SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective:

The semi-Lagrangian method using oblic interpolation

Michel Mehrenberger

IRMA, University of Strasbourg and TONUS project (INRIA), France

Cemracs seminar, Luminy, August 1st 2016

Collaboration with Guillaume Latu & Maurizio Ottaviani (CEA Cadarache, France), Yaman Güclü & Eric Sonnendrücker (IPP Garching, Germany) Selalib; Eurofusion; IPP; Gysela; CEA Cadarache

Introduction

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Physical context : the ITER project

- Tokamak construction at Cadarache in France
 - Aim : gain of energy by fusion of atoms with magnetic confinement
- Modelisation of plasma by PDE
 - MHD (fluid model)
 - Long time dynamic
 - Instabilities can destroy the machine
 - Multi-species Vlasov-Maxwell and gyrokinetic approximation
 - Short time dynamic
 - Micro-instabilities can degrade confinement quality
- Interest of numerical simulations :
 - Understand how heat flux due to turbulence vary with respect to the size of the plasma

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context

Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Vlasov equation

f(t, x, v) solution of Vlasov equation f(t, x, v) dx dv represents the probability of finding particules in a volume dx dv at time *t* at point (x, v) (position, velocity)

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + F(t, \mathbf{x}) \cdot \nabla_v f = \mathbf{0}$$

- Transport equation
- ▶ Non linearity through *F* that depends on *f* (Poisson, Maxwell) : $F = E + v \land B$
- Description of the dynamic of charged particules in a plasma

1 <i>d</i> × 1 <i>d</i>	$2d \times 0d$	3 <i>d</i> × 1 <i>d</i>	$3d imes 1d + \mu$
Vlasov-Poisson	Euler-2d	drift-kinetic	gyrokinetic

Numerical methods : PIC/eulerian/semi-Lagrangian

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Contex

Vlasov equation The semi-Lagrangian

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

▲□▶▲□▶▲□▶▲□▶ = のへぐ

The semi-Lagrangian method

The case of 1d constant advection

- Characteristics are exact
- Lagrange interpolation :
 - Degree 1 (linear) : x_{i*}, x_{i*+1}
 - Degree 3 (cubic) : x_{i*-1}, x_{i*}, x_{i*+1}, x_{i*+2}
- Some known results
 - L² stability Strang, 1962
 - ► L^q, q ≥ 1 stability for odd degree Després, 2009
 - ▶ The scheme is equivalent to a Lagrange Galerkin scheme (Pironneau, 1982) for odd degree \leq 13 Ferretti, 2010 \Rightarrow other proof of L^2 stability

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Contex Vlasov equation

The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Aligned interpolation for gyrokinetics

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics

Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

・ロト・日本・日本・日本・日本・日本

Motivation

- Presence of strong magnetic field B
 - \Rightarrow Alignment of the solution along direction of *B*
- Need to take this into account in the numerics
 - ➤ ⇒ Design of a numerical method that can avoid to take too much poloidal planes without loosing precision

Numerical tools : PIC/eulerian/semi-Lagrangian New idea (Hariri-Ottaviani, 2013) : aligned interpolation

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation or gyrokinetics

Motivation

Numerical analysis for constant oblic advection Convergence result Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

うせん 同一人間を入所する (四) (1)

History of the method

- Aligned mesh in Strasbourg : Brauenig et al 2012
 - 1D conservative method
 - Curvilinear mesh
 - Question of boundary conditions
- Flux Coordinate Independent method (FCI) Hariri-Ottaviani 2013, Stegmeier et al 2014
 - Classical mesh (for example)
 - Aligned interpolation
 - Reduction in the number of poloidal planes
- Our approach (initiated end of 2013)
 - we remain on a flux surface (here r = cte)
 - FCISL method on each flux surface

First results of FCISL : Kwon-Yi-Piao-Kim 2015

- Lagrange interpolation of degre 3
- no splitting (4D interpolation)
- curvilinear approach for the geometry

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics

Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

▲□▶▲□▶▲□▶▲□▶ = のへぐ

Oblic interpolation

Interpolation along a fixed oblic direction

- \Rightarrow Reconstruction of the values necessary by interpolation in θ
- ⇒ Reconstruction in the aligned direction

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation or gyrokinetics Motivation

Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Constant oblic advection

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangiar method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Convergence result

Constant advection along $\mathbf{b} = (b_{\theta}, b_{\varphi})$

$$\partial_t f + v \mathbf{b} \cdot \nabla f = 0, \ f(t = 0, \theta, \varphi) = \mathbf{e}^{(im\theta + in\varphi)}$$

Lagrange interpolation of odd degree d_{θ} in θ and

Standard method : Lagrange of odd degree d_φ in φ

$$\left\|\boldsymbol{e}^{(k)}\right\|_{2} \leq C_{d_{\theta}} \frac{T\left(|\boldsymbol{m}|\Delta\theta\right)^{d_{\theta}+1}}{\Delta t} + C_{d_{\varphi}} \frac{T\left(|\boldsymbol{n}|\Delta\varphi\right)^{d_{\varphi}+1}}{\Delta t}$$

Aligned method : Lagrange of odd degree d_{\varphi} in aligned direction b

$$\left\| \boldsymbol{e}^{(k)} \right\|_{2} \leq \boldsymbol{G}_{\boldsymbol{d}_{\boldsymbol{\theta}}} \boldsymbol{C}_{\boldsymbol{d}_{\boldsymbol{\theta}}} \frac{T\left(|\boldsymbol{m}| \Delta \boldsymbol{\theta} \right)^{\boldsymbol{d}_{\boldsymbol{\theta}}+1}}{\Delta t} + \boldsymbol{C}_{\boldsymbol{d}_{\varphi}} \frac{T\left(|\boldsymbol{n} + \frac{\boldsymbol{b}_{\boldsymbol{\theta}}}{\boldsymbol{b}_{\varphi}} \boldsymbol{m}| \Delta \boldsymbol{\varphi} \right)^{\boldsymbol{d}_{\varphi}+1}}{\Delta t}$$

Same accuracy for

$$\Delta \varphi^{\text{aligned}} \simeq \left| \frac{b_{\varphi} \nabla_{\varphi} f}{\mathbf{b} \cdot \nabla f} \right| \Delta \varphi^{\text{standard}}.$$

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

If the error in θ is dominated

FCISL is interesting when *f* does not much vary along **b**, while varying a lot along φ :

$$|\nabla f \cdot \mathbf{b}| = |b_{\theta} m_{\theta} + b_{\varphi} n_{\varphi}||f| \ll |n_{\varphi}||f| = |\nabla_{\varphi} f|$$

Gain factor is

$$rac{|n_arphi|}{|n_arphi+rac{b_ heta}{b_arphi}m_ heta|}$$

.

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation or gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Error versus N_{φ}/n ; $N_{\theta} = 200$ (or 400 for n = 23)

Lagrange interpolation of degree 9 n = 5 $n + m \frac{b_{\theta}}{b_{\varphi}} = 5 - 34/\sqrt{2} \simeq -19$ n = 12 $n + m \frac{b_{\theta}}{b_{\varphi}} = 12 - 34/\sqrt{2} \simeq -12$ n = 23 $n + m \frac{b_{\theta}}{b_{\varphi}} = 23 - 34/\sqrt{2} \simeq -1$ n = 30 $n + m \frac{b_{\theta}}{b_{\varphi}} = 30 - 34/\sqrt{2} \simeq 6$

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへの

Theoretical overhead for the interpolation in θ

Majoration by the constant of Landau (Landau, 1913)

$$G_d = \max_{0 \le \alpha \le 1} \sum_{k=-d}^{d+1} |L_k(\alpha)| = \sum_{k=-d}^{d+1} |L_k(\frac{1}{2})|,$$

with $L_k(x) = \prod_{\substack{\ell = -d \\ \ell \neq k}}^{d+1} \frac{x - \ell}{k - \ell}$ elementary Lagrange polynomial

 $\begin{array}{l} G_0=1, \ G_1=1.25, \ G_2=1.390625\\ G_3=1.48828125, \ G_4=1.56304931640625\\ G_{18}<1.999356, \ G_{20}<2.031608 \end{array}$

The constant of Landau is smaller than the constant of Lebesgue for polynomial interpolation with Chebychev points : we only consider the middle region for the interpolation

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Some references on the constant of Landau

