Anim3D Project

August 25, 2016

Lnria Nancy Grand Est and IRMA Strasbourg, France
2Max-Planck-Institut fiir Plasmaphysik, Garching, Germany

"]p 3University of Nice and Inria Sophia Antipolis 1
A. Ratnani Cemracs 2016 22



==
Outline

Motivations

IsoGeometric Analysis

Numerical results

Conclusion and perspectives

A. Ratnani Cemracs 2016



Plasma Physics

B Plasma: For very high
temperatures, the gas are ionized
and gives a plasma which can be
controlled by magnetic and electric
fields.

B Thermonuclear fusion: The MHD
allows to describe some
configuration where the collision are
not so small or for long time
behavior.

B Astrophysics: The MHD describe a
lot of astrophysics configuration:
supernovae explosion, solar wind
and instabilities etc.

B Context: in the case we consider

the application of the MHD to the
simulation of Tokamak instabilities.
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Plasma Physics

Plasma: For very high
temperatures, the gas are ionized
and gives a plasma which can be
controlled by magnetic and electric
fields.

Thermonuclear fusion: The MHD
allows to describe some
configuration where the collision are
not so small or for long time
behavior.

Astrophysics: The MHD describe a
lot of astrophysics configuration:
supernovae explosion, solar wind
and instabilities etc.

Context: in the case we consider
the application of the MHD to the
simulation of Tokamak instabilities.
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Example of Application : MHD and ELM

B |n the tokamak some instabilities can
appear in the plasma. B ELM simulation

B The simulation of these instabilities is an
important subject for ITER.

B Example of Instabilities in the tokamak :
O Disruptions: Violent instabilities which
can critically damage the Tokamak.
U Edge Localized Modes (ELM): Periodic
edge instabilities which can damage the
Tokamak.

B These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

B Many aspects of these instabilities are
described by fluid models (MHD resistive
and diamagnetic or extended)

IPP
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==
Discretization
B-Splines

To create a family of B-splines, we need a non-decreasing sequence of
knots T = (t;)1<i<n-+k. also called knot vector, with k = p+ 1.
Each set of knots T; = {tj,- -, tj1p} will generate a B-spline N;.

Definition (B-Spline serie)

The j-th B-Spline of order k is defined by the recurrence relation:
k k prk— k k—
Nff = wi NS0+ (L= wif )N

where,

fork>1land1<j<N.
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Discretization
The IsoGeometric Approach

o

Patth

Physical Domain Physical Doman

Grid generation: the use of h/p/ k-refinement keeps the mapping

F unchanged.

= Compact support

® |soParametric concept
® Partition of Unity

® Error estimates in Sobolev norms
m Affine covariance

IPp

m Exacte DeRham discrete sequence
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Discretization

Refinement strategies in IGA

Refinement strategies

Refining the grid can be done in 3 different ways. This is the most
interesting aspects of B-splines basis.

h-refinement by inserting new knots. It is the equivalent of mesh
refinement of the classical finite element method.

p-refinement by elevating the B-spline degree. It is the equivalent of
using higher finite element order in the classical FEM.

k-refinement by increasing / decreasing the regularity of the basis
functions (increasing / decreasing multiplicity of
inserted knots).

r-refinement moving the control points to reduce a given error
estimate

the use of k-refinement strategy is more efficient than the classical

p-refinement, as it reduces the dimension of the basis. P
7
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==
Parallelism

Domain Decomposition
Available algorithms
® Tensor decomposition, when using Tensor Spaces
® Metis (ParMetis will be added later)

1 0 0 0 50 6 0 5 10 15

Figure: Metis (left) and tensor (right) partitioning.
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Numerical results: Parallel runs

The 2D case
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Numerical results: Parallel runs
The 2D case
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Numerical results: Parallel runs

The 3D case
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Numerical results: Parallel runs

The 3D case
Statistics: Quadratic Splines on a grid
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Equilibrium
B We consider the resistive MHD with v = 0. We obtain the following equilibrium

v=0, JxB=Vp
atB:%AB

B 7 << 144 with T and 14 the characteristic time of transport and the diffusion.

