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Context
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• Motivations
•A personalised model typically for a patient 

•Can be used for predictive purposes: providing diagnosis and prognosis 
assistance

• Starting point
•MΞDISIM heart model can be calibrated to represent cardiac cycles of 

patients with various pathologies.

•Data assimilation strategies to register this type of model on actual data 
extracted from medical images – typically Cine-MRI.



Objectives
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• Drawbacks of previous strategy
• Discrepancy measure between the data and the model requires a 

segmentation step of the data and is based on a simple definition of 
the distance between boundaries.

• Objectives
• Propose a new discrepancy measure that can be constructed 

without prior segmentation of the image data using the expertise 
of Philips Hamburg.

• Transfer from the old simulation code the first strategy and 
develop the new strategy in a new HPC code.

• Applying the state estimator in processing other types of cardiac 
MR data, which might be corrupted due to typical issues in cardiac 
MRI (motion of the subject, not-perfect periodicity of cardiac 
cycles)



Outline
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•Cardiac modeling and data assimilation

•State estimation using pre-segmented surfaces

•State estimation with Philips discrepancy

•Applying the state estimator in processing other types 
of cardiac MR data



Cardiac modeling and data 
assimilation



Myocardium modeling summary
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• Principle of dynamics in total Lagrangian formulation  
 

• Constitutive law  

• Hyperelastic term  
with reduced invariants

• Viscous term

• Active part (fiber directed)
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Data assimilation strategy
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• We a model defined by the following systems

• We have some observations at our disposal. 

• There exists a discrepancy operator allowing to compare the observation 
associated with with any other state. 

• We define a new dynamic model called observer or state estimator
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State estimation using pre-
segmented surfaces

Increase predictivity of biophysical 
heart model (model personalization / 
patient-specific medicine e.g. to plan 
therapy)



Coupling physical model-based & cine MRI

• 3D biomechanical heart model can be calibrated to represent patients’ heart 
contraction

• A discrepancy exists when directly comparing the boundary of model with the 
patient’s cine MRI



Coupling physical model-based & cine MRI

• 3D biomechanical heart model can be calibrated to represent patients’ heart 
contraction

• A discrepancy exists when directly comparing the boundary of model with the 
patient’s cine MRI

Example of cine MRI in short axis of heart: typically 
covers whole heart in ~15 slices with temporal 

resolution ~15-30ms



Coupling physical model-based & cine MRI

• 3D biomechanical heart model can be calibrated to represent patients’ heart 
contraction

• A discrepancy exists when directly comparing the boundary of model with the 
patient’s cine MRI

• Data assimilation introduces feedback of the image data to correct the state of 
physical model (state estimation)

• A natural discrepancy measure between 3D model and time-resolved cine MRI 
sequences is the surface-to-surface distance (endo/epi-cardium of model vs. 
corresponding surface in cine MRI)



State estimation using pre-segmented 
boundary surfaces
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• Correction based on a term of the form

• Computes the distance between the simulated model and a 
target surface mesh.

Green: observations (target)
Red: simulated model

��

�

�
dist(x, �) · n · w d�

P. Moireau, D.Chapelle, and P. Le Tallec:  
Filtering for distributed mechanical systems using position measurements:  
Perspectives in medical imaging, Inverse Problems, 25(3), 2009.



State estimation using pre-segmented 
boundary surfaces: exemple of results

Green: pre-segmented surfaces (“observations”)
Red: biophysical model (pre-calibrated), physical & physiological but a bit far from the data
Blue: Corrected model by data (model-data coupling) with physics inside and very well wrt. 
to the data
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State estimation using pre-segmented 
boundary surfaces: drawbacks

• Manual segmentation from a medical doctor or automatic segmentation from 
a clever algorithm (rare) is required to pre-process the data



State estimation with Philips 
discrepancy



Philips discrepancy
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• Philips can compute distances directly in the image  

• Our objective:
•Use this image-based distance instead of a mesh-based distance ! 

A. Groth, J. Weese, and H. Lehmann. Robust left ventricular myocardium 
segmentation for multi-protocol MR. In Proc. of SPIE, volume 8314, 
pages 83142S1–9, 2012.  



Blue: direct model (without feedback from image data)
Yellow: correction by pre-segmented surfaces (as in the slides before)
Red: correction by Philips discrepancy operator (without prior segmenting)

Results using Philips observator
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• Error assessed by displacement extracted from independently acquired tagged 
MRI (“pseudo-ground truth”)

Validation using additional data
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Validation results



Applying the state estimator in 
processing other types of cardiac 

MR data

Provide directly some clinically 
important information



Motion compensation in T1-mapping MRI sequence

• T1 relaxation time is one of the intrinsic MRI contrasts characterising each 
tissue

•Fibrosis (Damaged tissue) : T1  

• Effective T1-mapping MR imaging sequences (ex: MOLLI sequence) are 
relatively widely used non-invasive assessment of myocardium.

• How to register this sequence (eulerian in nature) with the more classical MRI 
sequence of the patient (eulerian also) ?

Difficulty: 

Idea: 

• Use a state estimation of the trajectory.



A MOLLI sequence

A single 2D slice of MOLLI: movie of 11 IR-“samples” 
showing the heart not being perfectly still 

The need of motion correction demonstrated when 
overlying all IR samples

yellow-red where the myocardium is present 
only on 1-4 of IR samples 
even in the location with myocardium in 100% of 
IR samples (typically septum), the assumption 
of each pixel corresponding to a given material 
point over all IR-samples is clearly wrong
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Motion compensation in T1-mapping MRI sequence
• State estimator from the first HeartIC objectives is an excellent 3D+t 

representation of heart in Lagrangian sense (as per volume mesh nodes)

Time 0ms

Time 242ms

Time 110ms

Time 374ms
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Spatial registration of MOLLI frames using 3D+t 
state estimator template via creating synthetic cine

MOLLI sample@ IR1195ms 
3D+t synthetic cine  

(template for rigid registration of the MOLLI sample)

• Synthetic MRI created from the set of N meshes of state estimator
• Corresponds to the motion in real cine MRI (as created via state estimation)

• Lagrangian displacements are “under control” (we do still know the position of the 
mesh nodes)

• Signal (“color”) in the myocardium, in left and right ventricle cavities and outside of 
heart can be chosen accordingly to the mean signal in given region specifically to a 
given IR-sample of the MOLLI
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Projection of the MRI signal on the mesh (in the 
nodes in Lagrangian sense)

• The final registered 2D planes may vary according to the heart motion / breathing 
motion

Vizualization in “reference 
configuration” of the object (mesh) 

computed T1 relax times 
(by fitting the relaxation exponentials)

Best fits for each IR time 
(the locations of 2D slices vary 

in 3D space!) 
Note that number of IR samples in a 

given node may give a confidence map 
of the fit.
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Thank you for your attention.

Questions ?


