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A bit of history
∼ 1840 : Jean L. M. Poiseuille. Pioneering experiments of liquid
flows in capillaries, 30-150µm diameters

Recherches sur les causes du mouvement du sang dans les
vaisseaux capillaires. Paris, Imprimerie royale, 1839.



A bit of history
∼ 1909 : Martin H. C. Knudsen. Gas flows in the transition and
free molecular regimes

Annalen der Physik : 33(1), pp 75–130 ; 33(5), pp 999–1016



A bit of history
1959 : December 29th, Richard Feynman’s talk at Caltech



A bit of history – Modern times
Until the 90’s, academic literature rather sparse. Indeed :

"Fluidics" : in the 60’s – 70’s
initiated in the USSR
... then developed in the USA and Europe
Goal : design “fluidic computers” – spatial applications
... design “pneumatic” devices⇔ electronic devices
Typical sizes : ∼ n.100 µm – millimetres

“Explosion” of µelectronics knockouted pneumatic
computers

MEMS : massively developed in the 80’s
based on the “silicon”’s expertise
broad spectrum of applications at µ-scale
⇒, in particular, revival of fluids flow experiments
⇒ rose new questions on µ-scale Fluid Dynamics

Two big commercial success in the ’80 – ’90, among others
Airbags
Ink-Jet printers



MEMS for Airbags

Integrated system on a silicon wafer
Not only the detector (accelerometer) ...
but also : information analysis, signal processing...
all in a few millimetres.
Easily reproduced (tens of millions) and Cheap !



Ink-Jet Printers

50 microns

goutte satellite goutte principale

encre
papier

Need to control the satellite drop for printing quality



Ink-Jet Printers – Prevent the printhead to be stuck
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Ink-Jet Printers
Impressive review by H. Wijshoff (Physics Reports, 2010)
→ collab. with the leading group of D. Lohse (U. of Twente)

More generally about “Printers” : Droplet dispenser

Change ink by a chemical/biological product

⇒ massive parallelism of tests⇒ Omics Big Data

More generally about MEMS :

Success thanks to :

knowledge acquired of the exotic physics at the microscale



Microfilms, Medicine and “Lab-on-chip”

Micropumps and Drug injection :
insulin in liver
Bactofen in spinal cord
→ improvement of patient comfort

Increased integration on micro-chips :
various functions :

transport
mixing
characterisation
commercialised ex. : myocardial proteins (in 15 minutes)

→ bio / chemical microreactors
→ search new types of drugs and medical treatments



Microfluidics and Flow control
Aeronautics : MEMS acting on vortices on the leading
edge of a wing⇒ control of the lift

Ho C-M, Huang P-H, Yang
JM, Lee G-B, Tai Y-C.
Active flow control by micro
systems. Kluwer Academic
Pub., 1999. p. 195-202.

Electrohydrodynamics : electrowetting on dielectric Next

Droplet sorting via laser Next



Flow control – electrowetting
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couche diélectrique

couche hydrophobe
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O. Raccurt et al., Euromech Coll. 472, Sep 6-8, 2005, Grenoble. See
also : Lee et al.. Sensors & Actuators A 95 (2002) 259–268

Rk : existence of triple line→ boundary condition ? Coming up next ...



Flow control – laser

LASER

C. N. Baroud, Euromech Coll. 472, Sep 6-8, 2005, Grenoble



Physics at microscale

In the next slides, we describe a bit of
Physics at the scale of “molecules” and
“scaling laws” in this “world”



Forces of microscopic origin
Small molecules in vacuum

As an approximation model, we can assume that essential
features of the simplest molecular interaction are :

strong hard-sphere repulsion
weaker interaction at some larger distances

→ typically approximated with a Lennard-Jones potential :

V (r) = 4ε
((

ς
r

)12 −
(
ς
r

)6
)

F (r) = −dV
dr (r)

r
∼

+∞
1
r7

Rk : valid for both neutral and polar molecules in vacuum

Conclusion : ranges of forces between molecules do not
exceed a few nanometers, in these cases [Israelachvili, 1991]



Forces of microscopic origin
In a solvent...

... Small molecules interact within a few nanometers
← numerous phenomena including hydrogen bonds and
hydration forces in water

... Bigger molecules ∼ 10 nm :
more “actors” in the interaction game
possibility of shape change (conformation)
Ex : hydro-phobic/philic forces (not described by Lenn-J.)
Ex : conformation entropy⇒ defines associated forces

Roughly :
ranges of interaction forces ∼ O(size of the molecule) ∼ 10 nm



Forces of microscopic origin...
... between surfaces

Quantum forces
van der Waals forces

for plane-molecule systems : ∼ 1/r5

for plane-plane systems : ∼ 1/r3

Electrostatic forces : dielectric immersed in an electrolyte
→ surface charges appears ; Debye-Huckel double layer
among others

Typically :
ranges of interaction forces� as in the molec.-molec. case
in practice, ranges not exceed 100 nm
→ in "real" microfluidics, they can be ignored
→ but below 100 nm, they need to be accounted for



A first introduction of “molecules lengths”
For liquids & gases :

size of molecules := equilibrium radius of Lennard Jones

r = 2
1
6 ς

Ex : for simple molecules, r ∼ 10−10 m
mean molecular spacing d : if n is molecule density

d = n−
1
3

Liquids : d ∼ r
Gases : r � d , typically d ≈ 3.10−9 m

For gases the meaningful length is the mean free path λ
:= mean distance travelled by a molecule between 2 collisions

λ =
1√

2πr2n
, typically λ ≈ 10 or 100.10−9m



Miniaturisation & counter-intuitive phenomena
Scaling laws = variation of a physical quantity vs characteristic
length of the system

Quantity Scaling µscale
Weight

van der Waals force l−7 +++
Time l0 ↑
Capillary force l1 |
Thermal conduction l1 |
Electrostatic force l2 |
Volume l3 |
Mass l3 |
Gravity force l3 - - - Ex : Gerris’ water walk

← capillary� gravity f.
Warning : scaling laws can be too “rough” and lead to wrong
evaluation of preponderant effects. Need to be careful and to
consider the “full” physical laws instead.



Electro - statics/magnetics in small systems

Dielectric breakdown is retarded.
A gas subjected to intense electric field→ ionisation→
plasma, if E greater than a critical Ec .
In µsystems : rarefaction↗⇒ breakdown less probable⇒
Ec ↗

Parallel-plate capacitors : if a force is used to displace one
of the plate (scaling law l3), it is negligible vs electrostatic
force (scaling law l2). This is useful for sudden impacts
detection with accelerometers (cf. airbags previous. mentioned).

