Parametrized Model Order Reduction for Component-to-System Synthesis

or

PDE Apps for Acoustic Ducts (and Elastic Shafts, Historic Structures, Thermal Fins,...)

Anthony T Patera Massachusetts Institute of Technology

CEMRACS 2016

Luminy, France July 29, 2016

Industry Partner

The Akselos, S.A.,¹ Team: computational methods, software, and pedagogy.

Ho Chi Minh City: *Phuong Huynh*, *Loi Nguyen*, Tuyen Hoang, Thuc Nguyen

Boston: David Knezevic, Brian Sabbey

Lausanne: Thomas Leurent, Sylvain Vallaghé

¹Akselos, S.A., licenses technology developed in the MIT research group of ATP. ATP has *no financial interest* in Akselos, S.A.

Acknowledgments

Academic Collaborators²

- P Dahl U Washington
- SC Joyce SUTD
- JD Penn MIT
- K Smetana (U Münster, MIT)
- T Taddei 🛛 MIT
- D Vignon MIT
- M Yano U Toronto

 $^{^2\}mathsf{N}\mathsf{one}$ of the academic collaborators has any financial interest in Akselos, S.A.

US AFOSR/Office of Secretary of Defense (— 9/2015) US Office of Naval Research (— 5/2016) Singapore University of Technology and Design Ford Professorship, MIT

Parametrized Partial Differential Equations (PDEs)

General SettingPDE Apps

Parametrized Partial Differential Equations (PDEs)

General SettingPDE Apps

Acoustics Preliminaries

Time domain and frequency domain: Laplace transform $pressure(\mathbf{x}, t) = \Re\{u(\mathbf{x}, f) \exp(2\pi i f t)\}.$

Frequency-domain pressure satisfies Helmholtz equation:

for ϵ a dissipation coefficient and c_{sound} speed of sound.

Particle velocity is related to pressure by

velocity
$$(\mathbf{x}, f) = \frac{1}{2\pi f \rho} \nabla u(\mathbf{x}, f)$$

for ρ the (uniform) density.

Examples of Parametrized PDEs

Heat Transfer (Conduction):

 $-\nabla(\sigma \nabla u) = q \text{ in } \Omega_{\lambda}, \quad s \equiv \bar{u}_{\text{root}}.$

Linear Elasticity:

$$-\frac{\partial}{\partial x_j} E_{ij\ell m} \frac{\partial u_\ell}{\partial x_m} = F_i \text{ in } \Omega_\lambda, \quad s \equiv \mathsf{SCF}$$

Helmholtz Acoustics:

$$-(1+\mathrm{i}\epsilon k)
abla^2 u \ -k^2 u \ =F \ \mathrm{in} \ \Omega_{\lambda}, \quad s \ \equiv Z^{\mathrm{inlet}}$$

INPUT PARAMETER $\mu \equiv (k, \lambda) \in \mathbb{R}^P$ \rightarrow FIELD $u_{\mu}(x)$ and OUTPUT (QoI) s_{μ}

Abstraction

Linear Elliptic PDEs

Given $\mu \in \mathcal{P}$ (compact) $\subset \mathbb{R}^P$, find field $u_\mu \in X(\Omega_\mu)$ (say) scalar, real

$$\begin{array}{rcl} A_{\mu}u_{\mu} & = & F_{\mu} \text{ in } \Omega_{\mu} \ , \ \text{or} \\ \langle A_{\mu}u_{\mu}, v \rangle & = & \langle F_{\mu}, v \rangle, \forall v \in X \ , \ \text{or} \\ a_{\mu}(u_{\mu}, v) & = & F_{\mu}(v), \forall v \in X \ , \end{array}$$

output(s) $s_{\mu} \in \mathbb{R}$

$$s_{\mu} = \langle L_{\mu}, u_{\mu} \rangle, \text{ or } s_{\mu} = \ell_{\mu}(u_{\mu}) ,$$

where $\Omega_{\mu} \subset \mathbb{R}^3$, $X = H^1_{(0)}(\Omega_{\mu})$, and $F_{\mu}, L_{\mu} \in X'.$

Note boundary conditions are included in a_{μ} and F_{μ} .

Model and Family

A *Model* is a particular problem definition: parametrization: $\mu \in \mathcal{P} \subset \mathbb{R}^{P}$; spatial domain: $x \in \Omega_{\mu} \subset \mathbb{R}^{3}$; physical discipline: a_{μ}, F_{μ} ; engineering outputs (Qol): ℓ_{μ} .

A Model maps parameter $\mu \in \mathcal{P}$ to field $u_{\mu}(x)$ and output(s) s_{μ} .

A *Family* is a set of Models which share a physical discipline and engineering context. Acoustic Ducts, Elastic Shafts, Historic Structures,...

Parametrized Partial Differential Equations (PDEs)

- General Setting
- PDE Apps

PDE App: Definition

A PDE App is

software associated to a Model

which maps any $\mu \in \mathcal{P}$ to an

approximate
$$\begin{cases} \text{ field } \tilde{u}_{\mu}(x) & \approx u_{\mu}(x) \\ \text{ output } \tilde{s}_{\mu} = \ell_{\mu}(\tilde{u}_{\mu}) & \approx s_{\mu} \end{cases}$$

subject to performance requirements:

response time and accuracy.

