#### DE LA RECHERCHE À L'INDUSTRIE



# Evaluating kernels on Xeon Phi to accelerate Gysela application

J. Bigot, M. Haefele, G. Latu

#### CEA/DSM/IRFM & Maison de la Simulation

and coworkers: T. Cartier-Michaud, G. Dif-Pradalier, C. Ehrlacher, D. Estève, X. Garbet, P. Ghendrih, V. Grandgirard, C. Norscini, C. Passeron, F. Rozar, Y. Sarazin & INTEL Exascale lab & IPP+HLST Garching





www.cea.fr

Gysela on Xeon Phi 🐽 04/08/15





#### • Porting on Phi

- Initial Setup
- Micro-benchmarks
- Interpolation kernels
- 4D advections in Gys-protoapp





- Main features in GYSELA (Gyrokinetic Semi-Lagragian code):
  - Modelling of Tokamak plasma (targeting ITER)
  - Describing turbulence and transport (ITG instabilities) turbulence governs/limits plasma performance
  - Main equations: Vlasov 5D, Poisson 3D (quasineutrality) gyrokinetic setting (5D = 3D space + 2D velocity)
  - Heat & vorticity sources (mimics heating system)
  - Collisional operator
  - Modelling fast particles
  - Adiabatic electron response





Numerical scheme: overview



• Main unknown:  $\overline{f}^n(r, \theta, \varphi, v_{\parallel}, \mu)$ 

**Input** : *Physics* parameters,  $\overline{f}^0$ **Output** : *Diagnostics* 



for time step  $n \ge 0$  do Integrals:  $\mathcal{N}_{i}^{n}(r, \theta, \varphi) = \int \int \bar{f}^{n} B(r, \theta) \mathcal{J}(k_{\perp}\rho_{C}) dv_{\parallel} d\mu$ ; Push fields (Poisson Eq.):  $\mathcal{N}_{i}^{n}(r, \theta, \varphi) \to \Phi^{n}(r, \theta, \varphi)$ ; Diagnostics for time step n; Push particles (Vlasov Eq. + other terms):  $\Phi^{n}(r, \theta, \varphi), \bar{f}^{n} \to \bar{f}^{n+1}$ ;

### Algorithm 1: Overall simplified Gysela algorithm

Fortran 90 code, hybrid MPI+OpenMP



Simplified view of gyrokinetic Vlasov equation (dir. splitting):

$$\frac{\partial \bar{f}}{\partial t} + \frac{dr}{dt}\frac{\partial \bar{f}}{\partial r} + \frac{d\theta}{dt}\frac{\partial \bar{f}}{\partial \theta} + \frac{d\varphi}{dt}\frac{\partial \bar{f}}{\partial \varphi} + \frac{dv_{\parallel}}{dt}\frac{\partial \bar{f}}{\partial v_{\parallel}} = 0 \text{ (collisionless)}$$

Solved through advections, Semi-Lagrangian scheme:

$$\partial_{t}\overline{f} + v_{\parallel}\partial_{\varphi}\overline{f} = 0 \quad (\hat{\varphi} \text{ operator}) \partial_{t}\overline{f} + \dot{v}_{\parallel}\partial_{v_{\parallel}}\overline{f} = 0 \quad (\hat{v}_{\parallel} \text{ operator}) \partial_{t}\overline{f} + \overrightarrow{v_{GC}} \cdot \overrightarrow{\nabla}_{\perp}\overline{f} = 0 \quad (\hat{r}\theta \text{ operator})$$

- Vlasov solver (explicit scheme) is composed of:
  - Successive directional splittings (advection steps)
  - Main cost of the application: interpolations (cubic splines)







- *f* conserved along characteristics
- Find the origin of the characteristics ending at the grid points (spatial grid)
- Interpolate value at origin X\* from known grid values: Cubic spline interpolation

3 steps for one advection:

- compute splines coefficients,
- compute feet (equations of motion),
- interpolate values.

