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Stiff hyperbolic systems

� Stiff hyperbolic system with source terms:

∂tU +
1

ε
∂xF (U) +

1

ε
∂yG (U) =

1

ε
S(U)− σ

ε2
R(U), U ∈ Rn

with ε ∈ ]0, 1] et σ > 0.

� Subset of solutions given by the balance between the source terms and the convective

part:

� Diffusion solutions for ε→ 0 and S(U) = 0:

∂tV− div (K (∇V, σ)) = 0, V ∈ KerR.

� Steady states for σ = 0 et ε→ 0 :

∂xF (U) + ∂yG (U) = S(U).

� Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative
hydrodynamic for inertial fusion (hydrodynamic + linear transport of photon).
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Well-Balanced schemes

� Discretization of physical steady states is important (Lack at rest for Shallow water
equations, hydrostatic equilibrium for astrophysical flows ..)

� Classical scheme: the physical steady states or a good discretization of the steady
states are not the equilibriums of the scheme.

� Consequence: Spurious numerical velocities larger than physical velocities for nearly or
exact uniform flows.

WB scheme: definitions

� Exact Well-Balanced scheme: is a scheme exact for continuous steady-states.

� Well-Balanced scheme: is a scheme exact for discrete steady-states at the interfaces.

� For shallow water model: in general the schemes are exact WB schemes.

� For Euler model: in general the schemes are WB schemes.
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Schémas ”Asymptotic preserving”

� P1 model: 
∂tE +

1

ε
∂xF = 0,

∂tF +
1

ε
∂xE = − σ

ε2
F ,

−→ ∂tE − ∂x

(
1

σ
∂xE

)
= 0.

ε→ 0
P0
h

P ε

h→ 0

P0

ε→ 0

h→ 0

P ε
h

Figure: AP diagram

� Consistency of Godunov-type

schemes: O(
∆x

ε
+ ∆t).

� CFL condition: ∆t(
1

∆xε
+

σ

ε2
) ≤ 1.

� Consistency of AP schemes:
O (∆x + ∆t).

� CFL condition:

∆t

(
1

∆xε + ∆x2

σ

)
≤ 1.

� AP vs non AP schemes: Important
reduction of CPU cost.

� AP schemes are obtained plugging the source term into the fluxes (WB technic).
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AP Godunov schemes
� Jin-Levermore scheme
� Principle: plug the balance law ∂xE = − σ

ε F +O(ε2) in the fluxes.

Gosse-Toscani scheme:
En+1
j −En

j

∆t +M
Fn
j+1−Fn

j−1
2ε∆x −M

En
j+1−2En

j +En
j−1

2ε∆x = 0,
Fn+1
j −Fn

j

∆t +M
En
j+1−En

j−1
2ε∆x −M

Fn
j+1−2Fn

j +Fn
j−1

2ε∆x +M σ
ε2 F

n
j = 0,

avec M = 2ε
2ε+σ∆x .

� consistency error for the

Jin-Levermore scheme:

� first equation:
O
(
∆x2 + ε∆x + ∆t

)
,

� second equation:

O
(

∆x2

ε + ∆x + ∆t
)

.

� Explicit CFL: ∆t
(

1
∆xε +

σ
ε2

)
≤ 1.

� Semi-implicit CFL: ∆t
(

1
∆xε

)
≤ 1.

� Principle of GT scheme:
JL-scheme with the source term
1
2 (Fj+ 1

2
+ Fj− 1

2
) gives the

Gosse-Toscani scheme.

� Consistency error of the
Gosse-Toscani scheme:
O (∆x + ∆t).

� Explicit CFL: ∆t
(

1
∆xε

)
≤ 1.

� Semi-implicit CFL :

∆t
(

1
∆xε+∆x2

)
≤ 1.
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2ε∆x + σ

ε2 F
n
j = 0,

with M = 2ε
2ε+σ∆x .
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Numerical example

� Validation test for AP scheme: the data are E (0, x) = G (x) with G (x) a Gaussian
F (0, x) = 0 and σ = 1, ε = 0.001.