PDE App: Performance Requirements

A *deployed* PDE App should satisfy:

- \lesssim 5-second problem set-up time; "app-ification"
- \lesssim 5-second problem solution time, field and outputs;
- \lessapprox 5% solution error, specified metrics;
- \lessapprox 5-second field visualization time.

The choice of 5 seconds is informed by the human attention span: *interaction*.

PDE App: Model Reduction Paradigm PR-SCRBE-FE

Offline I: Very Slow — Days Given Family, form associated Online Dataset \mathbb{D} . Offline II: Slow — Hours Given Model \in Family, script PDE App. Online: Fast — Seconds Given PDE App, evaluate $\mu \in \mathcal{P} \xrightarrow{\mathbb{D}} \tilde{u}_{\mu}(x), \tilde{s}_{\mu}$. The PDE App Offline-Online approach is computationally competitive in the many-query context — Offline amortized, and the interactive context — Offline "irrelevant."

Computational Methodology

- Perspective
- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

Computational Methodology

• Perspective

- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

(Extensive References at Conclusion) Genetic Lines **Component** Mode Synthesis, 1960s PR Hurty, Craig-Bampton, Bourquin, Hetmaniuk,... SC Static Condensation 1970s Reduced Basis Methods, 1980s RB Almroth, Noor, Porsching, Gunzburger,... Post-Modern Reduced Basis Methods, 2000s MoRePaS I-III: a priori/posteriori error estimation, Weak Greedy sampling, (approximate) affine expansions, strict Offline-Online decomposition,... Reduced Basis Element Method, 2000s Maday-Rønguist

Computational Methodology

• Perspective

- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

Parametrized Archetype Component

Library of Parametrized Archetype Components \leftrightarrow Family

Acoustic Ducts (selected archetype components)

Admissible connections: ports of common color \leftrightarrow common port type.

System Synthesis: A Model

 $\begin{aligned} & \texttt{Model_Exponential_Horn (Flanged)} \\ & \mu \equiv (L/a_0, m^{\texttt{horn}}, a_{\texttt{mouth}}/a_0, ka_0) \\ & \in \mathcal{P} \equiv [2, 20] \times [0.0334, 0.1666] \times [4, 12] \times [0, 1] \end{aligned}$

System Synthesis: Instantiation and Connection

 $\begin{array}{ll} \text{Instantiation} & \text{Connection} \\ \mu_{\text{model}} \in \mathcal{P} \rightarrow & \text{local port pairs} \rightarrow \\ \{\nu_{\text{local}} \in \mathcal{V}\}_{\text{instantiated components}} & \text{global ports } \Gamma \in G \end{array}$

Family: All Component Combinations | Port Constraints

$$\begin{split} & \texttt{Model_Nguyenophone} \\ & \mu \equiv (\texttt{Hole_Location},\texttt{Hole_Open},k) \\ & \in \mathcal{P} \equiv \texttt{Wedge} \subset \mathbb{R}^8 \times \{0,1\}^8 \times [0,2] \end{split}$$

Computational Methodology

- Perspective
- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

Geometry Mappings

An archetype component is characterized by

spatial domain $D_{\nu} =$ \mathcal{T}_{ν} (reference spatial domain $D_{\bar{\nu}}$) and two disjoint local ports $\gamma_1, \gamma_2 \subset \partial D_{\bar{\nu}}$ such that $\gamma_i = \tau_i \gamma_0, \ i = 1, 2$

for γ_0 a fiducial port (type).

We may easily consider more than two local ports.

FE Approximation Spaces

Finite Element (FE) Approximation of Model

For given $\mu \in \mathcal{P}$, define $\nu = \nu(\mu)$ $X^h(\Omega_u) \equiv$ $\oplus_{\text{instantiated components}} \{ v |_{D_{\bar{\nu}}} \circ \mathcal{T}_{\nu}^{-1} \, | \, v \in X^h(D_{\bar{\nu}}) \} \cap X$ associated with a "stitched-together" mesh. Galerkin projection: given $\mu \in \mathcal{P}$, find field $u^h_\mu \in X^h(\Omega_\mu)$: $a_\mu(u^h_\mu, v) = F_\mu(v), \forall v \in X^h(\Omega_\mu)$, and subsequently

output $s^h_\mu = \ell_\mu(u^h_\mu).$

Computational Methodology

- Perspective
- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

Static Condensation (SC): Component Level ...

 $\nu = \nu(\mu)$ In given instantiated component, for local port i = 1, 2for port mode $j = 1, \ldots, J^{\text{FE}}$: $\psi_{i,i}^h = \mathcal{L}_i(\chi_i^h \circ \tau_i^{-1})$ is lifting to reference domain of port mode i on port i, and $\varphi^h_{i,j;\nu} = \psi^h_{i,j} + \eta^h_{i,j;\nu} \in X^h_{[\gamma_1,\gamma_2:0]}(D_{\bar{\nu}})$ satisfies $a^{D_{\bar{\nu}}}_{\nu}(arphi^h_{i,j;
u},v)=0, \forall v\in X^h_{[\gamma_1,\gamma_2:0]}(D_{\bar{\nu}})$, subject to $\mathcal{N}^{\mathrm{FE}} \times \mathcal{N}^{\mathrm{FE}}$ $|\varphi_{i,i\cdot\nu}^h|_{\gamma_{i'}} = \chi_i^h \,\delta_{ii'},$

where for simplicity all sources reside on ports.

