
Evolution of EDF's
Code_Saturne
industrial CFD tool:
numerical and HPC-
oriented aspects

Yvan Fournier, EDF
August 17, 2015

Outline

 GENERAL FEATURES
 APPLICATION EXAMPLES
 PERFORMANCE
 HPC ISSUES
 WORK IN PROGRESS AND ROADMAP

CEMRACS, August 17, 2016

Code development at EDF R&D (1/2)

 Code_Saturne
 general usage single phase CFD, plus specific physics
 property of EDF, open source (GPL)
 http://www.code-saturne.org

 NEPTUNE_CFD
 multiphase CFD, esp. water/steam
 property of EDF/CEA/AREVA/IRSN

 SYRTHES
 thermal diffusion in solid and radiative transfer
 property of EDF, open source (GPL)
 http://rd.edf.com/syrthes

 Code_Aster
 general usage structure mechanics
 property of EDF, open source (GPL)
 http://www.code-aster.org

CEMRACS, August 17, 2016

http://www.code-saturne.org/
http://rd.edf.com/syrthes
http://www.code-aster.org/

Code development at EDF R&D (2/2)

 TELEMAC system
 free surface flows
 Many partners, mostly open source (GPL, LGPL)
 http://www.opentelemac.org

 SALOME platform
 integration platform (CAD, meshing, post-processing, code coupling)
 property of EDF/CEA/OpenCascade, open source (LGPL)
 http://www.salome-platform.org

 Open TURNS
 tool for uncertainty treatment and reliability analysis
 property of EDF/CEA/Phimeca, open source (LGPL)
 http://trac.openturns.org

 and many others
 Neutronics, electromagnetism
 component codes, system codes
 ...

CEMRACS, August 17, 2016

http://www.opentelemac.org/
http://www.salome-platform.org/
http://trac.openturns.org/

Code_Saturne
EDF’s general purpose CFD tool

 Technology
 Co-located unstructured finite volume, predictor-corrector
 420 000 lines of code, 35% Fortran, 50% C, 13% Python

 Physical modeling
 Laminar and turbulent flows: k-ε, k-ω SST, v2f, RSM, LES
 Radiative transfer (DOM, P-1)
 Coal, heavy-fuel and gas combustion
 Electric arcs and Joule effect
 Lagrangian module for particles tracking
 Atmospheric modeling
 ALE method for deformable meshes
 Rotor / stator interaction for pumps modeling
 Conjugate heat transfer (SYRTHES & 1D)
 Common structure with NEPTUNE_CFD for Eulerian multiphase flows

 Ecosystem
 Portable (Linux, MacOS, Unix X; beta-version of Windows port)
 GUI with possible integration within the SALOME platform
 Parallel using MPI + OpenMP - periodic boundaries with arbitrary interfaces
 Accepts large range of unstructured meshes with arbitrary interfaces

- generated with SALOME, STAR-CCM+, ANSYS Meshing, GMSH, ...
 Code coupling (Code_Saturne/Code_Saturne, Code_Saturne/Code_Aster, ...)

CEMRACS, August 17, 2016

Numerical features of note to HPC aspects

 Segregated solver
 All variables are solved independently, coupling terms are explicit

- components of the velocity are coupled, leading to a matrix with dense 3x3 blocks on
the diagonal, and with a multiple of 3x3 Identity matrix off diagonal (specific storage)

- recent addition of similar 6x6 block structure for RSM models
 Solve by increments, with terms due to non-orthogonalities in the mesh mostly added at

the RHS
- Multiple “sweeps” (solves) are possible (and recommended for unsteady flows) to add
contributions of mesh non-orthogonalities (same matrix, different increments/RHS)

 This limits “reasonable” CFL values to 5-20
 Algebraic multigrid solver (with PCG as smoother and solver) or diagonal-preconditioned

CG used for pressure equation
 Jacobi (or bi-Cgstab) used for other variables

- BiCGSTab2 or GMRES or Gauss-Seidel/Jacobi hybrid also possible
 Experiments with a fully coupled solver have been done outside EDF, but this may not be

easily generalizable to all physical models
 would require a robust and scalable coupled solver
 expected performance would be lower in most cases

