

Understanding brain micro-structure using diffusion magnetic resonance imaging (dMRI)

Jing-Rebecca Li Equipe DEFI CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique (INRIA) Saclay, France

DeFI

Houssem Haddar Simona Schiavi (current PhD) Gabrielle Fournet (current PhD) Dang Van Nguyen (former PhD) Julien Coatleven (former Post-doc) Fabien Caubet (former Post-doc)

Denis Le Bihan Cyril Poupon Luisa Ciobanu Khieu Van Nguyen (current PhD) Hang Tuan Nguyen (former PhD)

Timeline of our work on brain diffusion MRI

DMRI for tissue widely used 1990/2000-present, simple models

2008-2010 Formulate the mathematical problem for tissue (neurons and other cells)

2010-present Full-scale simulation and reduced model of dMRI signal due to tissue

Intra-voxel incoherent motion (IVIM) DMRI for micro-vessels started to be used 2000/2010

2013-present IVIM experiments to characterize brain micro-vessels

2015 Simulation and modeling of dMRI signal due to micro-vessels

Outline

- 1. Brain micro-structure is complex
- 2. MRI using "diffusion encoding" to "see" micro-structure
- 3. DMRI signal due to tissue (neurons+other cells)
- 4. DMRI signal due to micro-vessels

Large-scale Electron Micrograph

Pink: blood vessels

Yellow: nucleoli, oligodendrocyte nuclei, and myelin

Aqua: cell bodies and dendrites.

Scale bars: a, b, 100 μ m; c–e, 10 μ m; f, 1 μ m.

Bock et al. Nature 471, 177-182 (2011)

Magnetic resonance imaging (MRI)

Non-invasive, in-vivo

Spatial resolution: One voxel = O(1 mm) Much bigger than micro-structure MRI signal: water proton magnetization over a volume called a voxel.

To give image contrast, magnetization is weighted by some quantity of the local tissue environment.

Contrast: (tissue structure)

- 1. Spin (water) density
- 2. Relaxation (T1,T2,T2*)
- 3. Water displacement (diffusion) in each voxel

MRI contrasts Gray: cortical surface. Teal: fMRI activations Red: arteries in red Bright green: tumor

Yellow: white matter fiber

Diffusion Tensor and Functional MRI Fusion with Anatomical MRI for Image-Guided Neurosurgery. Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention -MICCAI'03.

Diffusion MRI

Normal axon

Disintegration of myelin

Disruption of axon function

Jonas: Mosby's Dictionary of Complementary and Alternative Medicine. (c) 2005, Elsevier. Diffusion MRI can measure average incoherent displacement of water in a voxel during 10s of milliseconds

Displacement of water can tell us about cellular structure

Understanding of biomechanics of cells, structure of brain

Potential clinical value

 Structure change in diseases

- Standard MRI: T2 relaxation (T2 contrast) at different spatial positions of brain
- In <u>diffusion</u> MRI (recently developed) magnetization is weighted by water displacement due to Brownian motion over 10s of ms (called measured diffusion time).
- Water displacement depends on local cell environment, hindered by cell membranes.
- Right: T2 contrast does not show dendrite beading hours after stroke, diffusion weighted image (DWI) does.

DMRI measures **incoherent water motion** during "diffusion time" between 10-40ms.

Root mean squared displacement: 6-13 µm

Voxel : 2mm x 2mm x 2 mm.

Goal: quantify dMRI contrast in terms of tissue micro-structure

This problem difficult because:

- Dendrites (trees) and extra-cellular (EC) space (complement of <u>densely</u> <u>packed</u> dendrites) are <u>anisotropic</u>, <u>numerically lower dimensional</u> (dendrites 1 dim, EC 2 dim).
- 2. Multiple scales (5 orders of magnitude difference).