G. Latu



#### for time step $n \ge 0$ do

Integrals, Poisson, Diagnostics 1D Advection in  $v_{\parallel}$  ( $\forall(\mu, r, \theta) = [local], \forall(\varphi, v_{\parallel}) = [*]$ ); 1D Advection in  $\varphi$  ( $\forall(\mu, r, \theta) = [local], \forall(\varphi, v_{\parallel}) = [*]$ ); Transposition of  $\overline{f}$ ; 2D Advection in ( $r, \theta$ ) ( $\forall(\mu, \varphi, v_{\parallel}) = [local], \forall(r, \theta) = [*]$ ); Transposition of  $\overline{f}$ ; 1D Advection in  $\varphi$  ( $\forall(\mu, r, \theta) = [local], \forall(\varphi, v_{\parallel}) = [*]$ ); 1D Advection in  $v_{\parallel}$  ( $\forall(\mu, r, \theta) = [local], \forall(\varphi, v_{\parallel}) = [*]$ );

Algorithm 2: Parallel algo.: 2 domain decompositions

► no CFL for advections, comm. for transposition:  $\Theta(N_r N_\theta N_\varphi N_{\nu_\parallel} N_\mu)$ 

G. Latu

Gysela on Xeon Phi •• 04/08/15



 Good result: 78% relative efficiency on 64k cores (91% in Vlasov part)





- Fusion applications (and our institute CEA/DSM/IRFM) requires computing power for forthcoming years
- Supercomputers tends to provide more and more accelerators

   candidates for next generation of parallel architectures
  - $\rightarrow$  INTEL **Xeon Phi** and **GPGPUs** (AMD + Nvidia)







### • Porting on Phi

- Initial Setup
- Micro-benchmarks
- Interpolation kernels
- 4D advections in Gys-protoapp





### • Porting on Phi

### - Initial Setup

- Micro-benchmarks
- Interpolation kernels
- 4D advections in Gys-protoapp





#### Testbed: Helios machine (Fusion community, Japan)

| Draaaaar                            | Intel Xeon           | Intel Xeon Phi       |  |  |
|-------------------------------------|----------------------|----------------------|--|--|
| Processor                           | Sandy Bridge E5      | 5110P                |  |  |
| Clock frequency                     | 2.1 - 2.8 GHz        | 1.05 - 1.238 GHz     |  |  |
| Number of cores                     | 8                    | 60                   |  |  |
| Available memory                    | 32 GB                | 8 GB                 |  |  |
| Peak performance (double precision) | 173 GFlops/s         | 1011 GFlops/s        |  |  |
| Sustainable memory bandwidth        | 40 GB/s              | 160 GB/s             |  |  |
| Instruction execution model         | out of order         | in order             |  |  |
| Simultaneous Multi Threading        | 2-way                | 4-way                |  |  |
| Instruction set                     | x86-64 + 256bits-AVX | x86-64 + 512bits-SSE |  |  |

- 2 programming models for Xeon Phi:
  - offload mode:
    - Phi as an accelerator
    - #pragma based

- native mode:
  - Phi as a linux node
  - classical MPI + OpenMP

G. Latu



#### Xeon Phi porting Initial setup/approach



- Testbed (Helios machine Fusion community, Japan)
  - Xeon Phi copro (5110P), 60 cores, 8GB mem., clock 1.05 Ghz
  - Sandy B. node (E5-2680), 2×8 cores, 64GB mem., clock 2.7 Ghz
- Initial assumptions on Xeon Phi
  - Easy to port code (x86 arch.)
  - Support OpenMP/MPI paradigm
  - How to get good performance ?