CEMRACS, August 17, 2016

Other numerical features of note to HPC aspects

 Most matrices have no block structure, and are very sparse
 Typically 7 non-zeroes per row for hexahedra, 5 for tetrahedra
 Indirect adressing + no dense blocs means less opportunities for MatVec optimization,

as memory bandwith and latency are more important as peak flops.
 Linear equation solvers often amount to 80% of CPU cost (dominated by pressure),

gradient reconstruction about 20%
- The larger the mesh, the higher the relative cost of the pressure step

 For most operations outside linear solvers, a face→ cells based structure is used
- analogous to FEM “edge-based” structures (the graph edges are the FV cell's faces)

 As we use mostly sparse matrix-vector and BLAS-1 (vector-vector) operations, expected
performance can be determined more by benchmarks such as the stream benchmark (
http://www.cs.virginia.edu/stream/ref.html#counting) or the HPCG benchmark
(http://hpcg-benchmark.org/) than the HPL (High Performance Linpack) benchmark or
machine peak performance

 The roofline model explains this in an intuitive manner
 http://crd.lbl.gov/departments/computer-science/performance-and-algorithms-research/research/roofline/

 http://crd.lbl.gov/assets/pubs_presos/PMBS14-Roofline.pdf

CEMRACS, August 17, 2016

http://www.cs.virginia.edu/stream/ref.html#counting
http://hpcg-benchmark.org/
http://crd.lbl.gov/departments/computer-science/performance-and-algorithms-research/research/roofline/
http://crd.lbl.gov/assets/pubs_presos/PMBS14-Roofline.pdf

Code_Saturne toolchain

 Reduced number of tools, each with rich functionality
 Natural separation between interactive and long-running parts
 Try to minimize IO and partitioning dependency

- most preprocessing and partitioning is done within the main executable, and partition-independent
IO is preferred

CEMRACS, August 17, 2016

Code_Saturne VVUQ and versioning

 Quality assurance and VVUQ described in detail in other talks here

 Simple versioning scheme, with different kinds of versions “x.y.z”

 Production (LTS) version every two years (x), with Verification & Validation summary report
 Intermediate version every six months (y), with non-regression tests
 Corrective versions when needed (z), for bug fixes and ports

 Data setup incompatibility-introducing changes allowed between all x or y versions
 corrective (z) releases stable
 GUI has automatic data update features
 user subroutines must be updated/rewritten

CEMRACS, August 17, 2016

Required Environment: Linux, Unix, OS-X, Window
(from laptop to supercomputer)

 Pre-requisite: compilers
 C (gcc, xlc, icc, …)
 Fortran (gfortran, xlf, ifort, ...)

 Pre-requisites for parallel computing:
 MPI library : Open MPI, MPICH, ...
 PT-SCOTCH or ParMETIS partitioner (optional)

 Pre-requisites for GUI:
 Python, Qt4, SIP, libxml2

 Optional data exchange libraries:
 MED, HDF5
 CGNS
 libCCMIO

 Optional integration under SALOME
 GUI extensions
 mouse selection of boundary zones
 advanced user files management
 from CAD to post-processing in one tool

CEMRACS, August 17, 2016

Increasing use of the SALOME platform

 Provides a complete (mesh to
visualization) environment

 www.salome-platform.org

 Some parts of SALOME are
better at HPC than others

 Integration does not get in
the way of HPC aspects

CEMRACS, August 17, 2016

http://www.salome-platform.org/

Supported Meshes

 Mesh generators
 SALOME SMESH (http://salome-platform.org)
 GAMBIT (Fluent), ICEM-CFD, ANSYS meshing
 Star-CCM+
 Simail: easy-to-use, with command file, but no CAD
 I-deas NX
 Gmsh

 Formats
 MED, CGNS, Star-CCM+, Simail, I-deas universal,
 GAMBIT neutral, EnSight Gold

 Cells: arbitrary arrangement of polyhedra
 For example: tetrahedra, hexahedra, prisms,

pyramids, general n-faced polyhedra,…

CEMRACS, August 17, 2016

Installation on HPC resources

 The code can be installed quite easily on most clusters, as most external libraries are optional

 GNU autotools (autoconf/automake/libtool) based install
- out of source builds recommended
- about half of the installation manual is dedicated towards examples of builds on clusters

 Use whatever MPI library is recommended

 An optional post-install configuration file can help with fine-tuning
- paths to coupled codes
- specific MPI environment commands
- path of optional environment file to source before execution

