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SUMMARY

® Introduction
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e PhD 2015-2017: Enlarge GMRES (INRIA: H. Al Daas, L. Grigori)
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INTRODUCTION




RESERVOIR SIMULATION : PURPOSES
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® Estimation of Recovery Factor, Production plateau, EOR, modelling physic
® We have a limited knowledge of underground properties (fault, kr, ..)
® A big part of the work consists in « history matching » : needs many runs

CEMRACS 2016 4 ‘ o ToTAL



DYNAMIC SIMULATOR = MAIN EQUATIONS TO BE SOLVED

Mathematical equations

Continuity Equation 07710

(= Material Balance) 5 =—div( p,Vp)+q,

kr, .
Darcy's Law V,= —K—p(VPp - png')
Hp

One mass conservation equation per constituent; in Black-oil :
o Water component in water phase
e Oil component in both oil and gas phases
e Gas component in both oil and gas phases

Pb: No analytical solution in the general case
—» numerical solution
-5 discretize in space (gridding)
discretize in time (timesteps)

Numerical equation (for each cell k)
Continuity Equation + Darcy's Law for each Component

aM
dfk = _Z Fki - ZQk_to_weHs
i wells
/ t "

de ka Qk to wells
mass accumulated net flow rate from cell net flow rate from cell
during the current k into all neigbouring k into wells during dt
timestep dt blocks (i) during dt

Non-Linear Residual

dM
(Rﬂ )ce],l_k = : + ZFki + ZQk_m_welis

dt wells

1st Convergence criteria: (Rf, )Ceﬂk <&

Conclusion:

the non-linear residual Ry,

=» For each cell and for each component, convergence is evaluated by measuring
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LINEAR EQUATION RESOLUTION

New Timestep <
Timestep reduction —‘—®

v

Linearization of flow equation

at time t1 = to + timestep, the simulator choose, a priori, a
new solution X1(Po1, So1, Sw1), and start looking at which
correction Ax is needed to get the solution R(X1+Ax)=0
if we consider Ax small, we can linearize this equation:

[R (Xi. + Ax) : O]~ [R(Xl) _+ ]X1' A_x - 0] depending on maximum
non-linear equation linear equation number of linear and non-linear

rem: R(X1) and J are perfectly defined iterations allowed (Tuning
parameter of the simulator)

non-linear iteration
(new initial solution X1)

non-linear
(NEWTON) -
iteration

-

Resolution of the linear equation
this resolution is done by inverting the Jacobian

Jx,-Bx = R(X1) @ |Ax = ] R(X,)|

linear iteration ~
(new X2=X1+Ax) @)

linear - 3 {
iteration Evaluation of the solution X1+AXx NlO YES

R, P, + AP,
ROX, +00) = |Ru | =[Aly o |Bo + 08 ||—| R(X, + Ax) < & P —
Rg Pg + APH

Conclusion: Most of the CPU is spent on linear resolution
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PARALLEL PERFORMANCE

® Scalability of a few models : (upper one =13M cells BO: around 50k
cells/processors)

INTERSECT Scalability
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Source : Schlumberger : SPE ACTE, Oct 31th 2011
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SCALABILITY BOTTLENECK IN RESERVOIR SIMULATION

Interior cells

H Property calc
O Linearizer

B Linear solver
B Updater

Ghost cells

® Distributed memory framework (MPI)
® Load balancing : work per reservoir cell varies during the simulation.

® Linear solver method CPR-AMG is scalable with number of unknowns (weak
scalability) but poorly scalable with number of processors (strong scalability)
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LINEAR SOLVER : CONSTRAINT PRESSURE RESIDUAL

® The Constraint Pressure Residual (CPR) solver : this solver specific to reservoir is a
two stages method (John Wallis and co. SPE 1985) :

(e ) N N
ARW ARR APS APP APW APS APP
A Ave A Ave

Arw Aw

[ Mcee =M, (1 =AM ) + M, ]

- M; : 1° stageis global : find approximate pressure (near-elliptic problem : AMG)
- M, : 2ndstageis applied on the Ag, system (eg BILU(0)) : block preconditioner
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IMPROVING AMG FOR RESERVOIR
SIMULATION