- ► Raw performance (×3 CPU peak, ×2 mem. BW)
  - SB: CPU peak 342 GFLOPS, mem bandwidth 70 GB/s (Stream triad)
  - Phi: CPU peak 1011 GFLOPS, mem bandwidth 130 GB/s (Stream triad)
- Approach in 4 steps:
  - 1. Direct port of a subset of Gysela: poor performance ©
  - 2. Memory and MPI benchmarks: inhomogeneous perf.
  - 3. Fallback: tune interpol. kernels (needed in Gysela), no MPI
  - 4. Try to put back a performant interpol. kernel into Gysela





### • Porting on Phi

- Initial Setup
- Micro-benchmarks
- Interpolation kernels
- 4D advections in Gys-protoapp

# Memory Bandwidth



Memory bandwidth for triad test case





- Bandwidth on Xeon Phi
  - Up to 175 GB/s on the Xeon Phi with one thread/core
  - But 144 GB/s with 4 threads/core
  - With 2 or 3 threads/core, thread *affinity/pinning* does matter
  - x4 in mem. bandwidth compared to 1-socket S. Bridge
  - x2 in mem. bandwidth compared to 2-socket S. Bridge
- Latency Xeon Phi versus Sandy Bridge
  - Similar L1 latencies
  - x4-x20 increase otherwise on Xeon Phi (L2, L3, memory)
    - $\rightarrow$  Cache reuse implementations have to target L1, L2
    - $\rightarrow$  Requires more efforts from the developer
- Network performance (MPI communications)
  - Bandwidth decreased with Xeon Phi vs Sandy B.
  - Latency increased with Xeon Phi vs Sandy B.





### • Porting on Phi

- Initial Setup
- Micro-benchmarks
- Interpolation kernels
- 4D advections in Gys-protoapp





- Parallelization strategy (no MPI) :
  - native mode choosen
    - because offload is slower (our tests on several configs)
    - avoid overhead due to Host-to-Phi data transfers (offload)
  - outer loops: OpenMP
  - inner block: loop vectorization through SIMD directives

Code example: 1D advec - lagrange order 3 - on 4D data

```
#pragma omp parallel for collapse(3)
    for (x1=0: x1<Nx1: x1++) {
2
 3
    for (x2=0; x2<Nx2; x2++) {
 4
      for (x3=0: x3<Nx3: x3++) {
  #pragma vector nontemporal (f1)
6
  #pragma vector always
 7
       for (x4=0; x4<Nx4; x4++) {
        access_f(f1, x4, x3, x2, x1) = // OUTPUT data f1
8
          coef1 * access_f(f0, x4-1, x3, x2, x1) + // INPUT data f0
9
10
          coef2 * access_f(f0,x4 ,x3,x2,x1) +
          coef3 * access_f(f0,x4+1,x3,x2,x1) +
11
12
          coef4 * access_f(f0,x4+2,x3,x2,x1);
13
        } } }
```



#### Vectorization through 512-bit MIC intrinsics only C language, Fortran is not accessible

#### Code example: 1D advec - lagrange order 3 - on 4D data

```
#pragma omp parallel for collapse(3)
    for (x1=0; x1<Nx1; x1++)
 3
    for (x2=0; x2<Nx2; x2++)
 4
      for (x3=0; x3<Nx3; x3++) {
       for (x4=0: x4<Nx4: x4+=8)
 6
         ptread = \&(acces_f(f0, x4, x3, x2, x1));
 7
         // read input data
8
         tmpr2 = _mm512_load_pd (ptread);
9
         tmpr1 = _mm512_loadunpacklo_pd(tmpr1, ptread -1);
10
         tmpr1 = _mm512_loadunpackhi_pd(tmpr1, ptread-1+8);
         tmpr3 = _mm512_loadunpacklo_pd(tmpr3, ptread+1);
11
         tmpr3 = ...mm512_loadunpackhi_pd(tmpr3. ptread+1+8);
12
         tmpr4 = ...mm512_loadunpacklo_pd(tmpr4, ptread+2);
13
         tmpr4 = _mm512_loadunpackhi_pd(tmpr4, ptread+2+8);
14
15
         // 1+2+2+2=7 flop per loop iteration
16
         tmpw = _mm512_mul_pd(tmpr1, coeff1);
         tmpw = _mm512_fmadd_pd(tmpr2,coeff2,tmpw);
17
         tmpw = _mm512_fmadd_pd(tmpr3,coeff3,tmpw);
18
         tmpw = _mm512_fmadd_pd(tmpr4.coeff4.tmpw);
19
20
         // write output data
21
        _mm512_store_pd (&(access_f(f1,x4,x3,x2,x1)), tmpw);
22
```