 The build system recognizes environment modules, and saves the configuration so as to use the
same one upon executions
- allows side-by-side builds with different tools
- if this fails or when building an environment module for the code itself, configure using “”--with-

modules=no” and handle modules by sourcing a file, or in user configuration

 The GUI is not absolutely required on a cluster
- an XML file can be built on a workstation, run on a cluster
- completely user C and Fortran source file-based setups are possible

CEMRACS, August 17, 2016

Parallelism and periodicity (1)

 Classical domain partitioning using MPI
 Partitioning using METIS, SCOTCH or internal Morton or

Hilbert space-filling curve
 Classical « ghost cell » method

- Most operations require only ghost cells sharing faces
- Extended neighborhoods for gradients also require

ghost cells sharing vertices

 Periodicity uses same mechanism
- True geometric periodicity (not a BC)
- Vector and tensor rotation may be required (semi-explicit

tensor component coupling in rotation)
 Input output is partition independent

 Recently added OpenMP for compute-intensive sections

CEMRACS, August 17, 2016

Mesh partitioning (1)

 Multiple partitioning options are possible
 Serial Scotch or METIS
 Parallel PT-Scotch or ParMETIS

- Possibly run on a subset of the active ranks (allows for quality/memory optimization checks)
 Morton or Hilbert space-filling curve (in bounding box or bounding cuve)

- Built-in, requires no external library
- Safe to have this as a back-up (and reference)
- Advantage: deterministic

Morton curve
Hilbert curve

CEMRACS, August 17, 2016

Mesh partitioning (2)

 Depending on mesh, results may vary
 In some rare cases, even naive renumbering may be OK

ParMEtis (32 ranks)
Morton, bounding cube (32 ranks)

Blocks by Initial numbering, naive (32 ranks)

CEMRACS, August 17, 2016

Mesh partitioning (3)

 In most cases, both are acceptable, while naïve partitioning is not
 Always safe, 20 to 50% performance impact nonetheless

PT-Scotch (32 ranks)
Hilbert, bounding box (32 ranks)

Blocks by Initial numbering, naive (32 ranks)

CEMRACS, August 17, 2016

Parallelism and periodicity (2)

 Use of global numbering
 We associate a global number to each mesh entity

- A specific C type (cs_gnum_t) is used for this. An unsigned long
integer (64-bit) is necessary for larger meshes

- Currently equal to the initial (pre-partitioning) number

 Allows for partition-independent single-image files
 Essential for restart files, also used for postprocessing output
 Shared file MPI-IO possible does not require indexed datatypes

 Allows automatic identification of “Interfaces”
 Matching between vertices on parallel boundaries
 Allow summing contributions from multiple processes in a robust manner and in linear time

 Redistribution on n blocks
 n blocks ≤ n cores
 Minimum block size and ranks step may be adjusted, for performance, or to force 1 block (for I/O

with non-parallel libraries)

CEMRACS, August 17, 2016

Parallelism and periodicity (3)

 Conversely, simply using global numbers allows reconstructing neighbor partition entity equivalents
mapping

 Used for parallel ghost cell construction from initially partitioned mesh with no ghost data

 Arbitrary distribution, inefficient for halo exchange, but allow for simpler
data structure related algorithms with deterministic performance bounds

 Owning processor determined simply by global number, messages
are aggregated

 Similar to “assumed partition” algorithm

 Switch from one representation to the other currently uses MPI_Alltoall
and MPI_Alltoallv, but we may switch to a more “sparse” algorithm

 Not an issue under 16000 cores, not critical at 64000

CEMRACS, August 17, 2016

Postprocessing output

 Users may define an arbitrary number of post-processing:
 Writers

- Choice of an output format (EnSight, MED, CGNS, CCMIO, ParaView Catalyst), format options,
and output frequency

 Meshes
- Subsets of the computational mesh
- Each associated to a list of writers

 This allows fine control of user output
 Frequently output fields may be associated to partial data, on a possibly time-dependent mesh

subset
- Useful for example to output partial data at higher frequency so as to generate movies, with

“reasonable” output volumes

Helium injection
trail C>0.05

Stratified T junction
Velocity field at the
boundary of the zone
where T<T0

CEMRACS, August 17, 2016

 Arbitrary interfaces: « any type of mesh / format » + « any type of mesh / format »

 Meshes may be contained in one single file or in several separate files
 Expertise may be required if arbitrary interfaces

are used:
 in critical regions
 with LES
 with very different mesh refinements
 on curved CAD interfaces