Extra-cellular			
space thickness	Dendrite radius	Soma diameter	DMRI voxel
10-30nm	0.5-0.9 μm	1-10µm	2mm
	·	•	

3. Cell membranes are permeable to water. Cells must be coupled together.

Simple (original) model of dMRI Brain: 70 percent water Brownian motion of water molecules

Mean-squared displacement Can be obtained by dMRI

$$u(\vec{x}, t, |\vec{x}_0) = \frac{e^{-\frac{\left\|\vec{x} - \vec{x}_0\right\|^2}{4\pi Dt}}}{(4\pi Dt)^{\frac{d}{2}}}$$

$$MSD = \int u(\vec{x}, t, |\vec{x}_0) (\vec{x} - \vec{x}_0)^2 dx = 2dDt$$

How diffusion MRI assigns contrast to displacement

$$u(\mathbf{x}, t, |\mathbf{x}_{0}) = \frac{e^{-\frac{||\mathbf{x}-\mathbf{x}_{0}||^{2}}{4Dt}}}{(4\pi Dt)^{\frac{3}{2}}}$$

$$S(b) = \int_{\mathbf{x}\in V} \int_{\mathbf{x}_{0}\in V} u(\mathbf{x}, \Delta + \delta |\mathbf{x}_{0}) e^{i\gamma\delta \mathbf{g}\cdot(\mathbf{x}(\Delta+\delta)-\mathbf{x}(0))} d\mathbf{x} d\mathbf{x}_{0}$$
Experimental parameters
$$g \Delta, \delta \text{ can be varied}$$

$$ADC \equiv -\frac{d}{db} \log(S(b)):$$

$$dapparent diffusion coefficient''$$

$$u(\mathbf{x}, \Delta + \delta |\mathbf{x}_{0}) e^{i\gamma\delta \mathbf{g}\cdot(\mathbf{x}(\Delta+\delta)-\mathbf{x}(0))} d\mathbf{x} d\mathbf{x}_{0}$$

$$= e^{-D\gamma^{2}\delta^{2}||\mathbf{g}||^{2}(\Delta-\frac{\delta}{3})}$$

$$b(\mathbf{g}, \Delta, \delta) \equiv \gamma^{2}\delta^{2}||\mathbf{g}||^{2}(\Delta-\frac{\delta}{3}),$$

$$MSD/(2\Delta) = ADC$$
Brain gray matter: ADC around 10⁻³ mm²/s Root MSD: 6-13 µm

Fitted at every voxel

Diffusion is not Gaussian in biological tissues (In each voxel) $\frac{S}{d} \neq e^{-(ADC)b}$

 S_0

Human visual cortex (Le Bihan et al. PNAS 2006).

Log plot not a straight line.

Simple model is "wrong"

Physicists try a different simple model

$$\frac{S}{S_0} = f_{fast}e^{-D_{fast}b} + f_{slow}e^{-D_{slow}b}.$$

$$f_{fast} = 65.9\%, f_{slow} = 34.1\%$$

 $D_{fast} = 1.39 \ 10^{-3} \ mm^{2}/s,$ $D_{slow} = 3.25 \ 10^{-4} \ mm^{2}/s$

 Ω^i , D^i

Reference model: Bloch-Torrey PDE

$$\frac{\partial M^{j}(\mathbf{x},t|\mathbf{g})}{\partial t} = i \gamma f(t)(\mathbf{g} \cdot \mathbf{x}) M^{j}(\mathbf{x},t|\mathbf{g}) + \nabla \cdot \left(D^{j} \nabla M^{j}(\mathbf{x},t|\mathbf{g}) \right), \mathbf{x} \in \Omega^{j} \ .$$
PDE with interface condition between cells and the extra-cellular space
$$\frac{D^{j} \nabla M^{j}(\mathbf{x},t|\mathbf{g}) \cdot \mathbf{n}^{j}(\mathbf{x}) = -D^{k} \nabla M^{k}(\mathbf{x},t|\mathbf{g}) \cdot \mathbf{n}^{k}(\mathbf{x}), \quad \mathbf{x} \in \Gamma^{jk},$$

$$D^{j} \nabla M^{j}(\mathbf{x},t|\mathbf{g}) \cdot \mathbf{n}^{j}(\mathbf{x}) = \kappa \left(M^{j}(\mathbf{x},t,|\mathbf{g}) - M^{k}(\mathbf{x},t|\mathbf{g}) \right), \quad \mathbf{x} \in \Gamma^{jk},$$

$$S(\mathbf{g}, T_{end}) = \sum_{j} \int_{\mathbf{x} \in \Omega^{j}} M^{j}(\mathbf{x},t|\mathbf{g}) d\mathbf{x} \approx \exp(-ADC \ b_{experi}).$$

$$M: \text{ magnetization } g: \text{ magnetic field gradient } T_{end}: \text{ diffusion time}$$

From signal, want to quantify cell geometry and membrane permeability.