MHD equilibrium

O The equilibrium is mainly defined by the force balanced

JxB=Vp

B The equilibrium induces that B- Vp =0, V-J = 0 and we assume that Vp-e, = 0.
B |n a Tokamak we assume that
F(y.2)

1
B = yOTE¢+ E(VI]J X e¢)

B After some computation we obtain the following equation

Grad-Shafranov equation

A*l/) — 7H0R2 dP(U’) _ I’l(z)F(lIJ) dF(¢’)

dy dy
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Grad-Shafranov Shift and B plasma

B Property of GS operator:
induce a shift of the magnetic
surface

B Shift estimation: % = ,BPRLO

B with r and Ry the minor and
major radius.
B g,= 2":;"'" the ratio of the
P
pressure and poloidal magnetic
pressure.

y

Test case

B Discretization: 32*32*8 cells
with third order B-Splines

B Solvers Picard nonlinear solver
+ GMRES

B Physical problems: 8, ~ 1072,

_ B
Ry = 3 and ﬁp~10

IPp
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Anisotropic diffusion

B Model :
2T —V- <(kH —k)(b@b)VT + kLVT> =0
with k” >> k.
B The magnetic field is construct solving the equilibrium.

B In this case k| = 200 and k; = 0 .The diffusion is along the magnetic lines.

DB: phi_0p

|

Figure: Left: solution after time T = 0.5. Right: solution after time T =7
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Reduce MHD model

Single fluid resistive MHD

atp'i‘V‘(pV) =0, -
oV +pv-Vv+Vp=JxB-V I,
o0tp+v-Vp+pV-v+V.q=0
0:B=—-V x(—vxB+nl),
V-B=0, VxB=1J

B Reduced MHD model: Reduce the number of variables and eliminate the fast waves
in the reduced MHD model.
B We consider the cylindrical coordinate (R, Z, ¢) € Q) x [0, 27].

Reduced MHD: Assumption

F 1
B:FOG¢+EV1/JXE¢, V:7RVUX8¢+VHB

with u the electrical potential, ¢ the magnetic poloidal flux, v the parallel velocity.

B Initialization: we use ¢ and pressure equilibrium, a zero velocity (v = v = 0).
B Wave structure: low Mach and low B regime — a large ratio between wave speeds.

B This problem coupled with hyperbolic structure generate ill-conditioned problem.

IPp
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Preconditioning

B The implicit system after linearization is given by

B+l 1 R,
n+1 _ AB,p CB,p,u RB
p =
n+1 C” B.p A" P
u = Ry

B with Ag, and A, the advection terms linked to B and p (resp u), Cgpu and CyB,p
the coupling terms which gives the Alfven and acoustic waves.

B The solution of the system is given by
Bn+i 1 1 Rg
ol _ ( Iy AB,pCB,p,u ) ( AB,p 071 ) < Iy . 0 ) R,
u“+1 0 Id 0 Pschur _Cu,B,pAB'p Id Ru

B Using the previous Schur decomposition, we obtain the following algorithm:

*
Predictor : AB,p( 5* >=( gB )
P

Bn+1
Velocity evolution :  Psgp,u™! = <_Cu,B,p< prHl > + Ru>

Bn+1 B*
Corrector : AB,p( P+l > = AB,p( p* ) — CBpulint1

B Preconditioning: we approximate the Schur complement by a multi-scale elliptic
operator.
B Using classical Multi-grids and auxiliary-space theory we can perform the invert of the

Schur approximation.
PP 18/,

A. Ra Cemracs 2016



JorekDjango Framework

These developments were done in the JorekDjango framework. It is
written in Fortran2008, using MPI.

CLAPPIO Input/Output Library

PLAF Parallel Linear Algebra Library

SPL Library for NURBS/B-Splines

DISCO Abstract Discretization Context Library

FEMA Library of Finite Elements Assemblers
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JorekDjango Framework

Figure: Strucutre of the JorekDjango Framework
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Conclusion and persecptives

Conclusions
= Weak scalability. In 2D, we get a speedup of 104% on H'! and
94 — 97% for H(div)
m Different models have been implemented during this
summer-school (Equilibrium, Anistropic Diffusion, Reduced-MHD)
Ongoing work and Perspectives
® Validation of OpenMP
® Physics-Based Preconditioner for the Reduced-MHD (model199)
= Add more physics (model303)
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Thanks!