 Done in parallel
 allows assembling very large meshes

built with serial meshing tools

Mesh Joining (1)

CEMRACS, August 17, 2016

Mesh joining (2)

 Build a global face visibility map
 Build a distributed octree-like structure

of face bounding boxes
- Built bottom-up
- In parallel, a coarser partial octree is built

 first, so as to determine load balancing
 Faces whose bounding boxes overlap

(within a tolerance) may intersect
 Redistribute faces based on their global numbers

 Copies of faces visible to a given face are
also sent to its owning rank

 Determine intersections of face edges
 Subdivide edges along those intersections,

adding new vertices if necessary
 Merge vertices

 Pre-merge vertices within a very small distance, then build “chains” of vertices within merging
distance, reduce local merging distance if this leads to excessive merging (subdiving chains), then
merge all vertices in a same chain

 All ranks must take the same decision regarding merging a shared vertex
 Reconstruct sub-faces

 Close shortest loops of edges on approximate face surfaces
 Merge identical sub-faces: when 2 sub-faces with one adjacent each becomes 1 face with 2 adjacent

cells, it becomes an interior face.

CEMRACS, August 17, 2016

High Performance Computing with Code_Saturne

 Code_Saturne and NEPTUNE_CFD used extensively on HPC machines
 EDF clusters (IBM Idataplex, Blue Gene/P; Blue Gene/Q)
 CCRT calculation center (CEA based)
 PRACE machines

- Archer (EPCC), Jugene (FZJ), Curie (GENCI)
 DOE machines (through INCITE access)

- Jaguar (ORNL), MIRA (Argonne)

 Tests run by STFC Daresbury up to 7 billion cells on reference code
 intensive work on parallel optimization and debugging loop
 higher cell count reached with experimental global refinement from VSB
 typical production studies use 10 to 50 million cells, with a few outliers in the 200-400 million cell

range
- largest production run to date: 1+ billion cells , by STFC and EDF R&D UK, on 4 racks of STFC’s

Blue Joule (Blue Gene/Q) machine

 Code_Saturne is one of the 12 codes selected for the PRACE and DEISA Unified European
Application Benchmark Suite (UEABS)

 along with QCD, NAMD, GROMACS, Quantum Espresso, CP2K, GPAW, ALYA, NEMO,
SPECFEM3D, GENE, and GADGET

 short list from 29 application codes in initial PRACE suite

CEMRACS, August 17, 2016

EDF Applications: Fuel Assemblies

 157 - 241 fuel assemblies in a PWR
 Each fuel assembly has 17*17 fuel rods or

guide tubes and 8 to 10 grids
 complex, non symmetrical geometry
 Different vendors and models

 Many constraints / stakes
 If head loss/lift too high, stronger springs

needed to keep FA down, leading to
possible bowing and deformation

 Good heat exchange: need mixing grids to
generate turbulence, avoid DNB
(de-nucleate boiling)

 Low vibration: loss of cladding integrity
may result from vibration_induced fretting

CEMRACS, August 17, 2016

EDF Applications: meteo

 Simulations for the atmospheric
environment at the local and micro-scale
(a few tens of meters to ~20km)

 account for terrain, buildings
- environmental impact of industrial

sources, of road traffic, …
 all pollutant types: radionuclides, chemical

or biological pollutants, heavy gases
 environmental impact on energy production

with renewables:
 estimation of wind production, wake effects

 model energy exchanges and pollution
in urban areas

 environment impact on plants
 wind and turbulence on buildings, HT lines

 impact of external aggressions
 rupture of gas tank near a power plant

CEMRACS, August 17, 2016

EDF Applications: CSS PUMP

 Thermal shock
 Large temperature gradient in the upper part of the lid

 Particle nocivity
 Prediction of the particle distribution at the inlet

of the lubrication system (in progress…)
 Cavitation model Temperature field in the lid

CEMRACS, August 17, 2016

Example large scale application:
Advanced Gas Reactor

 Advanced Gas Reactor (EDF Energy) simulation
 collaboration between EDF Energy R&D UK Centre

and STFC Daresbury
 fuel assembly: 36 pins, 1 control rod

- 1 m height, 8 assemblies stacked
- gap between each assembly

 200 elemental meshes, replicated and joined using parallel mesh joining
- detailed representation (see riblets in zoom below)

 1.06 billion cells
 runs on STFC’s Blue Joule (Blue Gene/Q)
 512 nodes, 32 ranks/node, 16384 cores total