Ap scheme Godunov scheme

Scheme L1 error CPU time
Godunov, 10000 cells 0.0366 1485m4.26s

Godunov, 500 cells 0.445 0m24.317s
AP, 500 cells 0.0001 0m15.22s
AP, 50 cells 0.0065 0m0.054s
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Why unstructured meshes ?

� Applications : coupling
between radiation and
hydrodynamic

� In some hydrodynamic codes:
Lagrangian or ALE scheme
cell-centered for
multi-material problems.

� Example of meshes obtained
using a ALE code.

� Aim: Design and analyze AP
cell-centered for linear
transport on general meshes.

−1.5×10−18 1.0×100
0

1

−1.5×10−18 1.0×100
0

1
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Schémas ”Asymptotic preserving” 2D

� Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes
(1D fluxes write in the normal direction) plugging the steady states in the fluxes.

x j

xr+1

xr−1

l jk

xr

Cell Ω j

Cell Ωk

xk

n jk

� ljk and njk the normal and length associated with the edge ∂Ωjk .

Asymptotic limit of the scheme:

| Ωj | ∂tEj (t)−
1

σ ∑
k

ljk
En
k − En

j

d(xj , xk )
= 0.

� ||P0
h − Ph || → 0 only on strong geometrical conditions.

� These AP schemes do not converge on 2D general meshes ∀ε.
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Example of unstructured meshes

Random mesh Collela mesh

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Random triangular mesh Kershaw mesh
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AP scheme for the P1 model
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Nodal scheme : linear case

� Linear case: P1 model


∂tE + 1

ε div(F) = 0,

∂tF + 1
ε∇E = − σ

ε2 F.
−→ ∂tE − div

(
1

σ
∇E

)
= 0.

Idea:
Nodal finit evolume methods for P1 model +
AP and WB method.

Nodal schemes:
The fluxes are localized at the nodes of the
mesh (for the classical scheme this is at the
edge).

Notations

where the pentagon is split into subtriangles in two different ways.
On each of these subtriangles the barycentric functions are easily
defined as P1 linear functions. By continuity it defines over the
whole pentagon two different sets of barycentric functions. It
means that barycentric functions are not intrinsic objects, even if
the volume Vj is uniquely defined in this case.

Let us define Vj > 0 the volume of the cell Xj

V j ¼
Z

bXq

detðrXxÞdX ¼
Z

bXq

det
Xnvq

r¼1

rXkq
r $ xrjðqÞ

 !
dX; ð7Þ

where bXq is of course the unique reference cell that corresponds to
Xj. This formula defines a mapping from the vertices x = (x1, . . .) to
Vj. Therefore the volume Vj of the cell can be easily defined as a
function of the cell vertices. We can write with natural notations
Vj = Vj(x). In dimension d = 3 the situation may be more complicated
in case the faces are warped, because even the volume Vj is not un-
iquely defined on the geometrical standpoint. On the contrary the
volume is well-defined through the formula (7) for a given choice
of the barycentric functions. This is why we rely on (7) in the rest
of this paper.

Definition 2. The gradient of the volume with respect to the
vertices is

Cjr ¼ rxr V j 2 Rd: ð8Þ
The expression of Cjr is easy to compute in dimension d = 2. Con-

sider the typical situation of Fig. 4. By convention the vertices are
listed counterclockwise xr%1,xr,xr+1, . . . with coordinates xr = (xr,yr).
The quantity 1

2 ðxryrþ1 % yrxrþ1Þis the oriented area of the triangle
with vertices xr, xr+1 and O = (0,0). The sum of these oriented areas
is the total area Vj ¼

P
r

1
2 ðxryrþ1 % yrxrþ1Þ. The formula (8) implies

the formula used in [10]

Cjr ¼
1
2
%yr%1 þ yrþ1

xr%1 % xrþ1

! "
: ð9Þ

Next we consider the dimension d = 3. The reference cell is denoted
bX ¼ bXqðjÞ. One has the general formula that we deduce from (7)

Cjr ¼
X

s

X

t

xs ^ xt

Z

bX
det rkr ;rks;rktð ÞdX

! "
: ð10Þ

The characterization of Cjr for tetrahedrons and for hexahedrons
with warped faces is given in [7].

