
Abstract

At the end of the 70’, Littlejohn [1, 2, 3] shed new light on what is called the
Gyro-Kinetic Approximation. His approach incorporated high-level mathemat-
ical concepts from Hamiltonian Mechanics, Differential Geometry and Symplec-
tic Geometry into a physical affordable theory in order to clarify what has been
done for years in the domain. This theory has been being widely used to de-
duce the numerical methods for Tokamak and Stellarator simulation. Yet, it
was formal from the mathematical point of view and not directly accessible for
mathematicians.

This talk will present a mathematically rigorous version of the theory.
The way to set out this Gyro-Kinetic Approximation consists of the building

of a change of coordinates that decouples the Hamiltonian dynamical system
satisfied by the characteristics of charged particles submitted to a strong mag-
netic field into a part that concerns the fast oscillation induced by the magnetic
field and a other part that describes a slower dynamics. This building is made
of two steps. The goal of the first one, so-called “Darboux Algorithm”, is to
give to the Poisson Matrix (associated to the Hamiltonian system) a form that
would achieve the goal of decoupling if the Hamiltonian function does not de-
pend on one given variable. Then the second change of variables (which is in
fact a succession of several ones), so-called “Lie Algorithm”, is to remove the
given variable from the Hamiltonian function without changing the form of the
Poisson Matrix.

(Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory,
an alternative approach, based on Asymptotic Analysis and Homogenization
Methods was developed in Frenod & Sonnendrücker [5, 6, 7], Frenod, Raviart &
Sonnendrücker [4], Golse & Saint-Raymond [8] and Ghendrih, Hauray & Nouri
[9].)
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