Details

Express $\eta_{i,j;\nu}^h$ as $1 \leq j \leq J^{\text{FE}}$, $1 \leq i \leq 2$ $\eta_{i,j;\nu}^h(\bar{x}) = \sum_{k=1}^{\mathcal{N}^{\text{FE}}} \alpha_{i,j,k;\nu}^h \xi_k^h(\bar{x}) \text{ for } \bar{x} \in D_{\bar{\nu}}$;

then $\alpha^h_{i,j,k;\nu}$ satisfy $\mathbb{G}_{\nu} \equiv \mathbb{J}_{\nu}^{-1} \mathbb{J}_{\nu}^{-\mathrm{T}}$

 $\sum_{k=1}^{\mathcal{N}^{\text{FE}}} \left(\int_{D_{\bar{\nu}}} \left(\kappa (\nabla \xi_{k'}^{h*})^{\text{T}} \mathbb{G}_{\nu} \nabla \xi_{k}^{h} - k^{2} \xi_{k'}^{h*} \xi_{k}^{h} \right) |\mathbb{J}_{\nu}| d\bar{x} \right) \alpha_{i,j,k;\nu}^{h}$ $= -\int_{D_{\bar{\nu}}} \left(\kappa (\nabla \xi_{k'}^{h*})^{\text{T}} \mathbb{G}_{\nu} \nabla \psi_{i,j}^{h} - k^{2} \xi_{k'}^{h*} \psi_{i,j}^{h} \right) |\mathbb{J}_{\nu}| d\bar{x}$

for $1 \leq k' \leq \mathcal{N}^{\text{FE}}$.

... SC: Component Level

In given instantiated component, (local) LINEARITY $2 J^{\text{FE}}$ $u^h_{\mu}|_{D_{\nu(\mu)}} = \sum \sum u^h_{i,j;\nu} \left(\varphi^h_{i,j;\nu} \circ \mathcal{T}_{\nu}^{-1}\right)$ i=1 i=1for appropriate coefficients $u_{i,j;\nu}^h$, $1 \leq j \leq J^{\text{FE}}$, i = 1, 2. Form $2J^{\text{FE}} \times 2J^{\text{FE}}$ stiffness matrix $A^{h \text{ Galerkin}}_{[i,j],[k,\ell];\nu}$: normal velocity moment on local port i flux with respect to test port mode jexpressed in terms of pressure coefficient on local port kassociated with trial port mode ℓ .

Details

We may write stiffness matrix as

$$\begin{split} A^h_{[i,j],[k,l];\nu} &\equiv \\ \int_{D_{\bar{\nu}}} (\kappa (\nabla \psi^{h\,*}_{i,j})^{\mathrm{T}} \mathbb{G}_{\nu} \nabla (\psi^h_{i,j} + \eta^h_{k,\ell;\nu}) \\ &- k^2 (\psi^{h\,*}_{i,j}) (\psi^h_{i,j} + \eta^h_{k,\ell;\nu})) \left| \mathbb{J}_{\nu} \right| d\bar{x} , \end{split}$$

for $1 \le i, k \le 2, \ 1 \le j, \ell \le J^{\text{FE}}$.

SC: System Level

Require on global ports $\Gamma \in G$ continuity of pressure, and weak continuity of normal velocity implemented as direct stiffness assembly:

$$\begin{split} \{A^h_{\nu(\mu)}\}_{\text{instantiated components}} &\to \mathcal{A}^h_{\mu} \quad ; \qquad \qquad \mathcal{F}^h_{\mu} \end{split}$$
 here \mathcal{A}^h_{μ} is $|G|J^{\text{FE}} \times |G|J^{\text{FE}}$ block-sparse Schur complement.
Issues: J^{FE} will be large, and
 \mathcal{N}^{FE} will be large,
such that \mathcal{A}^h_{μ} costly to form and to "invert."

Computational Methodology

- Perspective
- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

PR-SCRBE-FE ...

In given instantiated component, $\nu = \nu(\mu)$ for local port i = 1, 2for port mode $j = 1, \ldots, M$: $\psi_{i,j}^h = \mathcal{L}_i(\chi_j^h \operatorname{fid} \circ \tau_i^{-1})$ is lifting to reference domain of port mode j on port i, and $\varphi_{i,i;\nu}^{h,N} = \psi_{i,j}^h + \eta_{i,j;\nu}^{h,N} \in Z_{i,j[\gamma_1,\gamma_2;0]}^{h,N \operatorname{arch}}(D_{\bar{\nu}})$ satisfies $a_{\nu}^{D_{\bar{\nu}}}(\varphi_{i,j;\nu}^{h},v)=0, \forall v\in Z_{i,j[\gamma_{1},\gamma_{2};0]}^{h,N}(D_{\bar{\nu}}), \text{ subject to}$ $\varphi_{i,i:\nu}^{h}|_{\gamma_{i'}} = \chi_{i}^{h} \delta_{ii'};$ $N \times N$

where for simplicity all sources reside on ports.