The scheme that we consider in the following is based on a very
specific nodal solver that we describe now. At the beginning of the
time step one computes the geometrical vectors Cjr for all cell Xj as
a function of the vertices xr.

Definition 3 (The nodal solver). Let us assume that we know the
values of some cell pressures pj and some cell velocities uj for all

cells around a certain vertex xr. The nodal solver at vertex xr is
defined by the following set of linear equations

pjr % pj þ qjcj !ur % uj;
Cjr

Cjrj j

! "
¼ 0;

P
j

Cjrpjr ¼ 0:

8
>><

>>:
ð11Þ

The unknowns are ðpjr; !urÞ. All other quantities are given. Here
qjcj > 0 is the positive acoustic impedance, and cj is the local speed
of sound.

The solution of the nodal solver is computed by elimination of
pjr in the second equation. One gets the linear equation Ar !ur ¼ br

where the matrix is

Ar ¼
X

j

qjcj
Cjr $ Cjr

jCjrj
2 Rd'd

and the right hand side is

br ¼
X

j

Cjr pj þ qjcj uj;
Cjr

jCjr j

! "! "
2 Rd:

In general the linear system that we have to solve is well posed
since the matrix on the left hand side is symmetric non-negative.
It is possible to show that it is a positive (thus invertible) matrix
Ar ¼ At

r > 0 provided the vectors (Cjr)j span Rd. This is the case in
practice [7]. See also a particular proof in dimension d = 2 [10].
The result of Proposition 25 can be interpreted as a new proof of
this well posedness of the nodal solver.

The GLACE scheme is a cell-centered Godunov like Lagrangian
scheme that has been recently proposed in [7]. As detailed in
Eqs. (11)–(15), this scheme is implemented using explicit Euler
time integration with time step Dt > 0.

Definition 4 (The GLACE scheme). At the beginning of the time step
tk = kDt one computes the geometrical vectors Ck

jr . Then one
computes the nodal pressures pk

jr and the nodal velocities !uk
r using

the nodal solver (11). With these quantities one updates the total
momentum and the total energy as follows. For the momentum
one uses

Mj
ukþ1

j % uk
j

Dt
¼ %

X

r

Ck
jrp

k
jr : ð12Þ

The total energy is updated with

Fig. 3. Non-uniqueness of the definition of the barycentric functions in dimension
d = 2. The pentagon is viewed as the union of 5 triangles on the left and as the union
of 3 triangles on the right. On each of the subtriangles the barycentric functions are
the standard linear P1 functions.

Fig. 4. A mesh in dimension d = 2. Notice that C?jr is the vector that joins the middle
of the edges.
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� Nodal geometrical quantities Cjr = ∇xr |Ωj |.
� ∑j Cjr = ∑r Cjr = 0.
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2D AP schemes

Nodal AP scheme 
| Ωj | ∂tEj (t) +

1

ε ∑
r

(Fr , Cjr ) = 0,

| Ωj | ∂tFj (t) +
1

ε ∑
r

Ecjr = Sj .

� Classical nodal fluxes: {
Ecjr − EjCjr = α̂jr (Fj − Fr ),
∑j Ecjr = 0,

with α̂jr =
Cjr⊗Cjr

‖Cjr ‖ .

� New fluxes obtained plugging steady-state ∇E = − σ
ε F in the fluxes:


Ecjr − EjCjr = α̂jr (Fj − Fr )−

σ

ε
β̂jrFr ,(

∑
j

α̂jr +
σ

ε ∑
j

β̂jr

)
Fr = ∑

j

EjCjr + ∑
j

α̂jrFj .

with β̂jr = Cjr ⊗ (xr − xj ).

� Source term: (1) Sj = − σ
ε2 | Ωj | Fj ou (2) Sj = − σ

ε2 ∑r β̂jrFr , ∑r β̂jr = Îd |Ωj |.
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Time AP scheme

� New formulation of the scheme + semi discrete scheme.

Local semi-implicit scheme
| Ωj |

En+1
j − En

j

4t
+

1

ε ∑
r

(MrFr , Cjr ) = 0,

| Ωj |
Fn+1
j − Fn

j

4t
+

1

ε ∑
r

Ecjr = −
1

ε

(
∑
r

α̂jr (Îd −Mr )

)
Fn+1
j .

with 
Ecjr − EjCjr = α̂jrMr (Fj − Fr ),(

∑
j

α̂jr

)
Fr = ∑

j

EjCjr + ∑
j

α̂jrFj .