For electromagnetic systems expertise was developed and
it seems possible to obtain quite high magnetic fields at
µscale (see e.g. works at CEA-LETI and around).



Mechanics and Thermics in small systems

Mechanics : possibility to build resonating beams but
thermal noise became preponderant as we miniaturise

Thermics : volumetric heat sources easily thermalized by
conduction (if Fourier’s law applies).

Evaporation of microdroplets is very fast
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Gases : from microscopic description to hydrodynamic
limits



A bit of kinetic theory
We want to model a gas as a set of n identical particles in
interaction (no mixture, non relativistic, non quantum), in a
space RN (N = 3). Typically, n ∼ 1020

Assumption – description is given by xi (position) and vi
(speed) of each particle→ huge phase space

(
RN

x × RN
v
)n

First (ambitious) step – Microscopic model – (xi , vi)i=1,n,
known at t = 0 ; apply Newton’s law with known interaction
forces→ well-posed problem, one can theoretically determine
evolution of particles. But practically intractable ...

Next step – replace it by simpler macroscopic models :
kinetic or hydrodynamic (see later)

Kinetic model state of the gas is represented by a probability
density f (t , x , v) such that at time t , f (t , x , v) dx dv = density of
particles in volume dx dv around (x , v).
Depending on interaction, derive various kinetic equations :
Vlasov, Boltzmann, etc



A bit of kinetic theory – Evolution of f
• forgetting interaction : particles move on a straight line at
constant speed :

∂f
∂t

+ v .∇x f = 0 or
∂f
∂t

+ v .∇x f + F (x).∇v f = 0

if a macroscopic force F (x) applies on particles.

• Interactions – Assumptions : binary collisions (dilute gas,
interaction with more than 2 particles neglected), localized in
space and time, elastic (moment. and kin. energy preserved),
microreversible (time), Boltzmann chaos (speeds of 2 collid.
part. uncorrelated before collision).⇒ ∃ a quadratic collision
operator which models effect of interactions on f :

∂f
∂t

∣∣∣∣
collisions

(t , x , v) = Q(f , f )(t , x , v)

=

∫
RN

dv?
∫
SN−1

dσ B(v − v?, σ)(f ′f ′? − f f?)

where B is the Boltzmann collision kernel. To sum up :



A bit of kinetic theory – Boltzmann equations :

∂f
∂t

+v .∇x f = Q(f , f ) or
∂f
∂t

+v .∇x f +F (x).∇v f = Q(f , f )

There are a lot of collisions kernels. Let us mention two which
are explicit :

• “hard-sphere” – particles bounce each other like billiard balls

B(v − v?, σ) = K |〈v − v?, σ〉|, K > 0

• Coulomb interaction – with φ(r) = 1/r as interaction potential

B(v − v?, σ) =
1

|v − v?|3 sin4(θ/2)

where θ is the deviation angle of the collision.

Rk : “hard-sphere” is the only kernel for which rigorous
hydrodynamic limits are derived Next



Boltzmann equations – Observables
One of the ideas of kinetic approach is that all measurable
macroscopic quantities can be expressed in terms of f :
at t and x given,

local density ρ :

ρ =

∫
RN

f (t , x , v) dv ,

local macroscopic velocity u :

ρu =

∫
RN

f (t , x , v)v dv ,

local temperature T :

ρ|u|2 + NρT =

∫
RN

f (t , x , v) |v |2 dv .

These quantities are involved when writing macroscopic
hydrodynamic models such as Navier-Stokes, Euler, Stokes...



Boltzmann equations – some properties
• For f : v ∈ RN → f (v), with ad hoc integrability properties.

If ζ ∈ {1, vj , |v |2}, j = 1,N :
∫
RN

Q(f , f ) ζ(v) dv = 0.

This implies local conservation laws :

∂

∂t

(∫
f ζdv

)
+∇x

(∫
f ζvdv

)
= 0.

• Another important property :
∫
RN

Q(f , f ) log f dv = −D(f ), (♣)

D(f ) :=
1
4

∫
RN×RN×SN−1

(f ′f ′? − f f?) log
f ′f ′?
f f?

B dv dv? dσ ≥ 0

(♣)⇒ ∂

∂t

(∫
f log f dv

)
+∇x

(∫
(f log f )v dv

)
= −D(f ) ≤ 0.

⇒ H(f ) :=

∫
f log f dx dv ,

d
dt

H(f (t , ., .)) = −
∫
RN

D(f (t , x , .))dx ≤ 0,

is the H-Theorem of Boltzmann, D being “entropy dissipation”



Boltzmann equations – some properties (cont’d)

Consequences on the macroscopic quantities :

∂ρ

∂t
+∇x . (ρu) = 0 (1)

Each molecule has its velocity v and c = v − u is called
random velocity and such that 〈c〉 = 0.

Flow momentum mij :=
∫
R3 vivj fdv , rewritten mij = ρuiuj + pij

with pij =

∫
R3

cicj fdv , (i , j = 1,2,3)

It reads
∂ρu
∂t

+∇x . (ρu ⊗ u + p) = 0 (2)

And so on (energy equation, etc). Rk : about “closure” à la
Euler



Boltzmann equations – Boundary conditions
Interactions between particles and walls : many choices
• Specular reflection : Rv = v − 2(v .n(x)) n(x), where n(x) is
outward unit normal at x (⇔ to optics’ Snell-Descartes law) :

f (x ,Rv) = f (x , v). (not really realistic)

• Bounce-back condition : simple but more relevant in some
cases f (x ,−v) = f (x , v).
• Maxwellian diffusion : f (x , v) = ρ−(x)Mw (v), v .n(x) > 0

where ρ−(x) =
∫

v .n<0 f (x , v)|v .n| dv
andMw (v) is a given Gaussian
distribution depending on the wall :

Mw (v) =
e−
|v|2
2Tw

(2π)
N−1

2 T
N+1

2
w

• Convex combin. of spec/diff, Cercignani-Lampis model, etc



Boltzmann equations – Variants

Many. To name a few :

• relativistic, quantum, linear, diffusive, energy dissipating

• model equations :
BGK model : Boltzmann tricky operator is replaced by the
simplistic M f − f , where M f is the Maxwellian distribution
with the same local ρ, u, T than f Next

Kac model : a 1D toy-model

• discrete-velocity models (including numerical perspectives)

• Of note, one of the assumptions which lead to Boltzmann
equations is “localized interaction” ; some works were done on
this “delocalization” of collisions.