Details

Express $\eta_{i,j;\nu}^{h,N}$ as $1 \leq j \leq M$, $1 \leq i \leq 2$ $\eta_{i,j;\nu}^{h,N}(\bar{x}) = \sum_{k=1}^{N} \eta_{i,j,k;\nu}^{h,N} \zeta_{i,j,k}(\bar{x})$ for $\bar{x} \in D_{\bar{\nu}}$;

then $\eta^{h,N}_{i,j,k;
u}$ satisfy

 $\sum_{k=1}^{N} \left(\int_{D_{\bar{\nu}}} \left(\kappa (\nabla \zeta_{i,j,k'}^{*})^{\mathrm{T}} \mathbb{G}_{\nu} \nabla \zeta_{i,j,k} - k^{2} \zeta_{i,j,k}^{*} \zeta_{i,j,k} \right) | \mathbb{J}_{\nu} | d\bar{x} \right) \eta_{i,j,k;\nu}^{h,N}$

$$= -\int_{D_{\bar{\nu}}} (\kappa (\nabla \zeta_{i,j,k'}^*)^{\mathrm{T}} \mathbb{G}_{\nu} \nabla \psi_{i,j}^h - k^2 \zeta_{i,j,k'}^* \psi_{i,j}^h) |\mathbb{J}_{\nu}| d\bar{x}$$

for $1 \leq k' \leq N$.

r
... PR-SCRBE-FE ...

In given instantiated component,

$$u_{\mu}^{h,\boldsymbol{M},N}|_{D_{\nu(\mu)}} = \sum_{i=1}^{2} \sum_{j=1}^{\boldsymbol{M}} u_{i,j;\nu}^{h,\boldsymbol{M},N} \left(\varphi_{i,j;\nu}^{h,N} \circ \mathcal{T}_{\nu}^{-1}\right)$$

for appropriate coefficients $u_{i,j;\nu}^{h,M,N}$, $1 \le j \le M$, i = 1, 2.

Form $2M \times 2M$ stiffness matrix $A^{h,M,N}_{[i,j],[k,\ell];\nu}$: normal velocity moment on local port i flux with respect to test port mode jexpressed in terms of

pressure coefficient on local port k associated with trial port mode ℓ .

Details

We may write stiffness matrix as

$$\begin{split} A^{h,M,N}_{[i,j],[k,l];\nu} \equiv \\ \int_{D_{\bar{\nu}}} (\kappa (\nabla \psi^{h*}_{i,j})^{\mathrm{T}} \mathbb{G}_{\nu} \nabla (\psi^{h}_{i,j} + \eta^{h,N}_{k,\ell;\nu}) \\ -k^2 (\psi^{h*}_{i,j}) (\psi^{h}_{i,j} + \eta^{h,N}_{k,\ell;\nu})) \left| \mathbb{J}_{\nu} \right| d\bar{x} , \end{split}$$

 $\text{for } 1 \leq i,k \leq 2, \ 1 \leq j,\ell \leq M.$

... PR-SCRBE-FE

Require on global ports $\Gamma \in G$ continuity of pressure, and weak continuity of normal velocity implemented as direct stiffness assembly:

 $\{A^{h,M,N}_{\nu(\mu)}\}_{\text{instantiated components}} \to \mathcal{A}^{h,M,N}_{\mu} \qquad \mathcal{F}^{h,M,N}_{\mu}$ where $\mathcal{A}^{h,M,N}_{\mu}$ is $|G|M \times |G|M$ block-sparse. Issues "resolved": $M \ll J^{\text{FE}}$, and $N \ll \mathcal{N}^{\text{FE}}$, such that $\mathcal{A}^{h,M,N}_{\mu}$ is inexpensive to form and to "invert." Port Reduction, $M \ll J^{\text{FE}}$: Rationale...

Consider a waveguide $\mathcal{D} imes (0,\infty)$,

and find $p(x_1, x_2, x_3)$ such that

$$-
abla^2 p - k^2 p = 0$$
 in $\mathcal{D} imes (0,\infty)$,

and

$$p = g \text{ on } (x_1, x_2) \in \mathcal{D}, x_3 = 0,$$

$$\frac{\partial p}{\partial n} = 0 \text{ on } (x_1, x_2) \in \partial \mathcal{D}, 0 < x_3 < \infty,$$

$$p \text{ (say) outgoing bounded wave as } x_3 \to \infty$$

\dots Port Reduction, $M \ll J^{\rm FE}$: Rationale...

Restrict attention to the transverse domain \mathcal{D} ,

and find $(\Upsilon_i(x_1,x_2),\lambda_i)_{i=1,...}$ solution of eigenproblem

$$-
abla_{x_1,x_2}^2\Upsilon=\lambda\Upsilon, ext{ in }\mathcal{D}$$
 ,

 $\frac{\partial \Upsilon}{\partial n} = 0$ on $\partial \mathcal{D}$;

order (real) eigenvalues $\lambda_1 = 0 < \lambda_2 \leq \lambda_3 \leq \dots$

... Port Reduction, $M \ll J^{\rm FE}$: Rationale — Evanescence

Consider $k \in [\sqrt{\lambda_n}, \sqrt{\lambda_{n+1}})$: then

$$\Re\{\cdot e^{\mathrm{i}\omega t}\}$$

$$p = \sum_{j=1}^{n} \alpha_j^g \Upsilon_j(x_1, x_2) e^{-i\sqrt{k^2 - \lambda_j} x_3} + \sum_{j=n+1}^{\infty \text{ (or } J^{\text{FE}})} \alpha_j^g \Upsilon_j(x_1, x_2) e^{-\sqrt{\lambda_j - k^2} x_3}$$

for coefficients α_j^g chosen to realize $p(\cdot, \cdot, x_3 = 0) = g$. For any global port $\Gamma \in G$, higher modes introduced in neighboring components, and at neighboring global ports, will be filtered prior to "arrival" at Γ . Port Reduction, $M \ll J^{\text{FE}}$: <u>A</u> Library Training Procedure