#### Code example: 2D advec - lagrange order 3 - on 4D data

| (#pragma omp parallel for collapse(3)                       |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------|--|--|--|--|--|--|--|--|
| <pre>for (x1=0; x1<nx1; pre="" x1++)="" {<=""></nx1;></pre> |  |  |  |  |  |  |  |  |
| for (x2=0; x2 <nx2; td="" x2++)="" {<=""></nx2;>            |  |  |  |  |  |  |  |  |
| for (x3=0; x3 <nx3; td="" x3++)="" {<=""></nx3;>            |  |  |  |  |  |  |  |  |
| #pragma vector nontemporal (f1)                             |  |  |  |  |  |  |  |  |
| <b>#pragma</b> vector always                                |  |  |  |  |  |  |  |  |
| for (x4=0; x4 <nx4; td="" x4++)="" {<=""></nx4;>            |  |  |  |  |  |  |  |  |
| access_f(f1,x4,x3,x2,x1) =                                  |  |  |  |  |  |  |  |  |
| coefb1 * (coefa1 * access_f(f0,x4-1,x3-1,x2,x1) +           |  |  |  |  |  |  |  |  |
| coefa2 * access_f(f0,x4 ,x3-1,x2,x1) +                      |  |  |  |  |  |  |  |  |
| coefa3 * access_f(f0,x4+1,x3-1,x2,x1) +                     |  |  |  |  |  |  |  |  |
| coefa4 * access_f(f0,x4+2,x3-1,x2,x1) ) +                   |  |  |  |  |  |  |  |  |
| coefb2 * (coefa1 * access_f(f0,x4-1,x3 ,x2,x1) +            |  |  |  |  |  |  |  |  |
| coefa2 * access_f(f0,x4 ,x3 ,x2,x1) +                       |  |  |  |  |  |  |  |  |
| coefa3 * access_f(f0,x4+1,x3,x2,x1) +                       |  |  |  |  |  |  |  |  |
| coefa4 * access_f(f0,x4+2,x3 ,x2,x1) ) +                    |  |  |  |  |  |  |  |  |
| coefb3 * (coefa1 * access_f(f0,x4-1,x3+1,x2,x1) +           |  |  |  |  |  |  |  |  |
| coefa2 * access_f(f0,x4 ,x3+1,x2,x1) +                      |  |  |  |  |  |  |  |  |
| coefa3 * access_f(f0,x4+1,x3+1,x2,x1) +                     |  |  |  |  |  |  |  |  |
| coefa4 * access_f(f0,x4+2,x3+1,x2,x1) ) +                   |  |  |  |  |  |  |  |  |
| $coefb4 * (coefa1 * access_f(f0, x4-1, x3+2, x2, x1) +$     |  |  |  |  |  |  |  |  |
| coefa2 * access_f(f0,x4 ,x3+2,x2,x1) +                      |  |  |  |  |  |  |  |  |
| coefa3 * access_f(f0,x4+1,x3+2,x2,x1) +                     |  |  |  |  |  |  |  |  |
| coefa4 * access_f(f0,x4+2,x3+2,x2,x1) )                     |  |  |  |  |  |  |  |  |
|                                                             |  |  |  |  |  |  |  |  |
|                                                             |  |  |  |  |  |  |  |  |