Boltzmann equations – Physical validity

Realistic description of

dilute atmosphere : aeronautics at high altitude, plasmas

at low densities, Navier-Stokes not accurate :
cf “Knudsen’s paradox” in his 1909 experimental paper
but good agreement with Boltzmann

study of boundary layers (Knudsen layer, Sone sublayer...)



The Knudsen number
Let us go back to the classical : ∂f

∂t + v .∇x f = Q(f , f )

Consider for typical scales : time τ , length L and velocity ν. One
can show :

∂f
∂t
∼ f
τ
, v .∇x f ∼ ν

L
f , Q(f , f ) ∼ nνς2f ∼ ν

λ
f

where n : density of molecules, ς : molecular diameter (or range
of interaction potential) and λ : mean free path

Def : nondimensional Knudsen number, Kn = λ
L

Nondimensional form of the Boltzmann equation :

∂f
∂t

+ v .∇x f =
1

Kn
Q(f , f ) (3)

Suggests two asymptotics :
Kn→ 0 (continuum or hydrodynamic)
Kn→ +∞ (free-molecular)



“Le livre de M. Boltzmann sur les Principes de la
Mécanique nous incite à établir et à discuter du point
de vue mathématique d’une manière complète et
rigoureuse les méthodes basées sur l’idée de passage
à la limite, et qui de la conception atomique nous
conduisent aux lois du mouvement des continua.”

D. Hilbert (1900), Sur les problèmes futurs des mathématiques
(trad. L. Laugel), Comptes rendus du 2me congrès international
des mathématiciens, Gauthier-Villars, 1902.



Continuum limit – Hilbert’s 6th problem
Kinetic description (though simplified w.r. to microscopic descr.)
is still complex and expansive.

Practically, it is often better to replace a kinetic model by a
macroscopic description such an hydrodynamic model
(Navier-Stokes’ like)

Theoretical underlying justification of such “simplification” is the
local thermodynamical equilibrium hypothesis.

Def : f (x , v) is a local equilibrium for the Boltzmann
equation if

Q(f , f ) = 0.

(♣)⇒ f ′f ′? = f f?, a.a. x , v , v? ⇒ (Boltzmann)

f (x , v) = Mρ,u,T (x , v) := ρ(x)
e−
|v−u(x)|2

2T (x)

(2π T (x))
N
2

So called local Maxwellian Mρ,u,T maximizes the entropy
−H(f ), which explains so called local equilibrium.



Continuum limit – Hilbert’s 6th problem – Cont’d
This concept leads to the idea : a distribution f is close to a
local equilibrium in a regime where collisions are very frequent
⇔ when Kn is small

Deriving an hydrodynamic limit of Boltzmann equation thus
consists in ;

proving a kind of local thermodynamical equilibrium when
Kn→ 0
deduce limit equations for the macroscopic quantities
associated to f : ρ, u, etc

This was a part of the Hilbert’s 6th problem : can we derive
rigorously the continuum equation of fluid mechanics from
Newton laws ? To this end, he proposed to prove :

Microscop. Newton eqs→ Boltzmann eqs→ Hydrodyn. eqs

"instead of" : Microscop. Newton eqs→ Hydrodyn. eqs

Rk : perfect gas law limitation for Bo.→ Hy. : less general



Continuum limit – Hilbert’s 6th problem – Cont’d

In other words, continuum limit consists in passing :

from a Boltzmann model of dilute gas, on microscopic scales of
space (∼ λ) and time (∼ mean time between collisions)

to an hydrodynamic model on macroscopic scales of time and
space (à la Batchelor)

This scaling modification is not innocent : depending on the
choice, one can derive various limits.



Continuum limit – an example
Contract time and space by ε (think Kn), preserve speed ; the
new distribution function (not a prob. density) is

t  
t
ε
, x  

x
ε
, v  v ; fε(t , x , v) = f

(
t
ε
,
x
ε
, v
)
.

If f solution of Boltzmann, then fε solves the rescaled Boltz. eq

∂fε
∂t

+ v .∇x fε =
1
ε

Q(fε, fε) and the macrosc. quant. verify

∂ρε
∂t

+∇x . (ρεuε) = 0

∂ρεuε
∂t

+∇x .

(∫
RN

fεv ⊗ v dv
)

= 0

∂

∂t

(
ρε|uε|2 + NρεTε

)
+∇x .

(∫
RN

fε |v |2v dv
)

= 0

...



Continuum limit – an example – Cont’d

Assumption of local thermo. equilibrium allows to close this
system when ε→ 0, formally (IN : identity matrix) :

∂ρ

∂t
+∇x . (ρu) = 0

∂ρu
∂t

+∇x . (ρu ⊗ u + ρTIN) = 0

∂

∂t

(
ρ|u|2 + NρT

)
+∇x .

(
ρ |u|2u + (N + 2)ρTu

)
= 0

which is the compressible Euler system with the law of perfect
gas : p = ρT .

Other scalings can lead to Navier-Stokes, giving a “kinetic”
interpretation of viscosity.



Continuum limit – Overview of expansions
• Hilbert himself (1912, Math. Ann.) ; look for f as (ε = Kn) :

f (t , x , v ; ε) =
∞∑

n=0

εnfn(t , x , v)

and identifying coefficients of various powers of ε, get systems
of equations for f0, f0 + εf1, f0 + εf1 + ε2f2, ...

• Chapman-Enskog expansion is a variant of Hilbert where fn
depend on

the macroscopic quantities ρ(t , x ; ε), u(t , x ; ε), T (t , x ; ε)
associated to fε ;
and v .

Both approaches allow to formally recover Euler and
Navier-Stokes (compressible or incompressible)

But they are not necessarily convergent, and they can only
represent very special kind of solutions.



Continuum limit – expansions – Cont’d

A more “robust” approach is the moment method of Grad

The idea is to write, for ε fixed, equations verified by∫
RN

f (t , x , v)vα1
1 ...vαN

N , including the usual macroscopic

quantities, ρ, ρu, ρ(|u|2 + NT ) subject to the local conservation
laws.

Then the key point is to close these equations in the limit ε→ 0
with a law based on the local thermo. equilibrium. This law
needs to be justified properly.

To sum up : rigorous limits can be proved as long as
hydrodynamic solutions are smooth



Continuum limit – Last (but not least) comments

• Surprises can happen with formal asymptotics... leading to
wrong hydrodynamic model, as e.g. shown by Sone and
coworkers (so called “ghost effects”). See also, more generally,
all their numerous works on these associated asymptotic
theories.