Landau, 1913
$$G_d \sim \frac{\ln(d)}{\pi} 1$$
Watson, 1930
$$G_d = \frac{1}{\pi} \left(\ln(d+1) + \gamma + 4\ln(2) - \frac{1}{4(d+1)} + \frac{5}{192(d+1)^2} + R_d \right)$$
with $R_d = o(d^{-2}); 0 < R_d < \frac{3}{128(d+1)^3}$ Zhao, 2009
Brutman, 1978
$$1 + \frac{\ln(d+1)}{\pi} \leq G_d < 1.0663 + \frac{\ln(d+1)}{\pi}$$
Schönhage, 1962
$$G_d < \frac{2}{\pi} \left(\ln(d+2) + \ln(2) + \gamma \right), \ \gamma \simeq 0.577, \ \text{constante d'Euler}$$
Mills-Smith, 1990 ($d \geq 1$)
$$0.8964675 + \frac{\ln(d+1.5)}{\pi} < G_d < 1.0778 + \frac{\ln(d+1)}{\pi}$$
Cvijovic-Srivastava, 2009 link between several formulae

1. constant of Lebesgue for Chebychev's points : $2\frac{\ln(d)}{\pi}$ (result of Féjer) $\equiv \sqrt{2}$

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Stability

How to prove that the symbol is smaller than one?

- Numerical approach (not rigorous)
 - enumeration of intervals where symbol is C^{∞} (20 cases for $d_{\varphi} = 1$; 7872 for $d_{\varphi} = 8$)
 - use of a maximize function on each interval (systematic and permits to detect unstable cases)
- formal approach (for fixed degree of interest)
 - identification on an equality that gives the inequality
 - prove the identity with computer algebra software
- Mathematical approach (for arbitrary degree)

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation or gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Stability of the aligned method

• We first treat the case of $\lambda = \frac{b_{\theta} N_{\theta}}{b_{\varphi} N_{\varphi}}$ rational

- 2d symbol writes as a convex combination of 1d symbols in aligned direction
 - coefficients are discrete Fourier transform
 - Discrete Fourier transform is real
 - Discrete Fourier transform is nonnegative
- Case of \(\lambda\) real by density

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation or gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

More precisely

The symbol can be written as

$$\rho_{\lambda,r_{\varphi},\alpha_{\varphi}}(\omega_{\theta},\omega_{\varphi}) = \sum_{\rho=0}^{q-1} t_{\rho} \exp(ir_{\varphi}\omega_{\rho}) \sum_{k=-d_{\varphi}}^{d_{\varphi}+1} L_{k}^{d_{\varphi}}(\alpha_{\varphi}) \exp(ik\omega_{\rho}),$$

with $\omega_{p} = 2\pi p \lambda + \omega_{\varphi} + \lambda \omega_{\theta}, \ q \lambda \in \mathbb{Z},$

$$t_{p} = \frac{1}{q} \sum_{\rho_{1}=0}^{q-1} \sum_{\ell=-d_{\theta}}^{d_{\theta}+1} L_{\ell}^{d_{\theta}}\left(\frac{p_{1}}{q}\right) \exp\left(i\left(\ell-\frac{p_{1}}{q}\right)(\omega_{\theta}+2\pi p)\right),$$

- t_p is real by symmetry
- difficult part : t_p is nonnegative
- t_ρ is not real for even degree interpolation and we can find unstable situations (for d_φ ≥ 1)
- interpolation along the aligned direction can be changed
- the symbol is in a regular q-polygon

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Convergence result

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

First manipulations

Look at the behavior of

$$t(\omega) = \frac{1}{q} \sum_{p=0}^{q-1} \sum_{\ell=-d}^{d+1} L_{\ell}^{d} \left(\frac{p}{q}\right) \exp\left(i\left(\ell - \frac{p}{q}\right)\omega\right)$$

Simple expression of derivative (Boyer, 2006 and Després, Lecture notes)

$$t'(\omega) = (-1)^{d} \frac{2^{2d+1}}{(2d+1)!} \sin^{2d+1}\left(\frac{\omega}{2}\right) \frac{1}{q} \sum_{p=1}^{q-1} \cos\left((\frac{1}{2} - \frac{p}{q})\omega\right) w_{d}(\frac{p}{q}).$$

with $w_d(x) = \prod_{\ell=-d}^{d+1} (x-\ell)$; $(-1)^d w_d$ is convex on (0,1). $t(2n\pi) = 0, n = 1, ..., q - 1.$