- Mem bound
- 1. 1D advection (constant/small displacement) 1D interp lagrange 3
  - Phi perf: 46 GFLOPS (5% peek), BW: 106 GB/s (81% stream)
  - SB perf: 25 GFLOPS (7% peek), BW: 57 GB/s (81% stream)
- 2. 2D advection (constant/small displacement) 2D interp lagrange 3
  - Phi perf: 250 GFLOPS (25% peek), BW: 111 GB/s (85% stream)
  - SB perf: 134 GFLOPS (39% peek), BW: 59 GB/s (84% stream)

A factor  $\times 2$  is obtained on Phi compared to one full SB node match expected behaviour  $\odot$ 

Performance on Phi is varying much (10% is common) with domain size, and from one run to the other





1. 3D advection (constant displacement) 3D interp lagrange 3, 4D data

- Phi perf: 228 GFLOPS (23% peek), BW: 25 GB/s (19% stream)
- SB perf: 156 GFLOPS (46% peek), BW: 17 GB/s (25% stream)
- 2. 4D advection (constant displacement) 4D interp lagrange 3, 4D data
  - Phi perf: 160 GFLOPS (16% peek), BW: 4.3 GB/s (3.3% stream)
  - SB perf: 145 GFLOPS (42% peek), BW: 3.9 GB/s (5.6% stream)
- Hard/long to get good perf. on complex kernels on Phi ©
- 3D stencil easier to optimize than 4D stencil (complex memory pattern)
- Speedup up to ×2 in best cases (Phi versus one SB node) ☺
- Small modifications OR changing compiler version
- $\rightarrow$  bad vectorization by the compiler on Phi  $\rightarrow$  slowdown by  $\times 4$   $\otimes$





- Prefetch (load data in advance) accelerates computation
  - $\rightarrow$  especially on memory-bound kernels save 20% exec time on 1d/2d kernels
- Cache blocking (loop tiling) is crucial
  - $\rightarrow$  especially on compute-bound kernels
  - $\rightarrow$  save exec time on 3d kernels (50% reduction on exec. time)
- Tune aligned data, avoid cache trashing → save 20% exec time on 1d/2d kernels
- Comparing similar C and Fortran kernels
  - $\rightarrow$  not clear tendency

give better or worse exec. time depending on the kernel





- Internal compiler optim. impact perf. (much more on Phi than on SB) (2)
  - $\rightarrow$  compiler does not give comprehensive feedbacks
  - $\rightarrow$  looking at **generated assembly** code is painful but helpful
  - $\rightarrow$  splitting the body of loop into multiple loops lead to effective speedups
- Writing "assembly" version may speedup computation (C code only)
  - ightarrow 512-bit intrinsics help especially on compute-bound kernels  $\odot$
- Phi works well with 170 up to 240 well-pinned threads versus 16 threads for SB ②





### • Porting on Phi

- Initial Setup
- Micro-benchmarks
- Interpolation kernels
- 4D advections in Gys-protoapp





- Goal: feasibility of porting Gysela on Phi & rough estimate of the performance
- Approach: design a simplified version of Gysela, named Gys-protoapp

#### Gys-protoapp code

- Remove non-essential parts of the Gysela code
  - diagnostics, alternative implementations, collisions, sources (keep the smallest set of numerical kernels Vlasov+Poisson)
  - ▶ 50k loc (Gysela)  $\rightarrow$  14k loc (proto-app)
- Remove a lot of MPI communication schemes
  - Restrict a single µ value (4D problem instead of 5D)
  - Single node execution (works with mpirun -np 1)
  - A simulation  $N_r = 128$ ,  $N_{\theta} = 256$ ,  $N_{\varphi} = 32$ ,  $N_{v_{\parallel}} = 64$ : 10 hours on one SB node
- Add a new Vlasov solver (4D advection algorithm)
  - Computation intensive kernel, well-suited for Xeon Phi