• Results on the “Micro→ Boltzmann” asymptotics, cf Lanford
(1975, Springer) and extension by Illner & Pulverenti (C.M.P.,
1986 and 1989)

• Results on the “Boltzmann→ Hydro” asymptotics, see in
particular Bardos, Golse & Levermore (1989, 1991, 1993),
Golse & Saint-Raymond (2001, 2009)

• Results on the asymptotic “Micro→ Hydro”, see Varadhan
and collaborators



Free-molecular regime

It is the opposite limit : Kn→∞

In this case, Boltzmann equation reduce to a transport equation
(no collision between molecules)

Interesting situations are thus flows with bodies ; study
momentum and energy exchanged between molecules and the
solid body

Hence the dynamics depends crucially on the boundary
condition model adopted and on the body geometry (convex or
not, etc)

We will not talk more on that and redirect to the literature for
more details.



A summary (1)

————————————————————————————



A summary (2)

Karniadakis et al, 2005

L : characteristic length ; n/n0 : number density normalized with corresp atmosph. cond.. Kn regimes based on air

at isothermal conditions at T = 273 K. Statistical fluctuations significant below the line L/δ = 20.



Gases : numerical methods



Direct Simulation Monte Carlo : DSMC

Pioneered by G. Bird in the ’60-’70.

DSMC uses typically 106 of "simulated particles" (< real nb)

Space discretized in similar cells (∆x ∝ λ)

Idea : decouple molecular motion and intermolecular collisions
⇒ ∆t < mean collision time

It is a probabilistic approach ( 6= deterministic MD simulation)

Four main steps, during a time interval ∆t :
1 motion of particles
2 indexing and cross-referencing of particles
3 simulation of collisions
4 sampling of macroscopic quant. of the flow



DSMC : step 1

move particles

some particles will collide (∆t < ∆tc) ...

some will go out of cells, boundaries, etc

enforce boundary conditions here, with conservation laws,
instead of velocity distribution function (à la Boltzmann)

→ can add a bit more of physics (chemical reaction,
radiation, etc) without changing the global DSMC
procedure. Price to pay : need to know the accommodation
coefficients at the boundaries



DSMC : step 2

index and track particles

to know in which cell they are and detect collisions

From the implementation point of view, data structure and
algorithms must be efficient to handle a huge number of
particles



DSMC : step 3

simulation of collisions : probabilistic

During ∆t , only collisions between particles belonging to
the same cell are considered

Each collision considered as a random event with some
probability

In every cell, pairs of colliding particles are randomly
sampled and associated pre-collisional velocities are
transformed in post-collisional ones

Example of collision model : the No-Time-Counter (NTC)
(cf Bird 1994)



DSMC : step 4 and Loops

compute macroscopic quantities :

by averaging on each cell

Loops : in time and/or in "realizations”

for steady flows : average samples after reaching steady

for unsteady flows : iterate (steps 1–4 + time) to obtain the
required number of realizations and then take average of
all runs

♣ DSMC method is still subject to evolutions/transformations.
See e.g. Gallis et al. JCP 228 (2009) 4532-4548



DSMC : pitfalls

DSMC is the only possible way to high Knudsen number
rarefied flows, in complex geometry. Many things done.

However, caution must be taken :

Cell size : no larger than (local mean free path)/3
Time step : no larger than (local mean free time)
Boundary condition : in/out-flow in pipe can be tricky
Slow “convergence” : error ∝

√
n, n =nbr of particles

to be compared with continuum models (⇒ to be adopted if
Kn < 0.1)

In particular, for gas microflows
large statistical noise & long time to reach steady states :
due to higher orders of magnitude difference between
speeds of particles and macr. speed (slow in µfl.)
not always easy to have a good modelling of the
wall-boundary conditions
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Direct resolution of Boltzmann equations

These numerical simulations are very expensive

Generally done in simple geometry (pipes) and with simplified
versions of the equations like BGK.

Hard sphere + Maxwellian molecular model

Some works on fast spectral methods to decrease CPU time :
Mouhot & Pareschi. Math. of Comput. 75(256) 2006. Wu et al.
JCP 250 (2013)

More generally, see recent review by Di Marco-Pareschi : Acta
Numerica 2014

E.g., extension to complex geometries : see e.g. F. Filbet, C.
Yang. Journal of Computational Physics 245 (2013) 43-61 and
...



Direct resol. of Boltzmann eq. - Complex geom

... Filbet-Yang. Kinetic models for Chemotaxis. SIAM JSC 36(3) 2014



Direct resol. of Boltzmann eq. - Complex geom

... Filbet-Yang. Kinetic models for Chemotaxis. SIAM JSC 36(3) 2014

See also Dechristé-Mieussens, preprint 2015.
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Lattice–Boltzmann Method (LBM) - LBGK version

BGK simplification of collision term + discretization of
Boltzmann on a finite set of velocities :

fi(x + ei∆t , t + ∆t)− fi(x , t) = 1
τ

[
Mf

i (ρ,u)− fi(x , t)
]

Discrete velocities : e0 = 0, e1 = (1; 0), e2 = (0; 1), etc

0 1

2

3

4

56

7 8

D2Q9 lattice

Relax. time τ

ρ =
∑

i

fi

ρu =
∑

i

ei fi
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Lattice–Boltzmann Method (LBM) - LBGK version

Algorithm :

1. Streaming step

f̃i(x , t) = fi(x + ei , t)

2. Collision step

Compute moments ρ, ρu

Compute equilibirum function :Mf
i (ρ,u)

Advance in time :

fi(x , t + ∆t) = f̃i(x , t) + 1
τ

[
Mf

i (ρ,u)− f̃i(x , t)
]

Used in a vast amount of applications (mixture, phase change)
and interesting on new computational architecture (GPU).
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Overview

For liquids, classical continuum models (Stokes (++), Navier -
Stokes(+)) can be used down to a scale smaller than for gases.

The key point is that, thanks to “scaling laws”, preponderant
forces are not the “usual suspects”. Typically, gravity can be
neglected but surface tension is crucial.

The “no-slip” boundary condition may be changed to Navier BC.

If we go to so tiny domains that Continuum hypothesis breaks
down, need to switch to “atomistic” methods, e.g. Molecular
Dynamics.