CEMRACS, August 17, 2016

Parallel Code coupling (1)

 Parallel n to p coupling using “Parallel Location and Exchange” sub-library
 Uses MPI
 Fully distributed (no master node requiring global data)
 Successor to /refactoring of FVM (also used in Cwipi)

- Core communication in PLE, rest moved to code
 Also now used/tested by ALYA

 SYRTHES (conjugate heat transfer)
 Coupling with (parallel) SYRTHES 4 rshows good scaling

using 128+ processors
 Scaling of initial location not so good with current algorithm

on 100's of ranks on BG/Q
- need to upgrade with neighbor search from mesh joining

 Code_Saturne
 RANS/LES

- Different turbulence models and time
steps in fixed overlapping domains

 Turbomachinery (non-joining variant)
- Same turbulence model

 time step, moving subdomain

CEMRACS, August 17, 2016

Parallel Code coupling (2)

 Coupling with self also allows “mapped inlet boundary conditions”
 point values at inlet mapped to cells inside domain

- allows good profiles even with short inlets
- several rescaling options available

 works in parallel
- partition-independent

CEMRACS, August 17, 2016

Performance benchmarks

 To compare performance over several versions,
we use several benchmark cases:

 HYPI, based on a 10-million cell mesh, LES computation
 BORA3x7, based on a 10-million cell non-conforming

mesh, RANS or RSM computation
 BUNDLE, a scalable mesh based on the experiment

of Simonin and Barcuda

HYPI

BORA3x7

BUNDLE base stencil
(100004x128 hex)

BUNDLE
weak scaling scheme

CEMRACS, August 17, 2016

Scalability of Code_Saturne

 Best scalability usually observed on Blue Gene and Cray machines
 degrades faster on typical clusters
 recent experience on X86/Inifiniband: do not always trust default MPI parameters…

 Scalability as a function of mesh size
 At 65 000 cores and 3,2 Billion cells, about 50 000 cells / core

CEMRACS, August 17, 2016

Scalability of Code_Saturne

 Best scalability usually observed on Blue Gene and Cray machines
 Scalability as a function of mesh size

 At 65 000 cores and 3,2 Billion cells, about 50 000 cells / core

CEMRACS, August 17, 2016

All to all algorithms (1)

 A new all to all API currently allows selecting from 2 algorithms (where deployed)
 the current MPI_Alltoall / MPI_Alltoallv based algorithm
 a Crystal router algorithm (similar to a binomial algorithm)
 Other algorithms to be added (MPI-3 asynchronous barrier algorithm, SC14 advanced MPI tutorial)

 Binomial algorithm and Crystal router base idea
 if local rank_id <= n_ranks /2

- send all data with destination rank > n_ranks /2 to (rank_id + n_ranks/2)
- keep all data with destination rank <= n_ranks /2

 if rank_id > n_ranks /2
- keep all data with destination rank > n_ranks /2
- send all data with destination rank <= n_ranks /2 to (rank_id – n_ranks/2)

 recurse on subsets of communicator, dividing size by 2 at each level

 Each variant has advantages/disadvantages
 MPI_Alltoall/MPI_Alltoallv requires loops and arrays based on rank counts

- those can become larger than the local data size at high processor counts
- doubling rank count for a given data set doubles the size of those loops, leading to inverse scaling
- increasing rank count significantly increases memory usage

 Crystal router requires looping over and sending data multiple (log(p)) times before it reaches the
destination rank
- if it perfectly matches the network topology, this might match what MPI does would do and simply

make routing explicit, but there is a small chance of that (and next destination determination loops
are required for each level anyways)

CEMRACS, August 17, 2016

All to all algorithms (2)

 Currently, MPI_Alltoallv usage is believed to be where memory usage peaks
 when running on Blue Gene/Q, for example, some cases fail due to lack of memory in those stages

when trying to run with 32 or 64 MPI ranks per core
- the same cases are OK using hybrid MPI/OpenMP with 16 ranks per core

 Some progress/interlocking issues also observed at high rank counts with some MPI libraries

 some results on Blue Gene/Q
 using 12.8 million cell benchmark test
 not enough data points here
 similar tendencies on Intel/Infiniband clusters

n_ranks Alltoall(v) time (s) CrystalRouter time (s)