- Usual Vlasov solver uses directional splitting (*i.e.* 1D and 2D advection operators - mem. bound): (v̂<sub>||</sub>/2, φ̂/2, rθ̂, φ̂/2, v̂<sub>||</sub>/2)
- Design a new 4D advection approach (compute bound):

 $\eta(r = *, \theta = *, \varphi = *, v_{\parallel} = *) \leftarrow \text{ compute spline coeff. from the}$ 4D function  $f^n(r = *, \theta = *, \varphi = *, v_{\parallel} = *);$ 

for All grid points  $(r_i, \theta_j, \varphi_k, v_{\parallel l})$  do

 $(r_i, \theta_j, \varphi_k, v_{\parallel l})^* \leftarrow \text{ foot of characteristic that ends at } (r_i, \theta_j, \varphi_k, v_{\parallel l}); \\ f^{n+1}(r_i, \theta_j, \varphi_k, v_{\parallel l}) \leftarrow \text{ interpolate } f^n \text{ at location } (r_i, \theta_j, \varphi_k, v_{\parallel l})^* \text{ using } \eta;$ 

#### Algorithm 3: 4D semi-Lagrangian scheme





# Three main kernels (rough profiling given):

- 4D spline interpolator (51 % of exec. time)
- feet of characteristics
- spline coeff computation (10 %)

- 4D interpolator vectorization opportunities:
  - 4D tensor product with stencil of size 4, per grid point: 595 FLOP, read 1 float, write 1 float

(36 %)

very high computational intensity





Parallelization/Optimization strategy (no MPI) :

- Phi native mode, OpenMP
- Cache friendly: loop blocking (2 levels in  $v_{\parallel}$  and  $\varphi$ )
- Reuse feet stored into L2 cache (temporal locality)
- Code structure of spline 4D advection :

```
do ith_blk=0, nb_blk_th ! loop blocking in theta
   do ivpar=0, Nvpar
2
     call feet_computations_with_openmp(...)
 3
   $ SOMP PARALLEL DO COLLAPSE(2)
 4
      do iphi=0, iNphi
 5
        do ith=ith_blk*th_bsize,(ith_blk+1)*th_bsize-1
6
 7
          call interpolations_vectorized_kernel(...);
8
        end do
9
      end do
    end do
10
11
  end do
```

#### Parallelizing spline 4D advection - SIMD part



```
1 #define R BSIZE 8
 2 subroutine interpolations_vectorized_kernel(..., spline coeff.)
 3
  do ir_outer=0, Nr, R_BSIZE
      ! retrieve grid cell containing the foot, compute spline basis
 4
   Idir$ simd
     do ir inner=0.R BSIZE-1
 6
        ir=ir outer+ir inner
7
        r_foot = ...; th_foot = ...; vpar_foot = ...; phi_foot = ...;
8
9
        ir_star = map_on_grid(r_foot)
10
     ith_star = map_on_grid(th_foot)
11
     ivpar_star = map_on_grid(vpar_foot)
      iphi_star = map_on_grid(phi_foot)
12
        sbasis(1:16) = compute_spline_basis(*_star,*_foot)
13
14
     end do
15
      ! interpolate in combining spline basis and spline coeff.
     psum(0:R_BSIZE-1) = 0.
16
17
     do <nest_of_four_loops>
   !dir$ simd
18
19
        do ir_inner=0.R_BSIZE-1
20
            coeff = load spline coeff. located at *_star (with unit stride)
            psum(ir_inner) = psum(ir_inner) + coeff(...) * sbasis(...)
21
22
        end do
23
     end do
24
      f1(ir_outer:ir_outer+R_BSIZE-1,ith.iphi.ivpar)=psum(0:R_BSIZE-1)
25
   end do
26 end subroutine interpolations_vectorized_kernel
```