Overview – Capillary effects

Fluid A

Fluid B
interface

R 1

R 2

p

Origin of surface tension
= capillary force

Laplace’s law
[p] = σ

(
1

R1
+ 1

R2

)

At µ-scale : surface effects� volume effects



Overview – Capillarity, Young’s law

Young’s law :

γLV cos θ = γSV − γLS

Wetting regimes :
0 < θ < 90o : partially wetting ...
... hydrophilic
θ > 90o : non-wetting ...
... hydrophobic
θ = 0o : complete wetting

Perspectives :
Role on slippage Next

Microfluidics of droplets Next

From Quéré ; Nature Mat. (2002)→



Liquids : numerical methods



Molecular Dynamics (MD) method

Compute trajectories of atoms of a system, knowing interaction
force fields

⇒ Simulations over small volumes (∼ (100nm)3) and small
time intervals (several tens 10−9s)

Usually not appropriate for gas flow (see instead DSMC)

One can distinguish between :
Equilibrium MD (EMD)
Nonequilibrium MD (NEMD)



Molecular Dynamics (MD) method

Model system : N particles and Newton’s law

mi
d2ri

dt2 = Fi

Solved until system’s properties reach steady state, in the
framework of Equilibrium MD.



MD method – main steps

� Initialisation : initial position and velocities assigned to
particles, compatible with the simulated structure. Ex : Maxwellian

Then loop, for each time step :

� Force computation : (most time consuming) interaction
between particles ; depends on the choice of intermolecular
potential, see Next

� Integration of equations of motion : in time, with finite
difference schemes such as Verlet

rn+1 = 2rn − rn−1 + ∆t2 a(t) + O(∆t4)

or others : leap-frog, Velocity Verlet, etc

� Statistics and storage : compute temperature, pressure,
volume, etc and store them together with r and v .



MD method – intermolecular potentials

Key point. Potential energy V of a N-particles system

V =
∑

i

V1(ri) +
∑

i

∑
j>i

V2(ri , rj) +
∑

i

∑
j>i

∑
k>j>i

V3(ri , rj , rk ) + . . .

V1 : external fields
Vi , i ≥ 2 : particles interactions (pairs, triplets, etc)
typical : truncation after the second term
i.e. three-body and higher order interactions neglected



MD method – Pairwise intermolecular potentials
Potential V (r) = Parameters

Square-
well


∞, r ≤ ς
−ε, ς < r ≤ λς
0, r > λς

ς, ε

Yukawa
{
∞, r ≤ ς
− εςr e−z( r

ς
−1), r > ς

ς, ε, z

Lennard-
Jonnes 4ε

[(
ς
r

)12 −
(
ς
r

)6
]

ς, ε

Buckingham V (r) = Ae−Br − C6
r6 A,B,C6

Coulomb V (r) = 1
4πεr ε0

q1q2
r q1, q2, εr

WCA

{
4ε
[(
ς
r

)12 −
(
ς
r

)6
]
− VLJ(rc), r ≤ rc

0, r > rc
ς, ε, rc

Ref : Karniadakis, Beskok, Aluru (Springer, 2005)

Rk : in some cases, they are not sufficient. Need to introduce
three-body potential (e.g. Tersoff potential)



MD method – Effective computation of potentials

♣ Short range interactions. Generally : neighbour particles
list and “cutoff” outside this region. The list needs to be updated
at each time step due to particle motion : lot of algos available.

♣ Long range interactions. Much more difficult. (Trade off
between artefacts and comput. cost.) Let us consider Coulomb
potential (& periodic BC). Again, several methods available,
including

Ewald summation
Particle Mesh Ewald (PME)
Fast Multipole Method (FMM)



MD method – Thermostats

Necessity to control temperature during simulation
(equilibration drift, force truncation drift, integration errors,
external or friction forces heating, etc)

♣ Berendsen Thermostat. Deviation from the system
temperature T0 corrected following :

dT
dt

=
T0 − T
τ

, time constant τ

♣ Nose-Hoover Thermostat. Equation of motion modified

d2ri

dt2 =
Fi

mi
− ξdri

dt
, and

dξ
dt

=
T − T0

Q

ξ : "heat bath" parameter ; constant Q : strength of coupling



MD method – Thermostats

Thermostat Key concept Suitability/Application

Berendsen
1st order

kinetic-based
weak coupling

Easy implementation &
computationally inexpensive

Nose-Hoover Extended
Lagrangian

Most rigorous implementation
of the NVT ensemble

Andersen Stochastic
collision

Suitable for the thermal
coupling of atomistic and

continuum domains ;
also for DPD

Ref : Karniadakis, Beskok, Aluru (Springer, 2005)



MD method – Statistics

♣ Density profiles. ρi = 〈ni/VOL(i)〉s, in cell i with ni atoms,
averaged over s steps.

♣ Velocity profiles. Same spirit as above

ui =

∑s
k=1

∑nk,i
j=1 v j

k ,i∑s
k=1 nk ,i

Rk : steady state vs transient.

♣ Diffusion coefficient. Einstein relationship

D =
1
6

lim
t→∞

〈[r(t0 + t)− r(t0)]2〉
t



MD method – Statistics

Idem, based on MD quantities ri , vi and interaction forces, one
can approximate :

♣ Stress tensor. Irving-Kirkwood expression

♣ Shear viscosity. Using Green-Kubo formula, in the
Equilibrium case (EMD). Other algorithms for NEMD : e.g. Sllod
algorithm. Such computations are rather expensive.

♣ Sources of errors.
errors in equilibrium averages : actually, realizations are
not completely independent



MD method – Issues

♣ Time step. A fraction of the period of the highest-frequency
motion in the system. An option to check that ∆t is sufficiently
small : run an EMD simul. without temperature coupling and
check whether fluctuation of total energy of the system is less
than 5% of the total en.

♣ Boundary conditions. Most common : periodic. Take care of
images and long-range interactions. – Cut-Off. See previously.

♣ Storage. Usually only trajectories, and not at each time
steps. But for some statistics, each time step is needed⇒ trade
off between storage and CPU/accuracy on these variables (use
"on the fly" computation to save storage)

♣ Trade off between finer cells and number of particles per
cell : discretisation error vs statistical error



Molecular Dynamics (MD) – an illustration

Contact angle of water on graphite surface (119×118 Ȧ) at
t = 0 and 0.2 ns. By Petros Koumoutsakos.



Molecular Dynamics (MD) method

Some (open-source) softwares : GROMACS, AMBER,
CHARMM, etc
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Dissipative Particle Dynamics (DPD)

Combines features of MD and Lattice Boltzmann methods

Hoogerburgge & Koelman, 1992 : improve LBM on some
aspects and capture scales larger than MD ones.

