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Challenge in getting scalable iterative linear solvers

⌅ A Krylov solver finds x
k+1 from x0 +K

k+1(A, r0) where

K
k+1(A, r0) = span{r0,Ar0,A2r0, ...,A

k r0},

such that the Petrov-Galerkin condition b � Ax
k+1 ? L

k+1 is satisfied.

⌅ Does a sequence of k SpMVs to get vectors [x1, ..., xk ]

⌅ Finds best solution x
k+1 as linear combination of [x1, ..., xk ]

Typically, each iteration requires

⌅ Sparse matrix vector product
! point-to-point communication

⌅ Dot products for orthogonalization
! global communication
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CEMRACS project: Enlak

⌅ A way to improve the actual performances of Krylov solvers is to change
numerics in order to
⇤ reduce overall communication
⇤ increase arithmetic intensity

⌅ Goal of the project: test Enlarged Krylov methods [Grigori et al., 2014]
on industrial problems.

⌅ Participants: Hussam Al-Daas (Inria), Yvan Fournier (EDF), Laura
Grigori (Inria), Pascal Hénon (Total), Philippe Ricoux (Total), Olivier
Tissot (Inria).
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Enlarged Krylov methods [Grigori et al., 2014]

⌅ Partition the matrix into t domains

⌅ Split the residual r
k

into t vectors corresponding to the t domains,

r0 ! T (r0) =
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⌅ Generate t new basis vectors, obtain an enlarged Krylov subspace

K
t,k+1(A, r0) = span{T

s

(r0),ATs

(r0),A
2T

s

(r0), ...,AkT
s

(r0)}

⌅ Search for the solution of the system Ax = b in K
t,k+1(A, r0)
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Properties of enlarged Krylov subspaces

⌅ The Krylov subspace K
k+1(A, r0) is a subset of the enlarged one

K
k+1(A, r0) ⇢ K

t,k+1(A, r0)

⌅ For all k < k
max

the dimensions of K
t,k and K

t,k+1 are stricltly
increasing by some number i

k

and i
k+1 respectively, where

t � i
k

� i
k+1 � 1.

⌅ The enlarged subspaces are increasing subspaces, yet bounded.

K
t,1(A, r0) ( ... ( K

t,k
max

�1(A, r0) ( K
t,k

max

(A, r0) = K
t,k

max

+q

(A, r0), 8q > 0
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Enlarged Conjugate Gradient1

Algorithm 1 Classic CG
1: r0 = b � Ax0

2: p1 =
r0q
r

t

0Ar0

3: while ||r
k�1||2 > "||b||2 do

4: ↵
k

= p

t

k

r

k�1

5: x

k

= x

k�1 + p

k

↵
k

6: r

k

= r

k�1 � Ap

k

↵
k

7: p

k+1 = r

k

� p

k

(pt

k

Ar

k

)

8: p

k+1 =
p

k+1q
p

t

k+1
Ap

k+1

9: end while

BLAS 1&2 operations
# messages per iteration
O(1) from SpMV +
O(log P) from dot prod + norm

Algorithm 2 EK-CG
1: R0 = T (b � Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
P

t

i=1 R
(i)
k

||2 < "||b||2 do

4: ↵
k

= P

t

k

R

k�1 . t ⇥ t

5: X

k

= X

k�1 + P

k

↵
k

. n ⇥ t

6: R

k

= R

k�1 � AP

k

↵
k

. n ⇥ t

7: P

k+1 = AP

k

� P

k

(Pt

k

AAP

k

) �
P

k�1(P
t

k�1AAPk

) . n ⇥ t

8: P

k+1 = A-orthonormalize(P
k+1)

9: end while

10: x =
P

t

i=1 X
(i)
k

. n ⇥ 1

BLAS 3 operations
# messages per iteration
O(1) from SpMV +
O(log P) from BCGS + A-ortho

1Paper in preparation L.Grigori and OT.
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Enlarged GMRES2

Algorithm 3 GMRES
1: r0 = b � Ax0
2: for i = 1 to k do

3: p = Ap
i�1

4: p̃
i

 BCGS (p̃
i

, p0, . . . , pi�1)
5: p

i

= p̃
i

/kp̃
i

k2
6: update H
7: end for

8: solve LSQ problem with H

BLAS 1&2 operations
# messages per iteration
O(1) from SpMV +
O(log P) from BCGS + norm

Algorithm 4 Enlarged GMRES

1: r0 = b � Ax0, R0 = T (r0)
2: for i = 1 to k do

3: P̃
i

= AP
i�1

4: P̃
i

 BCGS (P̃
i

,P0, . . . ,Pi�1)
5: [P

i

, L] = TSQR(P̃
i

)
6: update H
7: end for

8: solve LSQ problem with H

BLAS 3 operations
# messages per iteration
O(1) from SpMV +
O(log P) from BCGS + TSQR

2Paper in preparation H. Al Daas, L. Grigori, P. Hénon
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Dynamic reduction of search directions

In Krylov subspace methods we have the following relation at iteration k

P̃
k+1↵k+1 = (I � V

k

V>
k

)R
k

where P̃
k+1 are the new search directions, and

↵
k+1 = P̃>

k+1Rk

So Rank(↵
k+1) = Rank(R

k

) by construction of the Krylov basis.
To select only adding-value search directions we write the truncated SVD
decomposition:

↵
k+1 ⇡ U+

k+1⌃
+
k+1W

+
k+1

The new search directions are given by the relation:

P
k+1 = P̃

k+1U
+
k+1

.
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Work done

⌅ Implementation of the methods in C/MPI
1 We started from a homemade library written by S. Cayrols for sparse

matrices.
2 We added dense matrices in that library.
3 We linked with MKL for the local linear algebra part.
4 We implemented 3 di↵erent Block CG-like methods (EK, Coop and BRRHS)

and 2 di↵erent A-orthonormalization algorithm (Orthomin and Orthodir).
5 We almost finalized implementing Block GMRES (di�culties in updating

block Hessenberg matrix).

⌅ Validation of the CG prototype.

⌅ Test on EDF matrices (coming from Code Saturne).

⌅ Numerical experiments of EGMRES with CPR on Matlab (reservoir
simulation).

12 of 20



Numerical experiments: EK-CG

⌅ C/MPI prototype on laptop (4 cores)

⌅ Matrix of size 65 536 with 439 552 non zero elements coming from
Code Saturne
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Numerical experiments: EK-CG size reduction
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⌅ Matlab results

⌅ Elasticity matrix of size 36 663 with 1 231 497 non zero elements

⌅ Block Jacobi preconditioner
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Numerical experiments: EGMRES

Iteration
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Method:
⌅ Solve Ax = b1 with EGMRES R&D with max subspace dimension = 400.
⌅ Solve Ax = b1 with EGMRES no restart.
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Numerical experiments: EGMRES

Iteration
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⌅ Solve Ax = b1 with EGMRES R&D with max subspace dimension = 400.
⌅ Solve Ax = b2 with EGMRES R&D using deflation info from the last

solution.
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Numerical experiments: EGMRES size reduction
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Ongoing work

⌅ Finalize EGMRES code.

⌅ Add preconditioner.

⌅ Dynamically decrease the number of search directions during the
iterations.

⌅ Deflate eigenvalues when solving the same system with di↵erent rhs each
given in a time.

⌅ Test on bigger matrices.
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Thank you for your attention!

Questions?
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