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Weather forecasting



   4 simulated days
1 h of walltime

= x 100

Weather forecasting



100 simulated years
1 month of walltime = x 1000

Modern climate



10000 simulated years
1 year of walltime

= x 10000

Paleoclimate



2010s

1980s



Earth System Modelling at IPSL

+ planetary atmospheres
(F. Forget, ...)



  

● Newton's fundamental principle of dynamics
● Forces : pressure and gravity
● Pseudo-forces : Coriolis and centrifugal

Planetary velocity Geopotential



  

Characteristic scales

● Velocity : Sound c ~ 340m/s Wind   U ~ 30m/s
● Time :     Buoyancy oscillations N ~ g/c ~10-2 s-1 Coriolis f ~ 10-4 s-1             
● Length :  Scale height H=c2/g=10km Rossby radius : R=c/f ~ 1000 km

    Planetary radius a=6400km

Flatness  af2/g<<1 Shallowness H/a << 1

Mach number M=U/c <<1 Scale separation f/N ~ H/R << 1

small-scale mesoscale synoptic planetary

1 km 10 km 1000 km 10000 km100 km

scale height



  

Hydrostatic approximation

Vertical momentum budget

If vertical acceleration is small …

… then

When does this approximation work ?

Works for circulations with a large horizontal scale (L >> H ~ 10km)
Incorrect for convection (storms), mountain flow, ...

U

W

L

H

Hydrostatic
balance



  

Geopotential (curvilinear) coordinates

Phillips, 1970



  

Transport in curvilinear coordinates



  

Transport in curvilinear coordinates

contravariant velocity components



  

Transport in curvilinear coordinates

pseudo-density

contravariant velocity components



  

● Contravariant formulation independent from the coordinate system
● No information about the geometry needed
● Easily in conservative form (flux-form)

Transport in curvilinear coordinates

pseudo-density

contravariant velocity components



  

Dynamics in curvilinear coordinates



  

Dynamics in curvilinear coordinates



  

Spherical geoid approximation

● Ellipticity of geoids ~ centrifugal / gravitational ~ 1/300
● Spherical geoid approximation : pretend that the metric in

geopotential coordinates is actually spherical !

Geopotential



  

Compressible
Euler

Spherical-geoid
Euler

Traditional shallow-
atmosphere

(Phillips, 1966)

Spherical-geoid 
Quasi-hydrostatic 

(White & Wood, 1995)

Quasi-hydrostatic 
(White & Wood, 2012)

Anelastic
(Ogura & Phillips)

Pseudo-
incompressible

(Durran ; Klein &
Pauluis)

Primitive equations
(Richardson, 1922)

Boussinesq

Spherical geoid

Shallow-atmosphere +

traditional

(Quasi-)Hydrostatic

Boussinesq / Anelastic /

Pseudo-incompressible

Acoustic
Lamb

Inertia-gravity
Rossby

Acoustic
Lamb

Inertia-gravity
Rossby

Acoustic
Lamb

Inertia-gravity
Rossby
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LMD-Z lon-lat core

Enstrophy-conserving finite differences on
lon-lat mesh (Sadourny, 1975)

Positive definite finite-volume transport
(Hourdin & Armengaud, 1999)

Scalability

Consistency
discrete conservation laws

Versatility
not tied to a unique equation set



  

Why would a numerical model want to conserve energy ?

density

kinetic internal potential

specific
volume

specific
entropy

Energy minimum given total mass and entropy ?

Resting

Isothermal

Hydrostatic

(discrete) conservation limits
dynamically accessible states
=> stability

numerics conserve energy, mass ,
entropy

 => isothermal state of rest is stable



  

inertia Coriolis gravitypressure

Kinetic energy

Planetary velocity

Internal energy
Potential energy

Adiabatic equations of motion imply conservation laws
because they derive from a least action principle



  

Adiabatic equations of motion imply conservation laws
because they derive from a least action principle

Kinetic energy

Planetary velocity

Internal energy
Potential energy



  

● Suppose evolution equations are known for all prognostic variables. Then how an
arbitrary functional of those prognostic variables evolves is entirely known :

● Conversely, such an evolution equation contains all the equations of motion
● A Hamiltonian formulation is such an evolution equation of the special form :

where H is total energy and the Poisson bracket is bilinear, antisymmetric and satisfies
the Jacobi identity

● nice, but what is the Hamiltonian formulation for fluid flow ?