In DPD : a “particle” ≡ molecular clusters (coarse-grained)

Motion/interaction with prescribed, velocity dependent forces :
1 repulsive conservative force (→ “homogenize” particles

locations)
2 dissipative force (→ “viscous” resistance between fluid

zones)
3 stochastic force (→ a way to represent “what is lost”

through coarse graining)



Dissipative Particle Dynamics (DPD)

(1) and (2) implement a thermostat→ achieve thermal
equilibrium

Amplitude of forces dictated by fluctuation-dissipation theorem
→ ensures thermodynamic equilibrium has a canonical
distribution

DPD conserves mass and momentum.

See Karniadakis et al. (Springer, 2005) for more details.



A summary (3) ... of parts 2 and 3
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An overview on wall laws for liquids,

following Tabeling (2004) and Bocquet & Barrat (2007).

See also Lauga, Brenner & Stone (2007).
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The question :

Is there any slippage at the wall for liquids ?

Usually, we are taught at school that “u=0”.

But, soon, problems arise ...

• motion of a triple line

• gas (slippage already described by Maxwell 1879), Navier -
Stokes + Slip B.C. via Kn expansions

• Superhydrophobic surfaces

• Non-Newtonian liquids : polymers
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Heuristic approach

If "wetting" situation applies : balance of forces→

• Close to the wall : a molecule is attracted to the solid by the
van der Waals forces

a : size of the molecules
ε : surface energy by unit surface⇒ Fv ∼ εa

• Hydrodynamic shear which attracts the molecule
S : shear
µ : dynamical viscosity of fluid⇒ Fs ∼ µa2S

allows to write the condition, for a molecule to be attracted by
the flow : S > Sc = ε

µa

In other words : if shear is > Sc in the fluid, slippage may occur.
Ex : water on plastic, Sc = 1010Hz
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The slip length approach

Introduction of the Navier (or Robin) boundary condition :

y : normal direction
u : tangential wall speed
Ls : so called “slip length”

u = Ls

(
∂u
∂y

)

Lauga et al. 2007 (→)

paroi "réelle"

s

y

a/2

−a/2

u(y)

paroi "fictive"
physique pariétale

L
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The slip length approach

Usually, in hydrodynamics, shear� Sc ⇒ Ls ∼ 10−9m

Rk : such law leads to a decreased pressure drop and this was
used to study experimentally the slip phenomena (Pfahler et al.,
ASME 32 (1991) ; Giordani - Cheng, J. Phys Condens. Matter
13 (2001)). Of note, in these experiments :

really small channels
tricky experiments due to leaks upstream
Ls ∼ 50nm

More generally, slippage question open since some
experiments (in the ’90 – ’00) using Navier law showed also
that Ls ∼ 10−6m and numerical simulation at the same time
where in agreement with the heuristic approach (Ls ∼ 10−9m).
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Some experimental studies :
wall speed measurements

• Pit et al. PRL 85 (2000) : wetting fluid Ls ∼ 200.10−9m and
increasing with the wetting angle, up to Ls ∼ 10−6m

“For hexadecane flowing on a hydrocarbo/lyophobic
smooth surface, we give what we think to be the
first direct experimental evidence of noticeable
slip at the wall. We show that the surface roughness
and the strength of the fluid-surface interactions both
act on wall slip, in antagonist ways.”

• Tretheway - Meinhart, LPF 14(3) 2002 : Ls ∼ 1µm with an
error of 450nm (hydrophobic case) ; hydrophilic case : slip <
measure error
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The nanofilm of Pierre-Gilles de Gennes

On Fluid/Wall Slippage. P. G. de Gennes. Langmuir 2002 18
(9), 3413-3414

Definition of the slip length and characterisation : k , coefficient
of surface friction, σ, shear stress inducing a speed vs at the
wall surface⇒ σ = kvs

On the other hand, shear stress in the fluid (of viscosity η) is
given by : σ = η

∣∣∣∂v(z)
∂z

∣∣∣.
Then : slip length Ls = η

k . Usually, one expects Ls ∼ “molecular
diameter” but “exotic” things were shown experimentally or
numerically.
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The nanofilm of Pierre-Gilles de Gennes

An hypothesis is then introduced by de Gennes : there exists a
nanometric gaseous film at solid–liquid interface. Physical
origins may be of 2 types (to be clarified) :

• non-wetting case : bubbles are created at the wall to reduce
the system energy. If we use the thermal fluctuations to
estimate the size of the bubbles, this leads to an estimation of
the molecular size

• presence of external gas dissolved in the liquid, up to
metastable concentrations
Rk : such hypothesis of the existence of such a layer of
nano-bubbles seems to be shown experimentally (Tyrel &
Attard, PRL 88 2001).

Assuming a high Kn in the gas : Ls ∼ viscosity
thermal speed ∼ 10−6m
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Some numerical simulations
Thompson & Troian, Nature 389 (1997)

MD simulations (with truncated
Lenn- Jones potential and a
Couette flow). Proposed general
law :

Ls = L0

(
1− S

Sc

)− 1
2

Of note, very difficult to obtain Sc experimentally (cf. Freeman
Scholar lecture of Gad el Hak). This law⇒ Ls ∼ 10−9m
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Influence of wetting properties on hydrodynamic boundary
conditions at a fluid-solid interface.

One can give a simple description of liquid films, not too thin
(i.e. width > 10 – 20 atom size) : use a macroscopic hydrodyn.
equation with bulk coefficients and slip BC.

But studies (experim. or numer.) leading to such results where
in the case of total wetting.

Here, they look a fluid film forced to penetrate a thin pore, in a
situation of partial wetting (γLS + γLV > γSV ) ≡ droplet in
equilibrium on a substrate Next :
one can write Young’s law γLV cos θ = γSV − γLS.
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

partial wetting
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Ingredients :
• Lennard-Jones interactions – ε : interaction energy, σ :
molecular diameter, similar for all molecules ; it is cij which
allows to adjust the surface energies between molecules

vij(r) = 4ε
[(σ

r

)12
− cij

(σ
r

)6
]

• Substrate : fixed atoms on a FCC lattice

• The fluid is more cohesive than a usual L-J (since cFF = 1.2
instead of 1). Fluid - Substrate interaction : cFS = 0.5→ 1

• Geometry : 2 parallel plates. Code : constant temperature +
Hoover’s Thermostat on the velocity orthogonal to the flow only
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Ingredients :

• One can estimate roughly the angle as a function of cFS :
cos θ = −1 + 2ρscFS/ρF cFF . But one can also compute them
using results of simul. : (cFS; θ) : (0.5; 137o)→ (0.9; 99o)

• Definition/Convention in their paper : non-wetting case when
θ > 90o. Rk : In such case, if we want fluid to enter pore (cf.
above), a supplementary pressure is needed :
P0 = 2(γLS − γSV )/h.