For all compatible archetype component pairs in Library,

and find $z\in X^h({\rm L},{\rm R})$ such that $a^{({\rm L},{\rm R})}_{\nu_{\rm L},\nu_{\rm R}}(z,v)=0,\;\forall v\in X^h({\rm L},{\rm R})\;,$

for a rich set of Dirichlet conditions on Γ_L , Γ_R , and admissible parameters ν_L and ν_R .

Collect $z|_{\Gamma} \circ \mathcal{T}_{\nu} \circ \tau$. from all test subsystems in a set S. Apply POD to S: fiducial port modes $\{\chi_j\}_{j=1,\dots,M}$.

Bubble Reduction, $N \ll \mathcal{N}^{\text{FE}}$: Rationale

For any archetype component in Library,

for local port i = 1, 2,

for port mode $j=1,\ldots,M$,

$$\eta^h_{i,j;\nu} \in \{ \eta^h_{i,j;\nu} \text{ on } D_{\bar{\nu}} \mid \nu \in \mathcal{V} \} \subset X^h_{\mathcal{U}}$$

low-dimensional smooth manifold

 $X^{h}_{[\gamma_{1},\gamma_{2};0]}(D_{\bar{\nu}})$;

high-dimensional space

note that

$$u_{ ext{local}} \in \mathcal{V} \subset \mathbb{R}^V$$
, $\mu_{ ext{model}} \in \mathcal{P} \subset \mathbb{R}^P$

for (typically) $V \ll P$ — components divide and conquer.

Bubble Reduction, $N \ll N^{\text{FE}}$: A *Library* Training Procedure

For each archetype component in Library,

for local port i = 1, 2,

for port mode $j=1,\ldots,M$,

form $Z^{h,N}_{i,j[\gamma_1,\gamma_2:0]}$ as RB Lagrangian snapshot space \perp -ized $Z^{h,N}_{i,j[\gamma_1,\gamma_2:0]} \equiv \operatorname{span}\{\eta^h_{i,j;\nu^n_{i,j}}, 1 \leq n \leq N_{i,j}\}$

for quasi-optimal parameter values

$$\{\nu_{i,j}^1 \in \mathcal{V}, \dots, \nu_{i,j}^N \in \mathcal{V}\}$$

selected by the RB Weak-Greedy procedure.

Computational Methodology

- Perspective
- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks

• Computational Procedure: PDE App Workflow

Under certain hypotheses, the best fits associated with the port reduced spaces, ${\rm span}\{\chi_j, 1\leq j\leq M\},$ and

the bubble reduced spaces, $Z_{i,j}^{h,N}$, converge at rates similar to the corresponding Kolmogorov M (respectively, N) width.

The (Petrov-)Galerkin projections are optimal to within a (Model, μ and M, N)-dependent stability constant.

Verification (and Validation)

A posteriori error indicators play a role in optimal choice of snapshots $\rightarrow Z^{h,N}_{i,j}$ and

optimal choice of M and N.

Each Model is verified over $\Xi_{\text{verification}} \subset \mathcal{P}$: refinement in $h \downarrow, M \uparrow$, and $N \uparrow$; reference to appropriate closed-form approximations;

comparison to 3rd-party computations and experiments.

Verification of each Model improves archetype components: convergence of *Library*.

Computational Methodology

- Perspective
- Components and System Synthesis
- Finite Element (FE) Approximation
- Static Condensation Reformulation of FE
- Model Order Reduction
- Remarks
- Computational Procedure: PDE App Workflow

Offline I: Library \rightarrow Online Dataset $\mathbb D$

Prepare Online Dataset \mathbb{D} for Library: archetype component reference FE meshes; archetype *affine* component mappings \mathcal{T}_{ν} ; port modes $\chi_i^h, 1 \leq j \leq M$ (for each port type); RB spaces $Z_{i,i}^{h,N}$ for each archetype component, local port i, and port mode j;

(Petrov-)Galerkin parameter-independent inner products.

Role of components:

no Models formed or evaluated in Offline I stage; *all* Models in Online stage amortize Offline I effort.