128 (16x8) 0.03 0.45

256 (16x16) 0.02 0.26

512 (32x16) 0.012 0.20

CEMRACS, August 17, 2016

Impact of MPI collectives (comparison with older tests)

 In previous tests, we saw inverse scaling in some stages that are believed to be due to data
redistribution

 but those issues appear at much higher rank counts

Mesh partitioning and ghost cell creation times, in
seconds, for 3.2 billion celll mesh (Jaguarpf)

N cores Morton ParMetis

Partiton Ghost creation Partition Ghost creation

8192 14.8 14.3 11.1 8.7

16384 9.7 16.1 8.9 7.8

32768 16.4 40.8 18.7 17.7

65536 57.6 94.1 81.3 63.1

CEMRACS, August 17, 2016

IO performance

 Parallel IO performance is hard to measure, as it may depend both on the machine and its load
 We consider only single files, read/written in collaboration by many processes (MPI_File_*_all)

 Usually effective on GPFS
 Effective on recent versions of LUSTRE, using striping

- on older versions, minimal improvement, even with striping
 Tests on our own machines (GPFS), many tests in PRACE context by STFC

- on MIRA, about 2 to 5 Gb/s write
 Timings include all-to-all,

so pure IO may be better

CEMRACS, August 17, 2016

Hybrid Parallelism (1)

 Since version 4.0, hybrid parallelism using OpenMP is in a working state
 not built by default in 4.0
 built by default in development “trunk”
 Requires mesh renumbering

- Also useful for cache behavior
- Cache effects even more important under OpenMP, to avoid false sharing, but also try not to

saturate bandwidth
- Both internal (in progress) and external (IBM library) renumberings are possible, and may be

compared
 some subsets of the code have better OpenMP scaling
 some subsets do not use OpenMP

 OpenMP debugging still very painful
 Valgrind DRD helps

- very high overhead
- requires compiling gcc with specific option

 Writing C code with loop local variable definitions helps avoid missing “private” qualifiers
- no equivalent in Fortran
- alternative would be to use a tasking/data model more similar to MPI, but this would be fragile

CEMRACS, August 17, 2016

Mesh renumbering

 Renumbering required to avoid thread write conflicts
 due to the face-based nature of our loops
 options to place halos-adjacent

cells and faces last will also allow
computation/communication overlap
- MPI progress engines only recently

asynchronous enough for this to be worthwhile
 May improve cache effects, but low impact

- 10% performance changes
- initial numbering usually not so bad... cell MPI rank id

local cell id (Morton, ghost adjacent last) local face id (Morton, ghost adjacent last)

local face thead id (Morton, ghost adjacent last) local face thread group id (Morton, ghost adjacent last)

CEMRACS, August 17, 2016

Hybrid Parallelism (2)

 Bandwidth becomes the main limitation

 On several recent clusters, best results are observed with 2 threads per task, MPI for all the rest
 example on 51-million cell tube bundle test case

CEMRACS, August 17, 2016

Predicting performance for PCG-type operations

Computer Cores Rpeak
(Pflop/s)

HPL
Rmax
(Pflop/s)

HPCG
(Pflop/s)

Peak
/ HPCG

HPL
/ HPCG

Tianhe-2 NUDT, Xeon 12C+ Xeon Phi 57C 3120000 54.90 33.84 0.58 94.66 58.34

K computer, SPARC64 VIIIfx 705024 11.28 10.51 0.46 24.48 22.81

Titan - Cray XK7 , Opteron 6274 16C, NVIDIA
K20x

560640 27.11 17.59 0.32 84.12 54.58

Mira - BlueGene/Q, Power BQC 16C 786432 10.07 8.59 0.17 60.28 51.42

Trinity - Cray XC40, Xeon E5-2998 v3 301056 11.079 8.10 0.18 68.13 49.82

Stampede - Xeon E5-2680 8C + Xeon Phi
SE10P

522080 8.52 5.17 0.10 88.02 53.39

ARCHER - Cray XC30, Intel Xeon E5 v2 12C 118080 2.55 1.64 0.08 31.56 20.33

Earth Simulator - NEC SX-ACE 8192 0.49 0.06 0.00 8.43

Curie thin nodes - Bullx B510, Xeon E5-2680
8C

77184 1.67 1.36 0.05 32.69 26.65

Sunway TaihuLight, Sunway MPP 10646600 125.43 93.02 0,37 337.90 250.58

 The situation is getting worse (60% improvement/year in microprocessor performance, less than 10%
per year for memory access time)