Overview Gases Liquids Wall laws for liquids Droplets in microfluidics Level Set

Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Simulations :

• Static case : when P0 is high, one retrieves density profile of
the usual wetting case.

• Couette & Poiseuille flows : slippage is clearly visible and
fitting by Navier’s law gives

∂u
∂z

∣∣∣∣
z=zw

=
1
Ls

u|z=zw

They found a zw in the fluid at ∼ 1 atomic distance (σ) from the
solid wall and Ls ∼ several dozens of σ when θ → 150o, i.e.
nonwetting case.
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Physical theory :

• Using Green-Kubo formula for the slipping length and
successive simplifying hypothesis, they derive ( σ : molecular
diameter, Dq‖ : collective diffusion coefficient, η : shear
viscosity, ρc : density at the first layer) :

Ls

σ
∼

D∗q‖
S1(q‖)c2

FSρcσ3
with D∗q‖ =

Dq‖

D0
and D0 =

kBT
3πησ

,

where all involved quantities can be post-treated from the MD
simulation. Indeed, it appears this law is in agreement with
previous simulations Next :

Ls

σ
= α

D∗q‖
S1(q‖)c2

FSρcσ3

(
1− ρc

ρshift

)
with α = 3.04 and

1
ρshift

= 0.47
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Fits of Ls vs Wetting properties of Fluid on Substrate
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Physical theory : consequences

• if cFS is fixed (fluid-solid interaction) : Ls decreases with the
structuration of fluid in the first layer close to the wall⇒ Ls
small in a fluid s.t. pressure is high (which is what is observed
experimentally)

• if ρc is fixed (mean density of the fluid in the zone close to the
wall) : if (pressure↗)-and-(cFS ↘⇔ non-wetting↗) then Ls
strongly increases (even if structuration is strong). This is not
intuitive a priori.
In addition, one can expect that if θ = π (i.e. idealized perfect
slip) then Ls = +∞.
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Some numerical simulations
Barrat & Bocquet, Farad. Disc. 112, 119-127 (1999)

Slip length is proportional to the wetting angle.
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Role of rugosity
Cottin-Bizone et al. Nature Material, Vol 2 (Apr. 2003)

Experiments mentioned :
Zhu & Granick, PRL 88, 106102 (2002) : rugosity decrease
slippage
Watanabe et al. JFM 381, 225–238 (1999) : high slippage
observed on various rugosities

They explore these facts with the same simulation tool as
Barrat & Boquet (FD, 1999)

First, recall non rough wall : with cFS = 0.5⇔ θ = 137o, they
find LS ∼ 20− 25σ ∼ 10− 25nm.

Then : "square dot" wall roughness and 2 situations Next
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Role of rugosity
Cottin-Bizone et al. Nature Material, Vol 2 (Apr. 2003)

Fully wetted (Left) and Partially wetted (Right)
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Role of rugosity
Cottin-Bizone et al. Nature Material, Vol 2 (Apr. 2003)

Case “fully wetted” (a) : no modification of Ls on the upper
wall (compared to non-rough case) but decrease of Ls on
the lower (rough) wall to 2σ at the trough of rugosity (or 7σ
at the crest of rugosity). See Next –Left

Case “partially wetted” (b) : no modification of Ls on the
upper wall (compared to non-rough case) but increase of
Ls on the lower (rough) wall to 57σ (instead of 24 for the
flat wall). See Next –Right
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Role of rugosity
Cottin-Bizone et al. Nature Material, Vol 2 (Apr. 2003)

Gray crosses (flat wall) ; Black circles (rough wall). Left : Case
(a) High pressure / Wetted. Right : Case (b) Low pressure /

Composite.
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Role of rugosity
Cottin-Bizone et al. Nature Material, Vol 2 (Apr. 2003)

Qualitatively, increase of Ls due to absence of friction in the
trough of the rugosity⇔ Boundary condition : null stress at
the wall. Rugosity favouring gaseous lubrication⇒ Ls ↗

As for the wettability, roughness modifies flow properties at
the wall. They think that differences between the 2 articles
mentioned come from different wettability conditions. They
also mention the nanofilm of de Gennes : they can’t prove
its existence but if it exists⇒ Ls ↗.

Dewetting : present on patterned surfaces from nm to µm
scale⇒ friction reduction expected for patterns from nm to
µm scale. But this effect expected to be stronger for nm
patterns. Perspective : use this for low flow resistance
in small channels.
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Toward a clearer view
Bocquet & Barrat. Soft matter, 3, 685-693 (2007)

Thanks to a study at various scales

� A look at molecular scale and plane interface. À la de
Gennes : Ls = η/κ : slip length is the ratio of a “bulk property”
and an “interface” prop. κ depends on intermolecular interaction
(non/wetting). Ls ∼ 1− 50.10−9m

� A look at “mesoscopic” scale : when surface is structured
(wettability or roughness patterns at this intermediate scale).
Molecular details are “homogenized” in a position dependent
Ls(x). Ls can be inferred by the surface pattern scale and the
surface area of the dewetted part.
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Toward a clearer view
Bocquet & Barrat. Soft matter, 3, 685-693 (2007)

� Naturally, the knowledge/control of surface state at each of
these scales⇒ control of flow properties of the complex
surfaces we are able to build at < 1µm.

� In brief, if one knows exactly properties at these 2 levels,
slipping for simple liquids is relatively well understood
theoretically and experimentally.
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A remark

Interpretation of MD results and continuum limit is not a trivial
point.

See Brenner & Ganesan (Phys. Rev. E 61, 6879-6897 (2000)) :
scale separation between MD and C

Boundary condition in the Continuum limit should come
asymptotically as a matching between

inner limit of the outer system (continuum)
outer limit of the inner system (molecular)

This needs to be taken into account when slip lengths are
determined.
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Wall laws - A mathematical viewpoint,

following David Gerard-Varet et al.
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Wall laws - A mathematical viewpoint
Reminder

Normal component : ~u.~nΩ = 0 and Tangential component :
no-slip : ~u.~τΩ = 0
perfect slip : ∂(~u.~τΩ)

∂~nΩ
= 0

Navier slip : ~u.~τΩ = Ls
∂(~u.~τΩ)
∂~nΩ
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Wall laws - A mathematical viewpoint

Homogenization of rugosities :
apparent (Ls(x)) vs effective (Lseff )

0

ε

Ω Ω

NS + BC on ∂Ω NS + BC∗ on ∂Ω0
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Wall laws - A mathematical viewpoint

Context : inspired by previously described physical aspects

we know actual surfaces are not straight but rough.