RESERVOIR SIMULATION: ONE ITERATION OF CPR-AMG

The critical performance bottleneck in reservoir is the pressure solver part

[ Mg = M (I = AM )+ M* ]

[

Pressure pseudo-
decoupling

T S
P 2

AMG update
(different grid
levels)

CEMRACS zuiv

[

Level #Rows #NZ | Swmin  Smax Sy
2 | 65'691°648 458°721°792 4 7 7.0
3 32°514°048 483°720°192 6 15 14.9
4 15°096°050 230°760°782 6 19 15.3
5 6°235°899 364°876°769 14 105  58.5
6 1'193°641 134°568°815 25 179 112.7
7 121°332 14°660°566 24 192 120.8
8 12’912 1'211°004 20 156 938
9 1’480 89°468 9 103  60.5

10 126 1’698 2 28 13.5
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SCALABILITY IN A RESERVOIR SIMULATION

® Example on a one million grid blocks BO model (SPE10) in TPP

® The figure represents TCPU*number of procs (perfect == same
length)

® The scalability bottleneck is clearly in AMG (setup + solve)

2,00E+03
1,80E+03

1,60E+03
1,40E+03
< 1,20E+03
g u AMG Solve
= 1,00E+03
5 l B AMG Setup

o 8,00E+02
O — - .
6,00E+02 +— R —

~ EReservoir
4 00E+02 +— —

2,00E+02 +—
ooncon | M MWW l n
1 2 16 32 128
Number of MPI process (x8 = Nb cores)
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PMG: HYBRID AGGREGATION/CLASSIC COARSENING

Pavel Jiranek : post-doc CERFACS 2012 — 2014 then 15 month in CSTJF until 11-30-2015
Hybrid strategy Aggregation/RS is more efficient than standard RS strategy
PMG package relies on MPI/Thread parallelization

Ref: « Reducing complexity of algebraic multigrid by aggregation », in Num. Lin. Algebra.
with applications

® AMG based on Aggregation is efficient for the two first levels

Classic coarsening Aggregation coarsening
—(A); > GIgix[—(A),,;k] for some 6 € [0, 1]. [(A)ij| = 0+/|(A)ii(A); 5] forsome § > 0.
e (O o
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RESULTS: PMG VS BOOMERAMG VS SAMG

® BoomerAMG from Lawrence Livermore (DOE).
® SAMG from Fraunhofer Institute.

® Minimum setup consists in keeping same grid interpolators for
several linear system (we limit to the same time step)

® On small-medium cases (< 1°000°000 cells); no significant
improvement over BoomerAMG for total simulation time.

AMG CPU Time | | | | T [ BoomerAnc

2.0+ -l PMG

-l PMG (minimum)

-ll- PMG+AGG

-l PMG+AGG (minimum)
-l SAMG

-l SAMG MINIMUM

=
8
T

log10 of time [sec]
=
o

0.5

CEMRACS 2016 14 ‘ O ToTAL



RESULTS: PMG VS BOOMERAMG (MPI+THREAD)

® Viscous fingering study.

® Tuned parameter for BoomerAMG: aggressive coarsening
® 60°000°000 cells model. Test up to 8192 cores (1024 processors of

PANGEAL).

® The speed-up is more important (first layers of AMG represents more

computations)

T T
=ll- Boomer, AMG

4.4 - PMG+AGG
T B PMG+AGG (minimum) ||
4.2} e

X2

log10 of time [sec]
w
o2
]

"""" ---------"@---------a
30 /—\*
128 256 512 1024

1024*8 = 8192 cores
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ENLARGED KRYLOV METHOD

Slides courtesy of Laura Grigori and Hussam Al Daas




GMRES: SCALABILITY LIMITATION

Algorithm 2 GMRES

].: = b — . = 0
0 A M= TTE
2 forj=1: mdo

3; Matrix-vector multiplication
4: w = Ay
5: Orthogonolization
6: fowi=1:j—1do
7: b i = vHw
'B-; w=w—|"r|'__|:|.-'|:
Q9 end for
10: i ||w||2 # 0 then
. T W
11 o |w]|2
12: else
13: Exact breakdown accured. Break
14:  endif
15: end for
16: w=(h )i j v=1{vg. - .vm}
17: Scive the least squared problem v = argmin||Hy — || ll22q ||2, where &1 is the first vector of the canonical basis
18: X = .5:|:| T l||l"._'|-'|-'|-'|
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ENLARGE KRYLOV METHOD (L. GRIGORI ET AL 2014)

» Partition the matrix into t domains

= split the residual r,_; into t vectors corresponding to the t domains,

S

| .-I =]
5 ] |l m
e [2e2e,
e ’:': i
=] = ™ 5] .
:"".'

o — T{rg] =

0

0

® generate t new basis vectors, obtain an enlarged Krylov subspace

= search for the solution of the system Ax = b in J#; x(A, ro)

Hr k(A o)

= span{Ts(r), ATs(ro), A? Ts(r0), ...,

AT (1)}
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ENLARGED GMRES: ALGORITHM

= GMRES: find x in span{ry, Ar, .... A<y} minimizing ||Ax — b]|,
= Enlarged GMRES: find x in span{T(rp),AT(rp), ..., A*T(rp)} minimizing

|Ax — bl|2

GMRES Enlarged GMRES
1: for i =1 to k do 1: rg=Axg — b, Ry = T(ﬁj)
2: w = Av;_1 2: for i =1 to k do
3: block CGS 3: W; = AV;_1

(W, vo, ... Vi_1) 4. W, « block CGS (W, Vg, ... Vi_q)
4: update vi, H B: [V; R] = TSQR( W;)
5. end for 6: update H
6: solve LSQ problem with H 7: end for

8:

® TSOR = Tall Skinny QR

solve LSQ problem with H

CEMRACS 2016
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ENLARGED GMRES: DETAILS

The method can be seen as solving t systems, AX = T(rp).

Detection of systems that converged:
» At iteration k, detect AX(:,j) = T(r0)(:,/)
» Add only a subset of relevant vectors to the basis

» Eigenvalues and eigenvectors are well approximated when convergence is
detected

Restarted enlarged GMRES + deflation

= Enlarged GMRES is restarted when the dimension of the basis becomes
large with respect to the memory available

m Deflation recovers the most important information of the enlarged Krylov
subspace from previous iterations before restart
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ENLARGED GMRES: EXPERIMENTS (1/2)

Number of vectors added to the Convergence for t varying between 2
enlarged subspace per iteration. and 32.

= Pressure 0, n=8358T, 128 BJ, restarts 400 vector in 1 cycle
. Pressure 0. neB3587, 128 B, restart=400 vector in 1 cycls

B
o
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EGMRES 4 50
EGMRES ASD | 4
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Meration ru mbsas

» Pressure matrix from reservoir modelling (Total), 83587 unknowns.
» Preconditioner: block Jacobi with 128 diagonal blocks.
= Restart when the dimension of the basis is 400.
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ENLARGED GMRES: EXPERIMENTS (2/2)

Number of vectors added to the
enlarged subspace per iteration.

Pressure 2, n=583587, 32 BJ

B -
|
||
: 1M
' |
6 ' I
[ |
[
o 5f .
L | |
)
a |
- i
4] —
4 | -I
| [
' |
3 -
|
|
|
7L — I
|
1 i L 1 i i i
Q 20 40 &0 80 100 120
M@ bion nu mibes
Method:

Subsequent solves.

4L

Logarithme 10 of the norm of the residual

Pressure 2, n=83587, 32 BJ

- —— EGMAES conssoenng-dedaton-from-ast-solution
o o aricedeflated EGMAES
EGMRARES no resian

—— EGMRAES restart without dedation

20 40 B0 B0 00 120 140
teraticn number

1. Enlarged GMRES (restart + deflation) used to solve Ax = b;
2. Solve Ax = b, by using estimated eigenvalues and eigenvectors from

previous solve throuch deflation

CEMRACS 2016
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CONCLUSION & PROSPECTS




CONCLUSION & PROSPECTS

® Works on AMG: some improvements for large models in parallel
have been obtained by an hybrid coarsening strategy.

e Parallel implementation (C++) of EGMRES method and integration in
a reservoir simulator

® Experiment EGMRES for pressure solve (with BJ precond) in a
reservoir simulator
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