Mr =

(
∑
j

α̂jr +
σ

ε ∑
j

β̂jr

)−1 (
∑
j

α̂jr

)
� The scheme is stable under a CFL condition which is the sum to the parabolic and

hyperbolic CFL conditions (verified numerically).

� The full implicit version is unconditionally stable.
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Assumptions for the convergence proof

Geometrical assumptions

� (u,
(

∑r
Cjr⊗Cjr

|Cjr |
)

u) ≥ βh(u, u),

� (u,
(

∑j
Cjr⊗Cjr

|Cjr |
)

u) ≥ γh(u, u),

� (u,
(
∑j Cjr ⊗ (xr − xj )

)
u) ≥ αh2(u, u).

� First and second assumptions: true on all non degenerated meshes.

� Last assumption: sufficient (not necessary) conditions on the meshes obtained.

� Example for triangles: all the angles must be larger that 12 degrees.

Assumption on regularity and initial data
� F(t = 0, x) = − ε

σ∇E (t = 0, x)

� Regularity for exact data: V(t, x) ∈ H4(Ω)

� Regularity for initial data of the scheme: Vh(t = 0, x) ∈ L2(Ω)
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Uniform convergence in space

� Naive convergence estimate : ||P ε
h − P ε||naive ≤ C ε−bhc

� Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

||P ε
h − P ε||L2 ≤ min(||P ε

h − P ε||naive , ||P ε
h − P0

h ||+ ||P0
h − P0||+ ||P ε − P0||)

ε→ 0
P0
h

P ε

h→ 0

P0

ε→ 0

h→ 0

P ε
h

� Intermediary estimations :

� ||P ε − P0|| ≤ Caεa,
� ||P0

h − P0|| ≤ Cdh
d ,

� ||P ε
h − P0

h || ≤ Ce εe ,

� d ≤ c, e ≥ a.

� We obtain:
||P ε

h − P ε||L2 ≤ C min(ε−bhc , εa + hd + εe ))

.

� Comparing ε and εthreshold = h
ac
a+b we obtain the final estimation:

||P ε
h − P ε||L2 ≤ h

ac
a+b

.
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Limit diffusion scheme

Limit diffusion scheme (P0
h):

| Ωj | ∂tEj (t)−∑
r

(Fr , Cjr ) = 0,

∑
r

α̂jrFj = ∑
r

α̂jrFr ,

σArFr = ∑
j

EjCjr , Ar = −∑
j

Cjr ⊗ (xr − xj ).

ε→ 0

P0P ε

P ε
h

h→ 0

P0
h

ε→ 0

h→ 0

� Problem: estimation on ||P ε
h − P0

h ||.
� In practice we obtain ||P ε

h − P0
h || ≤ C ε

h
(not sufficient for the proof).

� Introduction of a intermediary diffusion
scheme DAε

h.

� DAε
h: P ε

h scheme with ∂tFj = 0.

� In the previous estimate we replace P0
h

by DAε
h.

H Condition:
The Hessian matrix of the scheme P0

h can be upper-bounded or the error estimate
‖P ε

h − P0
h‖ can be obtained independently of the discrete Hessian matrix.
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Final result in space

� H condition obtained : we use P0
h in the estimates.

� H condition not obtained : we use DAε
h in the estimates.

� The H condition is obtained in 1D (grid uniform or not) and in 2D Cartesian grids.

Final result:
We assume that the assumptions are verified. There are some constant C > 0 such that

� ||P ε − P ε
h ||naive ≤ C0

√
h
ε ‖ p0 ‖H4(Ω),

� ||DAε
h − P0|| ≤ C1(h+ ε) ‖ p0 ‖H4(Ω),

� ||P ε
h −DAε

h || ≤ C2

(
h2 + ε max

(
1,
√

εh−1
))
‖ p0 ‖H4(Ω),

� ||P ε − P0|| ≤ C3ε, 0 < t ≤ T .

and

‖Vε −Vε
h‖L2([0,T ]×Ω) ≤ C min

(√
h

ε
, h2 + ε max

(
1,

√
ε

h

)
+ (h+ ε) + ε

)
‖ p0 ‖H4≤ Ch

1
4 .