- ► 4D advection (variable displacement) 4D cubic spline, 4D data  $N_r = 128, N_{\theta} = 128, N_{\varphi} = 128, N_{v_{\parallel}} = 64$ 
  - Phi perf: 80 GFLOPS (7% peek), BW: 2.7 GB/s (2.% stream)
  - SB perf: 33 GFLOPS (9% peek), BW: 1.1 GB/s (1.6% stream)
- Variable displacements → unpredictable mem. access (prefetch pb)
- Reduced performance compare to previous kernels
- $\rightarrow$  variable displacements: costs induced by integer computations, memory indirections
- $\rightarrow$  memory accesses cannot always be well aligned
- Sensivity to intel compiler version
- $\rightarrow$  SIMD instructions employed and optimizations performed are varying
- Quite a long way to get this optimized version ...





Put back the 4D kernel in Gys-protoapp on Xeon Phi:

From first port on Phi, to optim. version, factor ×14 on exec. time ©

 $N_r = 128, N_{\theta} = 128, N_{\varphi} = 32, N_{v_{\parallel}} = 64$ 

- ightarrow First port (one call to Vlasov solver): 45 s
- $\rightarrow$  Optim. version ~ (one call to Vlasov solver): 3.2 s
- Execution time: ×2 larger on Phi than on SB (16 cores) ③
  - $\rightarrow$  Amdhal's law: others computations should be optimized also  $\ldots$ 
    - 1) computation of the feet characteristics
    - 2) spline coeff. computations
- Optimizations was useful for running on SB ③
  - $\rightarrow$  Overall execution time: reduced by 30% up to 45% on typical cases
  - $\rightarrow$  vectorization directives have some interesting collateral effect
  - $\rightarrow$  Tuned 4D advection is competitive compared to classical Strang splitting





- Achieving good performance on Phi:
  - not impossible ©, but harder than on Sandy Bridge
  - successful on simple interpolation kernel ③
  - needs: vectorization, fine grain parallelism, cache, prefetch
  - interact with the compiler (look at the generated assembly code)
  - easier if only one small kernel needs to be optimized
- Gys-protoapp (reduced Gysela application):
  - Xeon Phi still 2× slower than Sandy Bridge (16 cores) ©
  - Sandy Bridge perf. of Gys-protoapp improved (30%-45%) ☺

Paper in CEMRACS'14 proceedings, accessible at

http://arxiv.org/abs/1503.04645

Acknowledgments: T. Guillet (Intel Exascale lab) for fruitful discussions,

IFERC-CSC, Rokkasho, Japan (Helios supercomputer),

RZG, Garching, Germany (Mick machine)

G. Latu





Algorithm 4: Advection in variable  $\varphi$  on  $\overline{f}^{\star}$ 

#### Ping pong benchmark from the Intel MPI Benchmark (IMB)

|       | CPU1 | 0.69  |      |      | ] [   | CPU1 | 5029  |      |      |
|-------|------|-------|------|------|-------|------|-------|------|------|
| Host0 | MIC0 | 4.90  | 2.73 |      | Host0 | MIC0 | 456   | 2016 |      |
|       | MIC1 | 4.31  | 7.56 | 3.12 |       | MIC1 | 1609  | 416  | 2004 |
|       | CPU1 | 2.20  |      |      |       | CPU1 | 5729  |      |      |
| Host1 | MIC0 | 4.71  | 9.04 |      | Host1 | MIC0 | 418   | 273  |      |
|       | MIC1 | 4.66  | 7.93 | 6.92 |       | MIC1 | 1608  | 418  | 969  |
|       |      | CPU1  | MIC0 | MIC1 |       |      | CPU1  | MIC0 | MIC1 |
|       |      | Host0 |      |      | ]     |      | Host0 |      |      |

Latencies ( $\mu$ s)

Bandwidth (MB/s)

- Similar results on supermic (LRZ, Garching, Germany), Eurora (Cineca, Italy), Robin (Bull R&D, Grenoble, France)
- In green: Typical performance for Infiniband
- In red: Low and non homogeneous network performance