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangiar method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Convexity and positive Fourier transform

From Rolle's theorem and degree argument, it is enough to show local convexity around $2n\pi$, n = 1, ..., q - 1, applying (with $f_p = w_d(\frac{p}{a})$)

Lemma (Polyà, 1948; Tuck, 2006)

Let $q \ge 2$ an integer and f_j a sequence of q + 1 real numbers with j = 0, ..., q, such that $f_0 = f_q = 0$ and

$$f_{j+1} - 2f_j + f_{j-1} \ge 0, \quad j = 1, \ldots, q-1.$$

We then have

$$\sum_{p=1}^{q-1} \cos\left(2n\pi \frac{p}{q}\right) f_p \ge 0, \quad n=1,\ldots,q-1.$$

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation or gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆ ○ ◆

Corollary : proof of SL-LG equivalence

Ferretti, 2010

SL and LG are equivalent for the 1*d* constant advection, if we can find a function *φ* such that

 $\int_{\mathbb{R}} \phi(\eta + y) \phi(y) dy = \psi(y)$ auto-correlation integral

- ψ describes the Semi Lagrangian (SL) scheme
- ϕ describes the Lagrange Galerkin (LG) scheme
- In Fourier

$$\hat{\psi}(\omega) = \left| \hat{\phi}(\omega) \right|^2$$

Example : for degree 3, we have

$$\hat{\psi}(\omega) = rac{8(6+\omega^2)\sin(\omega/2)^4}{3\omega^4} \in \mathbb{R}^+$$

The result of stability in the oblic context implies the equivalence *SL-LG* of *Ferretti*, 2010 and is valid for an **arbitrary** odd degree

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic

simulation in Selalib

simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Direct proof of SL-LG equivalence

Ferretti-M, 2016 Algebraic form of the Fourier transform valid for *arbitrary* odd degree (conjectured in Ferretti, 2010)

- Aim : prove that $S(\omega) = \int_0^1 \sum_{\ell=-d}^{d+1} L_\ell(x) \exp(i(\ell-x)\omega) \, dx \in \mathbb{R}^+$
- Compact formula for the derivative Boyer/Després's lecture notes

$$S'(\omega) = (-1)^{d} \frac{2^{2d+1}}{(2d+1)!} \sin^{2d+1}\left(\frac{\omega}{2}\right) \sigma(\omega)$$

Integration by parts for the factor

$$\sigma(\omega) = \int_0^1 \cos\left(\left(x - \frac{1}{2}\right)\omega\right) w(x) \, dx, \ w(x) = \prod_{j=-d}^{d+1} (x - j)$$

Recognize the primitive thanks to relation

$$w^{(2k+1)}(0) = -\frac{d+1}{2k+2}w^{(2k+2)}(0), \ k = 0, \dots, d.$$

Final explicit form

$$S(\omega) = (-1)^d \frac{2^{2d+1}}{(2d+1)!} \sin^{2d+2} \left(\frac{\omega}{2}\right) \sum_{k=0}^d \frac{w^{(2k+2)}(0)}{k+1} \frac{(-1)^k}{\omega^{2k+2}}$$

 \Rightarrow New proof of L^2 stability of SL scheme for constant advection

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability Link to SL-LG equivalence

Application to avrokinetics

The gyrokinetic model

simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Application to gyrokinetics

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangiar method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

・ロト・日本・日本・日本・日本・日本

The gyrokinetic model

$$mB_{\parallel}^{*}\frac{\partial f}{\partial t} + \left(\frac{\partial H}{\partial v_{\parallel}}\mathbf{B}^{*} + \frac{m}{e}\mathbf{b} \times \nabla_{\mathbf{x}}H\right) \cdot \nabla_{\mathbf{x}}f - \mathbf{B}^{*} \cdot \nabla_{\mathbf{x}}H\frac{\partial f}{\partial v_{\parallel}} = 0$$
$$H = \frac{1}{2}mv_{\parallel}^{2} + \mu B + e\phi, \text{ with } \mu = m\frac{v_{\perp}^{2}}{2B}, B = |\mathbf{B}|.$$
$$\mathbf{B}^{*} = \mathbf{B} + \frac{m}{e}v_{\parallel}\nabla \times \mathbf{b}, B_{\parallel}^{*} = \mathbf{b} \cdot \mathbf{B}^{*}$$