� Using εthresh = h
1
2 we prove that the worst case is ‖Vε −Vε

h‖ ≤ C2h
1
4 .
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Time estimation

� Time scheme: implicit scheme (the estimate for explicit scheme is an open question).
We obtain

Un+1
h −Un

h

∆t
= AhUn+1

h

with Ah the matrix which discretized the space scheme.

� Discrete stability: We have (Uh,AhUh) ≤ 0. Consequently ‖ Un+1
h ‖≤‖ Un

h ‖

Final result for the full discrete scheme
We assume that the regularity and geometrical assumptions are verified. There is a
constant C (T ) > 0 such that:

‖Vε(tn)−Vε
h(tn)‖L2(Ω) ≤ C

(
f (h, ε) + ∆t

1
2

)
‖ p0 ‖H4(Ω) .

� Idea of proof: Stability result + Duhamel formula (B. Després).
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AP scheme vs classical scheme

� Test case: heat fundamental solution. Results for different P1 scheme with ε = 0.001
on Kershaw mesh.

Diffusion solution Non AP scheme

Standard AP scheme Nodal AP scheme
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Uniform convergence for the P1 model

� Periodic solution for the P1which depend of ε.

� E (t, x) = (α(t) + ε2

σ α
′
(t)) cos(πx) cos(πy )

� F(t, x) =
(
− ε

σ α(t) sin(πx) cos(πy ), − ε
σ α(t) sin(πy ) cos(πx)

)
� Convergence study for ε = hγ on random mesh.

γ = 1
4 γ = 1

2

� Numerical results show that the error is homogenous to O(hε + h2).

� Theoretical estimate that we can hope: O((hε)
1
2 + h).

� Non optimal estimation in the intermediary regime.
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Extension to the Euler model
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Euler equation with external forces

� Euler equation with gravity and friction:
∂tρ +

1

ε
div(ρu) = 0,

∂tρu +
1

ε
div(ρu⊗ u) +

1

ε
∇p = − 1

ε
(ρ∇φ +

σ

ε
ρu),

∂tρe +
1

ε
div(ρue) + div(pu) = − 1

ε
(ρ(∇φ, u) +

σ

ε
ρ(u, u)).

� with φ the gravity potential, σ the friction coefficient.

Properties :

� Entropy inequality ∂tρS + 1
ε div(ρuS) ≥ 0.

� Steady-state : {
u = 0,
∇p = −ρ∇φ.

� Diffusion limit: 
∂tρ + div(ρu) = 0,
∂tρe + div(ρue) + p div u = 0,

u = − 1

σ

(
∇φ +

1

ρ
∇p
)

.
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Design of AP nodal scheme I

Idea :
Modify the Lagrange+remap classical scheme with the Jin-Levermore method

� Classical Lagrange+remap scheme (LP scheme):
| Ωj | ∂tρj +

1
ε

(
∑R+

ujr ρj + ∑R− ujr ρk(r )

)
= 0

| Ωj | ∂tρjuj +
1
ε

(
∑R+

ujr (ρU)j + ∑R− ujr (ρU)k(r ) + ∑r pCjr

)
= 0

| Ωj | ∂tρj +
1
ε

(
∑R+

ujr (ρe)j + ∑R− ujr (ρe)k(r ) + ∑r (pCjr , ur )
)
= 0

with Lagrangian fluxes Gjr = pjCjr + ρjcj α̂jr (uj − ur )

∑
j

ρjcj α̂jrur = ∑
j

pjCjr + ∑
j

ρjcj α̂jruj

� Advection fluxes: ujr = (Cjr , ur ), R+ = (r/ujr > 0), R− = (r/ujr < 0) et

ρk(r ) =
∑j/ujr>0 ujr ρj

∑j/ujr>0 ujr
.
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Design of AP nodal scheme II