Hamiltonian formulation



  

means that all tendencies can be written as expressions that are linear in the functional
derivatives of total energy

To identify the Hamiltonian formulation let us first find those functional derivatives :

…then transform the equations of motion until they are linear in the functional derivatives

Hamiltonian formulation



  



  

Hamiltonian formulation in non-Eulerian vertical coordinates
(Dubos & Tort, MWR 2014)

Integration by parts
+ invariance of Hamiltonian (total energy) w.r.t. vertical coordinate
=> conservation of energy



  

Hamiltonian formulation in non-Eulerian vertical coordinates
(Dubos & Tort, MWR 2014)

Hydrostatic

Integration by parts
+ invariance of Hamiltonian (total energy) w.r.t. vertical coordinate
=> conservation of energy



Computational space S2 x [0,1]
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Computational space S2 x [0,1]

Discrete representation

● Discrete Exterior Calculus : discrete exterior derivatives (grad, curl, div) are exact
● curl grad = 0

Horizontal mesh
Icosahedral C-grid

Vertical mesh
Lorenz



● Discrete integration by parts (Bonaventura & Ringler, 2005) 
● Energy- and vorticity- conserving Coriolis discretization

(TRiSK : Thuburn et al., 2009 ; Ringler et al., 2010)

Energy-conserving
3D solver

Computational space S2 x [0,1]

Discrete representation

● Discrete Exterior Calculus : discrete exterior derivatives (grad, curl, div) are exact
● curl grad = 0

Horizontal mesh
Icosahedral C-grid

Vertical mesh
Lorenz



  



  

1 Sat day = 10 h ;    1 Sat year = 30 Earth yr



  

XIOS (Y. MEURDESOIF) : XML I/O SERVER 
PARALLEL ASYNCHRONOUS I/O - ONLINE POST-PROCESSING

LIBRARY AND SERVER

XIOS



  

● Throughput on OCCIGEN (dycore only) for 60 vertical levels :

1° :      500 cores  ~ 40yr/day

1/4° : 8000 cores  ~10yr/day, 2Mh/century

● LMDZ CMIP6 physics now coupled, aquaplanet evaluation under way

● expect at least a few yr/day at 1/4 ° for full GCM

104100 103 105

1/2°
1/4°
1/8°



  

Background on climate modelling
● Weather vs climate
● Characteristic scales
● Equations for atmospheric flow motion

DYNAMICO, an energy-conserving 
finite difference/finite volume atmospheric solver
● Conservation of energy : why ?
● Hamiltonian formulation
● Preliminary results

Finite elements, the path to higher-order accuracy ?
● Finite elements and conservation of energy
● A-HA 



  

● Finite differences on unstructured meshes are low-order (1~2)
● FEM methods can be higher-order
● But will energy be conserved ?

● Illustrative sketch with a minimal model : 1D nonlinear wave equation 

Conservation of energy / antisymmetry of the bracket result from integration by parts : 



  

Energy-conserving FEM

● We need to pick finite element spaces  

for approximations                         of   

● By definition 

hence             are obtained by projection : 

● Therefore spaces                        must be in duality ; simplest choice is 

● At least one among               must be in        ; say it is 

● Then define          as a weak derivative :

=> discrete integration by parts => conservation of energy 



  

Computational efficiency of FEM : the A-HA project

● Many possible choices of spaces, some giving high-order accuracy (e.g. spectral
elements)

● Compared to a finite-difference method, a FEM method involves many more
operations :

● Assemble mass / stiffness matrices
● Assemble right-hand-sides
● Solve mass matrix (typically N-diagional with N>1)

● High-order methods require quadrature rules with more quadrature points

● CEMRACS project A-HA explores different approaches to perform matrix assembly /
matrix-vector multiply, including an approach proposed by Kirby (2014) which
rearranges the computation in order to formulate compute-critical parts as dense
matrix-matrix products to be offloaded to an optimized BLAS library



  

Thanks for your attention !

● The atmospheric component of a climate model solves approximate  equations of
compressible fluid motion in a thin nearly-spherical shell.

● For climate applications where the model evolves freely over long time scales,
conservation properties are desirable in order to physically constrain its evolution.

● Conservation of energy can be achieved in a systematic way at the discrete level by
exploiting the Hamiltonian formulation of the equations

● The Hamiltonian formulation combines very well with mimetic finite differences and
with finite element discretization methods

● However computational performance of FEM is potentially an issue, especially with
higher-order FEM

Summary



  

Extra slides



mass-weighted
potential temperature

TRiSK
shallow-atmosphere metric
planetary velocity

Hydrostatic primitive equations : discrete 
(Lagrangian vertical coordinate – extra terms for vertical transport when mass-based)

centered/upwind flux

SW pot. Vort.

mass flux

Exner functionBernoulli function

normal velocity



discrete div 

discrete grad

discrete
integration
by parts

centered/upwind

SW pot. Vort.

mass flux

Exner functionBernoulli function

Discrete energy budget : Lagrangian vertical coordinate
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discrete grad
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discrete div 

discrete grad

discrete
integration
by parts

centered/upwind

SW pot. Vort.

mass flux

Exner functionBernoulli function

Discrete energy budget : Lagrangian vertical coordinate

Hydrostatic balance

Non-Lagrangian vertical coordinate : also possible to cancel additional contributions from
vertical transport (Tort et al., QJRMS 2015)



  

Functional derivatives and redundancy in the flow description
(Dubos & Tort, MWR 2014)



  

Functional derivatives and redundancy in the flow description
(Dubos & Tort, MWR 2014)

Invariance
w.r.t. vertical
remapping
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