Expensive

Details

A typical term in

$$A^{h,M,N}_{[i,j],[k,l];\nu} \equiv \int_{D_{\bar{\nu}}} (\kappa (\nabla \psi^{h*}_{i,j})^{\mathrm{T}} \mathbb{G}_{\nu} | \mathbb{J}_{\nu} | \nabla (\psi^{h}_{i,j} + \eta^{h,N}_{k,\ell;\nu}) + \dots$$

leads to inner product

$$\sum_{n=1}^{N} \eta_{k,\ell,n;\nu}^{h,N} \int_{D_{\bar{\nu}}} (\kappa(\nabla \psi_{i,j}^{h*})_1 \underbrace{(\mathbb{G}_{\nu})_1 |\mathbb{J}_{\nu}|}_{\mathsf{EIM expansion}} (\nabla (\psi_{i,j}^{h} + \zeta_{k,\ell,n}))_1 .$$

Online: \mathbb{D} ; Model; $\mu \in \mathcal{P} \rightarrow u^{h,M,N}_{\mu}, s^{h,M,N}_{\mu}$ Fast Web-User-Interface (WUI) Cloud Implementation Query the PDE App: input $\mu \in \mathcal{P}$, User synthesize Model from (say) script, Model Server invoke Online Dataset D **Compute Server** form and solve Schur complement, **Compute Server** calculate field and output, Compute Server download and display solution. User, Servers (Offline II — prepare Model Server for each Model: parametrization, instantiation, connections, and outputs.)

Acoustics Ducts: PDE App Examples

- A Flanged Exponential Horn
- An Expansion Chamber
- A Circular Duct with Toroidal Bend
- An Extended-Tube Expansion Chamber (ETEC)

Acoustics Ducts: PDE App Examples

• A Flanged Exponential Horn

- An Expansion Chamber
- A Circular Duct with Toroidal Bend
- An Extended-Tube Expansion Chamber (ETEC)

Model: Parametrization and Spatial Domain

 $\mu \equiv (L/a_0, m^{\text{horn}}, a_{\text{mouth}}/a_0, ka_0)$ $\in \mathcal{P} \equiv [2, 20] \times [0.0334, 0.1666] \times [4, 12] \times [0, 1]$

Throat Impedance

Parameters: $m^{\text{horn}} = 0.1076, a_{\text{mouth}}/a_0 = 10.67.$

PH: Post & Hixson, PhD Thesis, 1974.

Visualization: Radiation Directivity

 $ka_{\rm mouth} = 10$

Nearfield Farfield Farfield

Acoustics Ducts: PDE App Examples

• A Flanged Exponential Horn

- An Expansion Chamber
- A Circular Duct with Toroidal Bend
- An Extended-Tube Expansion Chamber (ETEC)

Model: Parametrization and Spatial Domain

 $\mu \equiv (L_{\text{pre}}/a_0, L_{\text{post}}/a_0, L_{\text{ec}}/a_0, a_{\text{ec}}/a_0, ka_0)$ $\in \mathcal{P} \equiv [4, 12]^2 \times [1.5, 25] \times [1.5, 6.5] \times [0, 1.5]$

Transmission Loss

Parameters: $L_{\rm ec}/a_0=22.26, a_{\rm ec}/a_0=3.152;$ $a_0=0.0243~{\rm cm}.$

SR: Selamet and Radavich, J Sound Vibration, 1997.

Visualization: Excitation of (Axisymmetric) Higher Modes

Parameters: $L_{\rm ec}/a_0=22.26, a_{\rm ec}/a_0=3.1525;$ f=2.8 kHz, $a_0=0.0243$ cm.

Modulus of Pressure

Acoustics Ducts: PDE App Examples

- A Flanged Exponential Horn
- An Expansion Chamber
- A Circular Duct with Toroidal Bend
- An Extended-Tube Expansion Chamber (ETEC)

Model: Parametrization and Spatial Domain

 $\mu \equiv (L_{\text{pre}}/a_0, L_{\text{post}}/a_0, a_{\text{bend}}/a_0, \theta_{\text{bend}}, ka_0)$ $\in \mathcal{P} \equiv [1.5, 15]^2 \times [1.2, 3] \times [30^\circ, 180^\circ] \times [0, 1.8412]$

WUI: Model Selection

PDE Apps for Education The PDE App Project Team

Quick Start	The PDE App Project Team		
List of Models	Principal Investigators		
 Acoustic Ducts 	DBP Huynh (Akselos S.A.) and AT Patera* (MIT)		
Circular Duct with Bend			
Expansion Chamber	Academic Contributors		
ETEC Muffler	P Dahl (U Washington)		
Acoustic Ducts SUB	SC Joyce (SUTD)		
	D Vignon (MIT)		
	M Yano (U Toronto)		
	None of the academic contributors has any financial interest in Akselos, S.A.		
	Akselos Contributors		
	D Knezevic, B Sabbey (Akselos, Boston)		
	T Hoang, L Nguyen, T Nguyen (Akselos, Ho Chi Minh City)		
	T Leurent, S Vallaghé (Akselos, Lausanne)		
	Sponsors		
	The PDE App methodology, software, server, and website is, or has been, funded by the AFOSR/OSD, the ONR, the Deshpande Center at MIT, SUTD and the SUTD-MIT International Design Center, a Ford Professorship of Engineering at MIT, the MIT Department of Mechanical Enforcements. and Assessors A.		

*Akselos S.A. licenses technology developed in the MIT research group of AT Patera. AT Patera has no financial interest in Akselos S.A.