Jin Levermore method:
Plug the relation ∇p +O(ε2) = −ρ∇φ− σ

ε ρU in the Lagrangian fluxes

� The modified scheme is given by

| Ωj | ∂tρj +
1
ε

(
∑R+

ujr ρj + ∑R− ujr ρk(r )

)
= 0

| Ωj | ∂tρjuj +
1
ε

(
∑R+

ujr (ρU)j + ∑R− ujr (ρU)k(r ) + ∑r pCjr

)
= − 1

ε

(
∑r β̂jr (ρ∇φ)r +

σ
ε ∑r ρr β̂jrur

)
| Ωj | ∂tρj +

1
ε

(
∑R+

ujr (ρe)j + ∑R− ujr (ρe)k(r ) + ∑r (pCjr , ur )
)

= − 1
ε

(
∑r (β̂jr (ρ∇φ)r , ur ) +

σ
ε ∑r ρr (ur , β̂jrur )

)
with the new Lagrangian fluxes

pCjr = pjCjr + ρjcj α̂jr (uj − ur )− β̂jr (ρ∇φ)r −
σ

ε
ρr β̂jrur(

∑
j

ρjcj α̂jr +
σ

ε
ρr ∑

j

β̂jr

)
ur = ∑

j

pjCjr + ∑
j

ρjcj α̂jruj − (∑
j

β̂jr )(ρ∇φ)r

� and (ρ∇φ)r a discretization of ρ∇φ at the interface .
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Properties

Limit diffusion scheme:
If the local matrices are invertible then the LR-AP scheme tends to the following scheme

| Ωj | ∂tρj +
(

∑R+
ujr ρj + ∑R− ujr ρk(r )

)
= 0

| Ωj | ∂tρj +
(

∑R+
ujr (ρe)j + ∑R− ujr (ρe)k(r ) + pj ∑r (Cjr , ur )

)
= 0

σρr
(
∑j β̂jr

)
ur = ∑j pjCjr −

(
∑j β̂jr

)
(ρ∇φ)r

� For p = Kρ, numerically the scheme converge at the order of the advection scheme.

� Open question: Verify this for a non isothermal pressure law as perfect gas law.

Well balanced property
� We define the discrete gradient ∇rp = −(∑j β̂jr )

−1 ∑j pjCjr and ρr an average of ρj
around xr .

� If the initial data are given by the discrete steady-state ∇rp = −(ρ∇φ)r , ρn+1
j = ρnj ,

un+1
j = un

j and en+1
j = enj ,

� Remark: if you initialize your scheme with a continuous steady-state the final space
error is given by the consistency error between the continuous and discrete
steady-state.
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High order discretization of the steady-state

High order reconstruction of steady-state
� Aim: Conserve the stability property of the first order scheme but discretize the

steady-state with a high order accuracy or exactly.

� Method : construct high order discrete steady-state

� 1D discrete steady state: pj+1 − pj = −∆xj+ 1
2
(ρ∂xφ)j+ 1

2
with

(ρ∂xφ)j+ 1
2
= 1

2 (ρj+1 + ρj )(φj+1 − φj ).

� To begin we consider the steady state

∂xp = −ρ∂xφ

� we integrate on the dual cell [xj , xj+1] to obtain

∆xj+ 1
2

(
1

∆xj+ 1
2

∫ xj+1

xj

∂xp(x)

)
= −∆xj+ 1

2

(
1

∆xj+ 1
2

∫ xj+1

xj

ρ(x)∂xφ(x)

)
.
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High order discretization of the steady-state

High order reconstruction of steady-state
� Aim: Conserve the stability property of the first order scheme but discretize the

steady-state with a high order accuracy or exactly.

