

)
(ωθ + 2πp)

)
,

I tp is real by symmetry
I difficult part : tp is nonnegative
I tp is not real for even degree interpolation and we can find

unstable situations (for dϕ ≥ 1)
I interpolation along the aligned direction can be changed
I the symbol is in a regular q-polygon
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First manipulations

Look at the behavior of

t(ω) =
1
q

q−1∑
p=0

d+1∑
`=−d

Ld
`

(
p
q

)
exp

(
i
(
`− p

q

)
ω

)
Simple expression of derivative (Boyer, 2006 and Després,
Lecture notes)

t ′(ω) = (−1)d 22d+1

(2d + 1)!
sin2d+1

(ω
2

) 1
q

q−1∑
p=1

cos
(

(
1
2
− p

q
)ω

)
wd (

p
q

).

with wd (x) =
∏d+1
`=−d (x − `) ; (−1)d wd is convex on (0, 1).

t(2nπ) = 0, n = 1, . . . , q − 1.
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Convexity and positive Fourier transform

From Rolle’s theorem and degree argument, it is enough to show local
convexity around 2nπ, n = 1, . . . , q − 1, applying (with fp = wd ( p

q ))

Lemma (Polyà, 1948; Tuck, 2006)
Let q ≥ 2 an integer and fj a sequence of q + 1 real numbers with
j = 0, . . . , q, such that f0 = fq = 0 and

fj+1 − 2fj + fj−1 ≥ 0, j = 1, . . . , q − 1.

We then have

q−1∑
p=1

cos
(

2nπ
p
q

)
fp ≥ 0, n = 1, . . . , q − 1.
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Corollary : proof of SL-LG equivalence

Ferretti, 2010

I SL and LG are equivalent for the 1d constant advection, if we can
find a function φ such that∫

R
φ(η + y)φ(y)dy = ψ(y) auto-correlation integral

I ψ describes the Semi Lagrangian (SL) scheme
I φ describes the Lagrange Galerkin (LG) scheme
I In Fourier

ψ̂(ω) =
∣∣∣φ̂(ω)

∣∣∣2
I Example : for degree 3, we have

ψ̂(ω) =
8(6 + ω2) sin(ω/2)4

3ω4 ∈ R+

The result of stability in the oblic context implies the equivalence
SL-LG of Ferretti, 2010 and is valid for an arbitrary odd degree
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Direct proof of SL-LG equivalence
Ferretti-M, 2016 Algebraic form of the Fourier transform valid for
arbitrary odd degree (conjectured in Ferretti, 2010)

I Aim : prove that S(ω) =
∫ 1

0

∑d+1
`=−d L`(x) exp (i (`− x)ω) dx ∈ R+

I Compact formula for the derivative Boyer/Després’s
lecture notes

S′(ω) = (−1)d 22d+1

(2d + 1)!
sin2d+1

(ω
2

)
σ(ω)

I Integration by parts for the factor

σ(ω) =

∫ 1

0
cos

((
x − 1

2

)
ω

)
w (x) dx , w(x) =

d+1∏
j=−d

(x − j)

I Recognize the primitive thanks to relation

w (2k+1)(0) = − d + 1
2k + 2

w (2k+2)(0), k = 0, . . . , d .

I Final explicit form

S(ω) = (−1)d 22d+1

(2d + 1)!
sin2d+2

(ω
2

) d∑
k=0

w (2k+2)(0)

k + 1
(−1)k

ω2k+2

⇒ New proof of L2 stability of SL scheme for constant advection
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The gyrokinetic model

mB∗‖
∂f
∂t

+

(
∂H
∂v‖

B∗ +
m
e

b×∇xH
)
· ∇xf − B∗ · ∇xH

∂f
∂v‖

= 0

H =
1
2

mv2
‖ + µB + eφ, with µ = m

v2
⊥

2B
, B = |B|.

B∗ = B +
m
e

v‖∇× b, B∗‖ = b · B∗

I f = f (t , x, v‖, µ) : distribution function of ions
I m : mass of a particule
I e : charge of a particule
I electrons are supposed adiabatic
I non linear coupling through Poisson type equation for φ
I gyroaverage operator ommited for presentation

Simplification : drift kinetic model in cylinder geometry

∂t f −
∂θφ

rB0
∂r f +

∂r Φ

rB0
∂θf + v∇‖f −∇‖Φ∂v f = 0, ∇‖ = b · ∇
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Application : gyrokinetic simulation in Selalib

I drift kinetic model in cylinder geometry
I corresponds to Grandgirard et al 2006, when bθ = 0
I Poloidal cut f (t , r , θ, z = 0, v = 0)

I Mode (m = 10, n = −9) the most unstable (aligned method,
LAG17) 255× 512× 32× 128 (256 proc), 4000 itérations ∆t = 2,
on helios, supercomputer, 21 heures.
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Application : gyrokinetic simulation in Gysela
I Gain of factor 4 in Gysela (gyrokinetic code, CEA Cadarache)
I 256× 256× Nϕ × 48
I Initialization with a bath of modes
I Degree 4, and cubic splines in θ and other interpolations
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PICSL project

Participants : Yann Barsamian, Joackim Bernier, Sever Histoaga, M.
M., Pierre Navaro

I Two species kinetic simulations
I Vlasov-Poisson 2D × 2D (cartesian geometry)

I Landau
I Test case of M. Badsi & M. Herda, Cemracs, 2014

I Drift kinetic simulations 3D × 1D (polar geometry)
I Adding of Maxwell solver (equivalent to Poisson)

I Numerical methods :
I Particle in Cell (PIC)
I Semi-Lagrangian (SL)

I Tasks
I Testcase description and dispersion analysis
I Code development in Selalib library
I Performance and numerical convergence
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TARGET project

Participants : Nicolas Bouzat, Camilla Bressan, Virginie Grandgirard,
Guillaume Latu, M. M.
Aim : adapt SL codes to new type of meshes like
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Conclusion/Perspectives

I Progress in the method FCISL initiated by M. Ottaviani
I Analysis for 2D advection ; new proof of stability of SL schemes
I Validation on an adapted drift kinetic model
I Validation in Gysela

I Perspectives
I Study of other reconstructions : splines, Hermite, SLDG
I More realistic configurations
I Adaptation of the geometry / multi species (cf PICSL and TARGET)

I Other works
I SL for BGK model
I SL for stabilization of a network of strings
I Gyroaverage operator and Padé approximants
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