WUI: Parameter Specification

ACOUSTIC DUCTS - CIRCULAR DUCT WITH TOROIDAL BEND						
SOLVE	MODEL INFO	HOW TO USE	LOGS			
		Current value	New value	Range		
	L_pre/a_	0 2.8571	2.8571	[1.5000, 15.0000]		
	L_post/a_	0 1.7143	1.7143	[1.5000, 15.0000]		
	a_bend/a_	0 1.2857	1.2857	[1.2000, 3.0000]		
	Bend ang	le 180.0000	180	[30.0000, 180.0000]		
	ka_	0 1.8200	1.82	[0.0000, 1.8412]		
	Inlet B	C V	Velocity \$			
	Outlet B	C V	Velocity \$			
	Number of sweep poin	ts 200.0000	200 ‡			
Update Model						

65

WUI: Output

Response Time (all-inclusive) 8.4 seconds: 4-core GCE instance and commodity Internet.

Inlet Impedance (Reactive)

Parameters: $L_{\rm pre}/a_0 = 2.8571, L_{\rm post}/a_0 = 1.7143, a_{\rm bend}/a_0 = 1.2857, \theta_{\rm bend} = 180^\circ.$

Boundary Conditions: velocity-velocity.

FDN: Félix, Dalmont, and Nederveen, JASA, 2012.

WUI: Visualization — Azimuthal Excitation $ka_0 = 1.82$

Response Time (all-inclusive) 8.4 seconds: 4-core GCE instance and commodity Internet.

Acoustics Ducts: PDE App Examples

- A Flanged Exponential Horn
- An Expansion Chamber
- A Circular Duct with Toroidal Bend
- An Extended-Tube Expansion Chamber (ETEC)

Model: Parametrization and Spatial Domain

 $\mu \equiv (L_{\text{pre}}/a_0, L_{\text{post}}/a_0, L_1/a_0, L_2/a_0, L_3/a_0, a_{\text{ec}}/a_0, ka_0)$ $\in \mathcal{P} \equiv [2, 6]^2 \times [2, 16]^3 \times [1.5, 4.0] \times [0, 1.5]$

Transmission Loss

Parameters: $L_1/a_0 = 5.391, L_2/a_0 = 3.716,$ $L_3/a_0 = 2.510, a_{ee}/a_0 = 3.152; a_0 = 0.0243$ cm.

SJ: Selamet and Ji, J Sound Vibration, 1999.

Achtung!

Issues: physical stability, numerical stability,... ...components, training, projection.
Elastic Shafts: PDE App Examples — briefly

A Family ${\mathcal F}$ of Models

F: Elasticity, Shafts; Stress Concentration Factors (SCFs)

A Family of Models, ${\cal F}$

F: Elasticity, Shafts; SCFs

A Library \mathcal{L} of Archetype Components for \mathcal{F} Port Key

A Parametrized Archetype Component in \mathcal{L}

Synthesis: Model_Shoulder_Fillet in ${\cal F}$

Model_Shoulder_Fillet $\mu \equiv (L, D_1/D_2, r_{\text{fillet}}/D_2, E)$

Synthesis: Model_Shoulder_Fillet in ${\cal F}$

(Relevant) Parametrized Archetype Components: Tension_Torsion_Load, Shoulder_Fillet, Circular_Shaft

Synthesis: Model_Shoulder_Fillet in ${\mathcal F}$

 $\mu \equiv (L, D_1/D_2, r_{\text{fillet}}/D_2, E)$ $\rightarrow (\nu) \text{ Parameter-Instantiated (Archetype) Components}$

Synthesis: Model_Shoulder_Fillet in ${\mathcal F}$

Geometry

Mesh

Connection of Local Ports $(\mu) \rightarrow$ Global Ports and Assembled System

Synthesis: Model_Shaft in $\mathcal{F}_{\mathcal{L}}$ — Formulation

Shigley et al. Problem 18-81

Model: $\mu \in \mathcal{P} \to \Omega_{\mu}$

Assembled System $\leftarrow \mathcal{L}$

Synthesis: Model_Shaft in $\mathcal{F}_{\mathcal{L}}$ — Solution (accuracy?)

Axial Displacement

Principal Stress: σ_1

Axial Stress: σ_{11}

Lintels and Arches: PDE App Examples — briefly

A Family \mathcal{F} : Models...

A Family \mathcal{F} : Models...

A Family \mathcal{F} : ... and Representative Solutions

A Family \mathcal{F} : ... and Representative Solutions

A Parametrized Archetype Component

I-beam I-beam.spatial_domain, I-beam.mesh I-beam.ports I-beam.parameter.web_H, .flange_t ν \mathcal{V} I-beam.parameter_domain.web_H, .flange_t $\int rac{\partial w_i}{\partial x_j} E_{ij\ell m} \, rac{\partial v_\ell}{\partial x_m}$ I-beam.PDE.forms.a =I-beam.PDE.forms.f = $-\int_{B_{int}} \delta_i$

A Library ${\mathcal L}$ of Parametrized Archetype Components for ${\mathcal F}$

A Library ${\mathcal L}$ of Parametrized Archetype Components for ${\mathcal F}$

Admissible connections: ports of common color — common port key.