CEMRACS, August 17, 2016

External libraries

 Co-visualization and in-situ visualization now available using ParaView Catalyst
 Easy to setup using ParaView wizard and Code_Saturne GUI
 some bugs remain, but robustness has increased in the last year

- mainly dependent on ParaView's progress

 Faster parallel IO may soon not be enough
 Co-visualization is part of the solution
 user subroutines also allow some simple in-situ analytics
 we need to help users with meeting their analytics needs in situ, to avoid explosion of storage

requirements
 also need to change user habits…

 Leverage external libraries
 So far, the few comparisons we have done between built-in solvers and those of external libraries

have shown quite good performance of built-in features, without the overhead of external library
deployment and synchronization

 With increasing hardware, software, and solver complexity, we need to enable the use of HPC
libraries such as PETSc, HYPRE, and Trilinos more easily, at least for testing
- especially in the view of recent efforts relative to hybrid platforms in those libraries

 PETSc integration optional since Aug 2015
- Hypre (direct), and Lis tested spring 2015, will be added as options soon

CEMRACS, August 17, 2016

Comparison of internal solvers to reference libraries (1)

 BUNDLE test case, comparison of multigrid on Ivy-bridge + infiniband cluster

CEMRACS, August 17, 2016

Comparison of internal solvers to reference libraries (2)

 BUNDLE test case, comparison of multigrid on Blue-Gene/Q (4 threads)

CEMRACS, August 17, 2016

Comparison of internal solvers to reference libraries (2)

 BORA and HYPI test cases: note influence of restart (initial/established flow regime)

HYPI after restart (different flow regime)

CEMRACS, August 17, 2016

What about accelerators ?

 Accelerators of some form in almost all future hardware options: they cannot be ignored

 Diminishing returns with current OpenMP implementation

 Preliminary work done in collaborative work, testing external libraries (CUSparse, ViennaCL) for linear
solvers with matrices from current test cases

 Single node at this point
- not ghost cell synchronization / GPU ghost cell definition / GPU direct issues

 CPU better for cases which fit well in cache
 GPU better for larger local workloads

 Due to the large size of the code base, rewriting large portions of it to CUDA or OpenCL would be
slower than the evolution of those languages

 except for some kernels, directive-based approach seems the only solution
- OpenMP again, OpenACC

 Not ready yet, but working on initial issues
 PhD started with INRIA to study tasking and load balancing options at all levels

- using microbenchmarks from Code_Saturne algorithms

CEMRACS, August 17, 2016

Co-visualization / in situ visualization

 Using ParaView Catalyst
 Use ParaView wizard on initial

post-mortem visualization
- possibly on a coarser/

placeholder mesh
 Then set writer format

to Catalyst in Code_Saturne
- possible with GUI

 live connection also works
- tested on workstations…

 Further work
in the context
of the AVIDO
project (BPI)

 EDF, Total,
Kitware,
UPMC-LIP6,
INRIA

CEMRACS, August 17, 2016

Next-Generation numerics in Code_Saturne

 Current discretization is based on a colocated cell-centered finite-volume approach (2-point schema)
 with gradient reconstruction and explicit correction terms for mesh offsetting and non-orthogonalities
 has served well up to now, but has some limitations

- robustness relative to mesh quality could be improved
– mitigation strategies are costly, or reduce precision

- anisotropy and heterogeneity cannot be handled simultaneously

 Undergoing efforts in recent years to develop more robust methods
 Improve the simulation of complex physics in complex geometries

- Need a numerical scheme less sensitive to the mesh quality
- Handle polyhedral and/or non-conforming meshes
- Improve the physical fidelity
- Keep an efficient solver (w.r.t memory and CPU)

 we keep the unstructured mesh-based approach, with explicit boundaries
- immersed-boundary methods explored in previous PHD work, not selected at this stage
- LBM or SPH approaches tested in other EDF codes, and have strong points, but their current

application domain would not completely cover Code_Saturne applications

→ Development of the Compatible Discrete Operator (CDO) approach

CEMRACS, August 17, 2016

Next-Generation numerics in Code_Saturne

 CDO schemes belong to compatible discretizations
 Also called structure-preserving or mimetic discretizations
 Aims: Preservation of the structural properties of PDEs at the discrete level

- Satisfy exactly and locally conservation laws
- Preserve properties of differential operators (adjunction, kernel. . .)