� Method : construct high order discrete steady-state

� We introduce 3 polynomials ρj+ 1
2
(x) = ∑q

k=1 rkx
k et

pj+ 1
2
(x) = ∑q+1

k=1 pkx
k , φj+ 1

2
(x) = ∑q+1

k=1 φkx
k with

∫ x
l+ 1

2

x
l− 1

2

ρj+ 1
2
(x) = ∆xlρl ,

∫ x
l+ 1

2

x
l− 1

2

pj+ 1
2
(x) = ∆xlpl ,

∫ x
l+ 1

2

x
l− 1

2

φj+ 1
2
(x) = ∆xlφl

and l ∈ S(j) (S(j) a subset of cell around j). Using these polynomials we obtain the
new discrete steady-state

∆xj+ 1
2

(
1

∆xj+ 1
2

∫ xj+1

xj

∂xpj+ 1
2
(x)

)
= −∆xj+ 1

2

(
1

∆xj+ 1
2

∫ xj+1

xj

ρj+ 1
2
(x)∂xφj+ 1

2
(x)

)
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High order discretization of the steady-state

High order reconstruction of steady-state
� Aim: Conserve the stability property of the first order scheme but discretize the

steady-state with a high order accuracy or exactly.

� Method : construct high order discrete steady-state

� To incorporate the discrete steady state in the scheme we need to have a pressure
gradient which correspond to the viscosity of the scheme.

� We obtain a q-order steady-state:

pj+1 − pj = −∆xj+ 1
2
(ρ∂xφ)HO

j+ 1
2

with

(ρg )HO
j+ 1

2
=

1

∆xj+ 1
2

((∫ xj+1

xj

∂xpj+ 1
2
(x)

)
+

(∫ xj+1

xj

ρj+ 1
2
(x)∂xφj+ 1

2
(x)

)
− (pj+1 − pj )

)
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High order discretization of the steady-state

High order reconstruction of steady-state
� Aim: Conserve the stability property of the first order scheme but discretize the
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� We obtain a q-order steady-state:
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∆xj+ 1
2
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xj

∂xpj+ 1
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)
+

(∫ xj+1

xj

ρj+ 1
2
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2
(x)
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)

2D extension

� The method is the same. Just we use a constant stencil and a least square method to
determinate the coefficient of the polynomials
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Numerical result : large opacity

� Test case: sod problem with σ > 0, ε = 1 and ∇φ = 0.

� σ = 1

AP scheme, ρ non-AP scheme, ρ

AP scheme, ε non-AP scheme, ε
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Result for steady-state

� Steady-state: ρ(t, x) = 3 + 2 sin(2πx), u(t, x) = 0

� p(t, x) = 3 + 3 sin(2πx)− 1
2 cos(4πx) and φ(x) = − sin(2πx). Random mesh.

Schemes LR LR-AP (2) LR-AP (3) LR-AP (4)

cells Err q Err q Err q Err q

20 0.8335 - 0.0102 - 0.0079 - 0.0067 -
40 0.4010 1.05 0.0027 1.91 8.4E-4 3.23 1.5E-4 5.48
80 0.2065 0.96 7.0E-4 1.95 7.7E-5 3.45 4.1E-6 5.19
160 0.1014 1.02 1.7E-4 2.04 7.0E-6 3.46 1.0E-7 5.36

� Steady-state: ρ(t, x) = e−gx , u(t, x) = 0, p(t, x) = e−gx et φ = gx . Random mesh

Schemes LR LR-AP (2) LR-AP (3) LR-AP (4)

cells Err q Err q Err q Err q

20 0.0280 - 6.5E-4 - 1.8E-5 - 8.0E-7 -
40 0.0152 0.88 1.4E-4 2.21 2.0E-6 3.17 3.8E-8 4.4
80 0.0072 1.08 3.3E-5 2.08 2.0E-7 3.32 2.0E-9 4.25
160 0.0038 0.92 8.8E-6 1.90 2.8E-8 2.84 1.1E-10 4.18
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Conclusion and perspectives

� Conclusion

� P1 model: First AP scheme (time and space) on unstructured meshes (now other
schemes have been developed).

� P1 model: Uniform proof of convergence on unstructured meshes in 1D and 2D.

� AP schemes for general linear systems with source terms using previous schemes
and ”micro-macro” method.

� Euler model with external force AP schemes with a new high order reconstruction
of the steady states

� Problem for all the schemes : spurious mods in few cases (example: Cartesian
mesh + Dirac Initial data).

� Possible perspectives

� P1 model: Theoretical study of the explicit and semi implicit scheme.
� Euler model: Entropy study for scheme.

� Find a generic procedure to stabilize the nodal scheme (exist for the Lagrangian
nodal scheme for the Euler equations).
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Thanks

Thank you
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