•
$$f = f(t, \mathbf{x}, \mathbf{v}_{\parallel}, \mu)$$
: distribution function of **ions**

- m : mass of a particule
- e : charge of a particule
- electrons are supposed adiabatic
- non linear coupling through **Poisson** type equation for ϕ
- gyroaverage operator ommited for presentation

Simplification : drift kinetic model in cylinder geometry

$$\partial_t f - \frac{\partial_\theta \phi}{rB_0} \partial_r f + \frac{\partial_r \Phi}{rB_0} \partial_\theta f + v \nabla_{\parallel} f - \nabla_{\parallel} \Phi \partial_v f = 0, \ \nabla_{\parallel} = \mathbf{b} \cdot \nabla_{\parallel} \mathbf{b} \cdot \nabla_{\parallel}$$

SL with oblic interpolation

M. Mehrenberger

Introduction

- Physical Context Vlasov equation The semi-Lagrangian method
- Aligned interpolation for gyrokinetics Motivation Oblic interpolation
- Numerical analysis for constant oblic advection Convergence result
- Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model

Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

Application : gyrokinetic simulation in Selalib

- drift kinetic model in cylinder geometry
- corresponds to Grandgirard et al 2006, when $b_{\theta} = 0$
- Poloidal cut $f(t, r, \theta, z = 0, v = 0)$
- Mode (m = 10, n = -9) the most unstable (aligned method, LAG17) 255 × 512 × 32 × 128 (256 proc), 4000 itérations Δt = 2, on helios, supercomputer, 21 heures.

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation

Numerical analysis for constant oblic advection

Stability

Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model

Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

●●● Ⅲ → Ⅲ → Ⅲ → ▲ ■ → → ■ → → ■ →

Application : gyrokinetic simulation in Gysela

- Gain of factor 4 in Gysela (gyrokinetic code, CEA Cadarache)
- $256 \times 256 \times N_{\varphi} \times 48$
- Initialization with a bath of modes
- Degree 4, and cubic splines in θ and other interpolations

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation

Numerical analysis for constant oblic advection Convergence result

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

CEMRACS projects

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangiar method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

PICSL project

Participants : Yann Barsamian, Joackim Bernier, Sever Histoaga, M. M., Pierre Navaro

- Two species kinetic simulations
 - Vlasov-Poisson 2D × 2D (cartesian geometry)
 - Landau
 - Test case of M. Badsi & M. Herda, Cemracs, 2014
 - Drift kinetic simulations 3D × 1D (polar geometry)
 - Adding of Maxwell solver (equivalent to Poisson)
- Numerical methods :
 - Particle in Cell (PIC)
 - Semi-Lagrangian (SL)
- Tasks
 - Testcase description and dispersion analysis
 - Code development in Selalib library
 - Performance and numerical convergence

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection

Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

Conclusion/Perspective

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

TARGET project

Participants : Nicolas Bouzat, Camilla Bressan, Virginie Grandgirard, Guillaume Latu, M. M.

Aim : adapt SL codes to new type of meshes like

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability Link to SL-LG equivalence

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project

TARGET project

Conclusion/Perspective

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Conclusion/Perspectives

- Progress in the method FCISL initiated by M. Ottaviani
 - Analysis for 2D advection; new proof of stability of SL schemes
 - Validation on an adapted drift kinetic model
 - Validation in Gysela
- Perspectives
 - Study of other reconstructions : splines, Hermite, SLDG
 - More realistic configurations
 - Adaptation of the geometry / multi species (cf PICSL and TARGET)
- Other works
 - SL for BGK model
 - SL for stabilization of a network of strings
 - Gyroaverage operator and Padé approximants

SL with oblic interpolation

M. Mehrenberger

Introduction

Physical Context Vlasov equation The semi-Lagrangian method

Aligned interpolation for gyrokinetics Motivation Oblic interpolation

Numerical analysis for constant oblic advection Convergence result Stability

Application to gyrokinetics

The gyrokinetic model Application : gyrokinetic simulation in Selalib

Application : gyrokinetic simulation in Gysela

CEMRACS projects

PICSL project TARGET project

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの