CEMRACS 2016. Numerical challenges in parallel scientific computing

The CEMRACS project HPC-IIBios: scientific background, motivation and overview

Xavier Portell, Olga Assainova, Valérie Pot, Philippe Baveye, Patricia Garnier

UMR ECOSYS, AgroParisTech, INRA, Université Paris-Saclay F-78850 Thiverval-Grignon, France. E-mail: <u>xavier.portell-canal@grignon.inra.fr</u>

XAVIER PORTELL CANAL

August 19, 2016, Marseille

- 1. Introduction and background
- 2. The ANR project Soil μ 3D: towards more accurate CO₂ and N₂O gas emissions predictions
- 3. The model IlBioS: Coupling a lattice-Boltzmann approach to a biological individual-based model
- 4. Project HPC-IlBioS: understanding the best HPC strategy for the IlBioS approach

1. Introduction and background

- 2. The ANR project Soil μ 3D: towards more accurate CO₂ and N₂O gas emissions predictions
- **3**. The model IlBioS: Coupling a lattice-Boltzmann approach to a biological individual-based model
- **4**. Project HPC-IlBioS: understanding the best HPC strategy for the IlBioS approach

01 Introduction and background

The CO2 and N2O as main GHG

The CO2 and N2O as main GHG

An important part of the CO₂ emissions are due to the activity of the soil microorganisms

Riebbek (2011)

The CO2 and N2O as main GHG

0,03 % of the total GHG emissions but with a 300-fold greater potential for global warming (Thomson et al 2012)

The soil matrix

The soil matrix

The complex geometry of the pore space can now be characterized to a high level of detail and quantify its connectivity and topology characterized.

The morphology of the soil matrix affects microbial activity and the gas emissions dynamics to the atmosphere

X-ray Computed Tomography

The soil matrix

Microorganisms in soil tend to be found in microcolonies, this means that "identical organisms" will face different microhabitat conditions

¹ Compute-aided Detection - Fluorescence In Situ Hybridization

The soil matrix

Mass transport processes modelling in soil

To take into account mass transport processes in the soil matrix we can use two main group of methods:

Volume of Fluid (VoF); Finite Element (FE) Methods

$$\frac{\partial c}{dt} = \nabla \cdot (D\nabla c) - \nabla \cdot (\vec{v}c) + R \quad \Longrightarrow \quad \text{Solving for t and space}$$

Advantage Relatively low computing time required Issues The complex pore space geometry hard to apply Mathematical resolution difficult and highly specific of the system

Volume of Fluid (VoF); Finite Element (FE) Methods

$$\frac{\partial c}{dt} = \nabla \cdot (D\nabla c) - \nabla \cdot (\vec{v}c) + R \quad \Longrightarrow \quad \text{Solving for t and space}$$

Mass transport processes modelling in soil

III. Mass transport processes

Volume of Fluid (VoF); Finite Element (FE) Methods

$$\frac{\partial c}{dt} = \nabla \cdot (D\nabla c) - \nabla \cdot (\vec{v}c) + R \quad \Longrightarrow \quad \text{Solving for t and space}$$

Lattice-Boltzmann modelling

From: www.egr.msu.edu/ ~kutay/Lbsite/

Individual-based modelling

Individual-based modelling

"Simulation models that treat individuals as unique and discrete entities which have at least two independent properties." (Hellweger and Bucci, 2009) *

* Extending a previous definition by Grimm (1999)

IbMs are becoming consolidated in the field. Examples are the µIbMs of: Kreft *et al.* (1998), Dens *et al.* (2005), Bucci *et al.* (2012), Tack *et al.* (2014), and Hellweger *et al.* (2014)

Individual-based modelling

SCIENCE & IMPACT

Individual-based modelling

Individual-based modelling

- 1. Introduction and background
- 2. The ANR project Soil μ 3D: towards more accurate CO₂ and N₂O gas emissions predictions
- **3**. The model IlBioS: Coupling a lattice-Boltzmann approach to a biological individual-based model
- **4**. Project HPC-IlBioS: understanding the best HPC strategy for the IlBioS approach

The ANR project Soil µ3D: towards more accurate CO₂ and N₂O gas emissions predictions

Emergent properties of soil microbial functions: upscaling from 3D modeling and spatial descriptors of pore scale heterogeneity (Soilµ-3D)

- Funding agency: The French National Research Agency (ANR)
- □ Starting and ending date: 01/11/2016 to 01/11/2020.
- Quantity: 250 000€
- Participants:
- 29 permanent researchers
- 1 post-doctoral position

- 4 PhD thesis
- 3 Master 2 stages

Future computing time requirements

Aim of the project Soil µ3D

Aim of the project Soil µ3D

The main goal of the project is to upscale heterogeneities identified at the scale of microhabitats to the soil profile scale.