 Pioneering works
- Electromagnetics: Kron ’53 , Branin ’66 , Tonti ’74 and Bossavit ’88
- Mathematics: Whitney ’57 and Dodziuk ’76

 A deeper understanding of the links between mathematics/physics/geometry
- Identify analogies between vector calculus, differential geometry and algebraic topology
- Consider four types of fields according to their physical nature:

– potential, circulation, flux and density fields
- Make the distinction between

– Topological laws: conservation laws and definitions of differential operators
– Metric relations: closure or constitutive relations

CEMRACS, August 17, 2016

CDO discretization process

 several families of CDO schemes depending on where potential DoFs are located
 vertex, edge, face, or cell-based schemes

 For more details:
 J. Bonelle “Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations” . PhD

thesis, Universitée Paris-Est, (2014).
 J. Bonelle and A. Ern. “Analysis of Compatible Discrete Operator Schemes for Elliptic Problems on Polyhedral

Meshes.”ESAIM: M2AN, 48:553–581 (2014)
 J. Bonelle, E. Burman, P. Cantin and A. Ern “A vertex-based scheme on polyhedral meshes for advection-reaction

equations with sub-mesh stabilization”, submitted

CEMRACS, August 17, 2016

First applications of the CDO approach

 Effective method on polyhedral mesh for advection-diffusion equations
 application to hydrogeological flow test cases

 Encouraging results with CDO on hydrogeological flows
 able to handle high heterogeneity and anisotropy
 robust relative to non-conforming meshes

 Work in progress;
 MPI Parallelization by end of 2016
 Extension to Navier-Stokes over next few years

CEMRACS, August 17, 2016

Parallel meshing / mesh modification

 Meshing is missing from most of the work presented
 So far, parallel joining has enabled working around mesh size limitations

 Generating boundary layers inside the code to be added fall 2015
 Doing it inside the code may help adapting the boundary layer to the turbulent model

- But adaptive models are still essential

 Some open-source parallel meshers seem to be appearing
 Polytope (https://bitbucket.org/jjphatt/polytope)

- Open source, parallel layer to other serail open-source meshers
 PMSH (https://code.google.com/p/pmsh/) tetra

 Favor open-source + library options
 May go all the way up to linking inside code rather than adding IO

CEMRACS, August 17, 2016

https://bitbucket.org/jjphatt/polytope
https://code.google.com/p/pmsh/

Mesh multiplication

 Mesh refinement (global multiplication or adaptation)
 work on this in PRACE context at VSB / IT4I Ostrava

- search for presentations by A. Ronowský
- in collaboration with STFC

 Work in progress
 could allow starting from coarser meshes

- great for mesh sensitivity studies
 has already allowed weak scalability testing at a higher scale

Highest thread count
attained (MIRA)

Highest mesh size
attained (MIRA)

CEMRACS, August 17, 2016

Other future steps

 Pursue integration with the SALOME platform
 Only integrate directly with components which are HPC compatible

- Or in a manner compatible with HPC
- Currently, Visualization (Paraview/ParaVis) is HPC compatible
- Mesh is making progress

 Coarser Integration (using files) for parts of the platform which are less HPC oriented
 For future ensemble calculations, may benefit from OpenTurns integration for driving of uncertainty

determination

 Optimize for future ensemble calculations
 Using in memory data staging (avoiding files) with ADIOS, HDF5, or similar technologies may

mitigate IO volumes
 Pseudo code coupling (actually postprocessing coupling) may allow determine key statistics with

less I/O and archival
- This needs to be done in a relatively fault-tolerant manner (in-situ/post-mortem hybrid)

 Don't forget code/resource manager integration
 essential to ease of use
 as resource managers and front-end/compute node differences become more complex, may need to

define sub-steps
- more of an issue on clusters where nodes are similar (with different environments) than on BG/Q

 Heuristics
 How much ?

CEMRACS, August 17, 2016

Code_Saturne open source practical info

 Distribution of Code_Saturne
 GPL license, auxiliary library (PLE) under LGPL license

 Code_Saturne EDF website
 http://code-saturne.org
 source download
 Code presentation and documentation
 Contact with EDF development and

support team
 Code_Saturne news
 Forum and bug-tracker

CEMRACS, August 17, 2016

http://code-saturne.org/

THANK YOU FOR YOUR ATTENTION

any questions ?

CEMRACS, August 17, 2016

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55