 $\mu \equiv (H_{\rm col}/D, W_{\rm col}/D, r_{\rm arch}/D, n_{\rm arches}, E) \in \mathcal{P}$

(Relevant) Parametrized Archetype Components: Column, Arch_End, Arch_Middle

 $\mu \equiv (H_{\rm col}/D, W_{\rm col}/D, r_{\rm arch}/D, n_{\rm arches}, E) \in \mathcal{P}$ $\rightarrow \nu \text{ Parameter-Instantiated (Archetype) Components}$

Geometry

Mesh

Connection of Local Ports $(\mu) \rightarrow$ Global Ports and Assembled System

References

A Few References...

BO Almroth, P Stern, and FA Brogan. Automatic choice of global shape functions in structural analysis. AIAA J, 1978.

I Babuska and R Lipton. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Modeling and Simulation, 9:373–406, 2011.

M Barrault, Y Maday, N. Nguyen, and A Patera, An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations. CR Acad Sci Paris, Série I 339:667–672, 2004.

P Binev, A Cohen, W Dahmen, R DeVore, G Petrova, and P Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM J Math Anal, 43(3):1457–1472, 2011.

F Bourquin. Component mode synthesis and eigenvalues of second order operators: discretization and algorithm. M2AN, 26(3):385–423,1992.

R Craig and M Bampton. Coupling of substructures for dynamic analyses. AIAA J, 1968.

JL Eftang and AT Patera. A port-reduced static condensation reduced basis element method for large component-synthesized structures: Approximation and a posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences, 1:3, 2013.

... A Few References...

JL Eftang and AT Patera. Port reduction in component-based static condensation for parametrized problems: Approximation and a posteriori error estimation. IJNME, 96(5):269–302, 2013.

S Félix, J-P Dalmont, and CJ Nederveen. Effects of bending portions of the air column on the acoustical resonances of a wind instrument. JASA, 131 (5):4164–4172, 2012.

B Haasdonk and M Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN, 42(2):277–302, 2008.

JS Hesthaven, G Rozza, and B Stamm. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Series: Springer Briefs in Mathematics, Edition Number 1, Springer International Publishing, 2016.

U Hetmaniuk and R Lehoucq. A special finite element method based on component mode synthesis. M2AN, 44(3):401-420, 2010.

DBP Huynh, DJ Knezevic, and AT Patera. A Laplace transform certified reduced basis method; Application to the heat equation and wave equation. CR Acad Sci Paris Series I, 349(7-8):401–405, 2011.

DBP Huynh, DJ Knezevic, JW Peterson, and AT Patera. High-fidelity real-time simulation on deployed platforms. Computers and Fluids, 43(1):74–81, 2011.

... A Few References...

DBP Huynh, DJ Knezevic, and AT Patera. A static condensation reduced basis element method: Approximation and a posteriori error estimation. M2AN, 47(1): 213–251, 2013.

DBP Huynh, DJ Knezevic, and AT Patera. A static condensation reduced basis element method: Complex problems. CMAME, 259:197–216, 2013.

WC Hurty. On the dynamics of structural systems using component modes. AIAA paper no 64-487, 1964.

H Jakobsson, F Bengzon, and M Larson. Adaptive component mode synthesis in linear elasticity. JJNME, 86(7):829–844, 2011.

Y Maday and EM Rønquist. The reduced basis element method: Application to a thermal fin problem. SIAM JSC, 26(1):240–258, 2004.

ML Munjal, Acoustics of Ducts and Mufflers, Second Edition, Wiley, 2014.

AK Noor and JM Peters. Reduced basis technique for nonlinear analysis of structures. AIAA J, 1980.

JT Post and EL Hixson. A modeling and meausrement study of acoustic horns. PhD Thesis, University of Texas at Austin, 1994.

... A Few References...

TA Porsching. Estimation of the error in the reduced basis method solution of nonlinear equations. Math Comp, 45:487-496, 1985.

A Quarteroni, A Manzoni, and F Negri. Reduced Basis Methods for Partial Differential Equations. An Introduction. Series: La Matematica per il 3+2, Volume 92, Springer International Publishing, 2016.

WC Rheinboldt. On the theory and error estimation of the reduced basis method for multi-parameter problems. Nonlinear Anal, 21:849–858, 1993.

G Rozza, DBP Huynh, and AT Patera. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng, 15(3):229–275, 2008.

A Selamet and ZL Ji. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. Journal of Sound and Vibration, 223, 197-212, 1999.

A Selamet and PM Radavich. The effect of length on the acoustic attenuation performance of concentric expansion chambers: An analytical, computational and experimental investigation. Journal of Sound and Vibration, 201(4):407–426, 1997.

K Smetana and AT Patera. Optimal local approximation spaces for component-based static condensation procedures. SIAM JSC (submitted February 2015).

... A Few References

S Vallaghé, DBP Huynh, D Knezevic, TL Nguyen, and AT Patera. Component-based reduced basis for parametrized symmetric eigenproblems. Advanced modeling and simulation in engineering sciences, 2:7, 2015.

K Veroy, C Prud'homme, DV Rovas, and AT Patera. *A posteriori* error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA Paper No. 2003-3847: 1-18, 2003.

EL Wilson. The static condensation algorithm. Int J Num Methods Engr, 8(1):198-203, 1974.

K Wong. The "Appification" of Simulation. Desktop Engineering, April 1, 2015.