Aim of the project Soil µ3D

Use of the model IIBioS in the project Soil µ3D

The model ILBioS is built coupling an Individual-based Model of the soil bacteria to a lattice-Boltzmann model simulating the fluid dynamics and mass transport processes of soluble substrates

The model ILBios and the Work Package 3

NRAse of the model IIBioS in the project Soil μ 3D

The model ILBios and the Work Package 3

Use of the model IIBioS in the project Soil µ3D

Integration of descriptors in soil profile models

Rese of the model IIBioS in the project Soil µ3D

- 1. Introduction and background
- 2. The ANR project Soil μ 3D: towards more accurate CO₂ and N₂O gas emissions predictions
- 3. The model IlBioS: Coupling a lattice-Boltzmann approach to a biological individual-based model
- **4**. Project HPC-IlBioS: understanding the best HPC strategy for the IlBioS approach

03 The model IIBioS: Coupling a lattice-Boltzmann approach to a biological individual-based model

Model conceptualization and description

Model conceptualization and description

Lattice-Boltzmann Nodes

ZA

Connected Lattice-Boltzmann Nodes

Model conceptualization and description

RA Model conceptualization and description

Model conceptualization and description

 $\begin{aligned} \mathsf{u}(x, y, z, t) \\ \mathsf{v}(x, y, z, t) \\ \mathsf{w}(x, y, z, t) \\ \rho(x, y, z, t) \\ dt \,\rho + dx \,(u \,\rho) + dy \,(v \,\rho) + dz \,(w \,\rho) = 0 \end{aligned}$

Model conceptualization and description

Model conceptualization and description

Particulate Organic Matter:

Release DOC to the boundary fluid nodes.

$$dt \rho + dx (u \rho) + dy (v \rho) + dz (w \rho) = S_A - S_B$$

Soil bacteria: Uptake DOC from the boundary fluid nodes.

Model conceptualization and description

$$dt \rho + dx (u \rho) + dy (v \rho) + dz (w \rho) = S_A - S_B$$

$$S_{A} = \begin{cases} 0 & \text{; if solid or bulk} \\ \frac{k_{POM} m_{j}}{n} & \text{; if boundary liquid} \end{cases}$$

 m_j mass of the POM agent.

Model conceptualization and description

$$dt \rho + dx (u \rho) + dy (v \rho) + dz (w \rho) = S_A - S_B$$

$$S_{B} = \left\{ \sum_{i=1}^{n} \left(\frac{k_{DOC} \rho}{\rho + k_{DOC}} m_{i} \right) ; \text{ if boundary liquid} \right\}$$

.040

 m_i mass of the bacterium

Model conceptualization and description

General workflow of the model IIBioS

SCIENCE & IMPACT

General workflow of the model IIBioS


```
double **f = (double **) calloc(Q, sizeof(double*));
for (q = 0; q < Q; q++) {
    f[q] = (double *) calloc(nsite, sizeof (double));
}</pre>
```


double *rho = (double *) calloc(nsite, sizeof(double));

SCIENCE & IMPACT

General workflow of the model IIBioS

SCIENCE & IMPACT

General workflow of the model IIBioS

Decreases the DOC content of the LBNode

General workflow of the model IIBioS

SCIENCE & IMPACT

General workflow of the model IIBioS

SCIENCE & IMPACT

- 1. Introduction and background
- 2. The ANR project Soil μ 3D: towards more accurate CO₂ and N₂O gas emissions predictions
- **3**. The model IlBioS: Coupling a lattice-Boltzmann approach to a biological individual-based model
- 4. Project HPC-IlBioS: understanding the best HPC strategy for the IlBioS approach

Project HPC-IIBioS: understanding the best HPC strategy for the IIBioS approach

Computing time requirements: antecedents

Computing time requirements of IBioS

- □ 3D CT image of 200³ nodes.
- 10% of porosity.
- 10 bacterial nodes.
- 5 to 15 POM nodes.
- DOC as a single soluble lattice-Boltzmann substrate.
- Single desktop computer.

25 hours of processing time.

Model complexity of upcoming IIBioS models

^{.077} INRAModel complexity of upcoming IIBioS models

Initial (minimal) conceptualization of a multispecies IbM to reproduce CO₂ and N₂O flow in natural samples

Model complexity of upcoming IIBioS models

.078

Initial (minimal) conceptualization of a multispecies IbM to reproduce CO₂ and N₂O flow in natural samples

Required lattice-Boltzmann substrates in the minimal system:

CO₂, O₂, DOC, NH₄, NO₂/ NO₃, N₂O

Future computing time requirements

Future computing time requirements

.080.

Computing time requirements of IIBioS

- □ 3D CT image of 200³ nodes.
- □ 10 % of porosity.
- 1 000 000 bacterial nodes
- 5 to 25 POM nodes.
- O2, DOC, NH4, NO2/ NO3

125-150 hours of processing time.

In any case, a non practical amount of time to perform simulation experiments

Future computing time requirements

Parallelisation strategy of HPC-IIBioS

Parallelisation strategy of HPC-IIBioS

.082

Parallelisation strategy of HPC-IIBioS

100 x Speed up for lattice-Boltzmann models using GPU (Banari et al., 2014)

Parallelisation strategy of HPC-IIBioS

Future need of increasing the resolution of the 3D CT images

Parallelisation strategy of HPC-IIBioS

Thank you very much for your attention. Any question?

Anyhow, a lot to be done yet ...

IlBioS for an in depth study of the soil!!!