 Ω^e, D^e

κ^{ie}

1. Numerical simulation of diffusion MRI signals using an adaptive timestepping method, J.-R. Li, D. Calhoun, C. Poupon, D. Le Bihan. Physics in Medicine and Biology, 2013.

2. A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging, D.V. Nguyen, J.R. Li, D. Grebenkov, D. Le Bihan, Journal of Computational Physics, 2014.

On-going work (2013 \rightarrow) Mathematical analysis

2012: Obtained macroscopic (ODE) model using homogenization Valid in long diffusion time regime.

More relevant to brain dMRI: 2013: Look for macroscopic model valid at <u>wide range of diffusion times</u>

PhD Simona Schiavi 2013-present (co-directed w. H. Haddar)

Timeline of our work on brain diffusion MRI

(DMRI for micro-vessels started to be used 2000/2010, simple models)

Intra-voxel incoherent motion (IVIM)

2013-present DMRI experiments to characterize brain micro-vessels

2015 Simulation and modeling of dMRI signal due to micro-vessels

The cerebro-vasculature

Dragos A. Nita Neurology 2012;79:e10

The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow

Blinder et al. Nature Penetrating Neuroscience 2013

Jingpeng Wu, Yong He, Zhongqin Yang, Congdi Guo, Qingming Luo, Wei Zhou, Shangbin Chen, Anan Li, Benyi Xiong, Tao Jiang, Hui Gong NeuroImage 2014

multislice,Sperf fstar >= 30 percent '10 multislice,Sperf dstar >= 0.2 mm ²/s vin -50 -70 - 80

Simple model: suppose there are two pools of blood: a « slow » pool (0.2 < v < 4.2 mm/s)a « fast » pool (4.2 < v < 15 mm/s).

Numerical simulations of microvascular networks

Step 1

Create a microvascular network consisting of capillary segments: (length L, direction \vec{e} and blood flow velocity v)

Step 2

Calculate the IVIM signal coming from this network using:

$$\frac{S}{S_0} = e^{-i\varphi} \ \varphi = \gamma \int_0^{TE} \vec{x}(t) \cdot \vec{G}(t) dt$$

- φ phase of the MRI signal
- $\vec{x}(t)$ spin position vector
- $\vec{G}(t)$ encoding gradient vector

Step 3

Generate simulated signals for Gaussian distributions of lengths (L = 50 ± 50 µm [1]) and velocities ($v \pm \sigma_v$), with v varying between 0.2 and 15 mm/s and σ_v between 0.05 and 1

Two pools of blood:

Interpretation of data

$$F_{IVIM} = f_{slow}e^{-bD_{slow}^*} + f_{fast}e^{-bD_{fast}^*}$$

- ⇒A « fast » pool: flow within vessels with significant sizes relative to the voxel size
- $\Rightarrow v_{fast} = 7.92 \pm 3.95$ mm/s, coherent with medium size vessels such as penetrating arterioles or venules [1]
- ⇒A « slow » pool: flow in small vessels and capillaries (classical IVIM model) ⇒ D^*_{slow} 15 times smaller than D^*_{fast} ⇒ v_{slow} = 1.72 ± 0.30 mm/s, coherent with capillary bed vessels [2]

arterioles Deep microvessels

Credit: Nishimura N., 2007, PNAS

[1] Linninger A. A., 2013, Ann Biomed Eng, [2] Unekawa M., 2010, Brain Res

Surface arterioles

Penetrating

Need more sophisticated simulations to explain data

In the brain cortex 5 percent blood volume.

Blood contains red blood cells (50 percent volume) and plasma (50 percent volume)

Red blood cells contain 70 percent water Plasma is 92 percent water.

Ready for some fluids simulations to get average blood water displacement during 10s of milliseconds!

Thank you! (Welcome any suggestions and ideas)