May roughness induce an "homogenized" slip at ∂Ω0 ?

Can this be proved rigorously ?

+ Computational viewpoint : often impracticable to mesh

the domain at the precision of the roughness⇒

flat domain with equivalent bound. cond. is highly desirable.
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Wall laws - A mathematical viewpoint
The problem

Rε = {x = (x1, x2),0 > x2 > εω(x1/ε)}

Problem (NSε) :
u.∇u −∆u +∇p = 0,
∇.u = 0, x ∈ Ωε

u|∂Ωε
= 0,

∫
σ u1 = φ

with σ, vertic. cross-sect.,

and φ > 0, imposed flux.

when ε→ 0, what is the approx of uε by a sol. of NS in Ω ?
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Wall laws - A mathematical viewpoint
Order 0

uε ≈ uP , sol of NS with wall law u|Σ = 0 (Poiseuille flow),

namely uP = uP(x2) = (6φx2(1− x2); 0)t .

Theorem : For sufficiently small φ and ε, (NSε) has a unique
solution uε ∈ H1

uloc(Ωε), s.t.

‖uε − uP‖H1
uloc(Ωε) ≤ C

√
ε,

‖uε − uP‖L2
uloc(Ωε) ≤ Cε.
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Wall laws - A mathematical viewpoint
Order 1

Previously : no slip⇒ O(ε) approx in L2 but there is better :

uε ≈ uP + 6φε(α; 0)t + o(ε), in L2 and this approx. is the sol of

NS with Navier B.C. : u1|Σ = εα ∂2u1|Σ and u2|Σ = 0.
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Wall laws - A mathematical viewpoint
Order 1 – How ?

Comes from a boundary layer corrector v s.t. (size-ε zoom)

Ωbl := {y2 > ω(y1)}

Problem (BL) :
−∆v +∇p = 0,
∇.v = 0, y ∈ Ωbl

v |∂Ωbl
= (−ω(y1), 0)t

∃ α, v −→ v∞ = (α, 0)t , as y2 → +∞ and uε ≈ uP + 6φεv(x
ε )

This can be proved rigorously for rather general random ω.

Basson & G-V. CPAM (2008), D.G-V. CMP (2009), G-V. & Masmoudi CMP (2010)
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Wall laws - A mathematical viewpoint
What is the nature of slip ?

Does rugosity improve slip ?

Rk : α depends on the position of Σ.

Previously : Σ was above the rugosity.

Prop : (Bucur-Dalibard-G-V, 2012). Assume < ω >= 0.
Consider all rugosities ω ∈W 1,∞(T). Maximum slip coefficient
is achieved for flat surface !

=⇒ Rugosity does not improve slip. Slip is apparent.
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Wall laws - A mathematical viewpoint
Blending slip and no slip

Reminder : previously, we always had homogeneous scaling
ε l ←→

ε

=⇒ Analysis with more general scaling would be interesting

Inspired by functionalized surfaces (Cottin-Bizonne et al. 2012)

flat boundary but with pure slip and no-slip zones patterns :

Patches Riblets
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Wall laws - A mathematical viewpoint
Blending slip and no slip

Let φε be the volume fraction of no-slip

One can show (Bonnivard, Dalibard, Gerad-Varet, M3AS 2014) :

Patches ... Riblets ... Then limit cond.

If φε � ε2 If φε � exp(−c/ε) Dirichlet
If φε � ε2 If φε � exp(−c/ε) Pure slip
If φε ∼ ε2 If φε ∼ exp(−c/ε) Navier

Summary :
significant slip possible but relative area of no-slip zone
needs to be very small (unrealistic ?)
riblets are less efficient in improving slip
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Microchannels to handle fluids

Tiny volumes : nanolitres

Otherwise stated, pictures of this section courtesy LOF (Bordeaux) :

A. Colin, G. Cristobal, P. Guillot.
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Droplet creation

Anna et al., 2003 – “Flow focusing” and various regimes
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Droplet creation - Axisymetric
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Droplet creation - Routing

Regular "Weird"

Topological change
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Droplet Usage

Song and Ismagilov, 2003 – Fast chemical Kinetic : 10−3 s

Rk : getting things homogeneous in the droplet
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Droplet mixing : 2 examples of tracing

Diffusion +
Mixing

Tracers
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Modelling

Hypothesis
Fluids :

immiscible
viscous
newtonian
homogeneous

incompressible & isothermal flow
zero-thickness interface
negligible gravity
constant surface tension

Usual features in Microfluidics
Low Reynolds, laminarity
Interfaces with stationary shape
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Methods for moving interfaces
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Level Set tools - Redistanciation

φt + sgn(φ0)[‖∇φ‖ − 1] = 0 and φ(t = 0, x) = φ0(x)



Overview Gases Liquids Wall laws for liquids Droplets in microfluidics Level Set

Numerical results
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Model & LS formulation

Flow resolution ...

(NS)


ρ (∂tu + u.∇u)− div(2ηDu) +∇p = σ κ δ(φ) n

div(u) = 0
+ B.C.

... coupled with a Level Set method ...

(T )

{
φt + u .∇φ = 0

+ B.C. + I.C.

η(φ) = η1 + (η2 − η1)H(φ)

Discretization of (NS) :
� Time : implicit except surface tension (standard approach)
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Various mixing regimes : confined droplets 1/2

Small Big
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Various mixing regimes : confined droplets 2/2

Small : switch of η
Small : more
contrasted η
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Droplets Creation in coaxial tubes 1/3

Geometry

R

Z

0 0.0005 0.001
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012 Injection
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Droplets Creation in coaxial tubes 2/3
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Droplets Creation in coaxial tubes 3/3

Qualitative comparison between experiments and simulations

Photo Pierre Guillot (Rhodia - LOF)
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Numerical difficulties

Stability condition : discr. of surface tension

See Galusinski-P.V., JCP 227(12), pp. 6140-6164, 2008 :
On stability condition for bifluid flows with surface tension : application to microfluidics

Boundary conditions : outflow with surface tension ?
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Perspectives (among others)

more general forces at interface, equilibrium shapes of
vesicles
e.g. Cottet-Maitre-Milcent (2004, 2006, 2007, 2009)

fluid-structure interaction (cf C. Grandmont lecture)

cell motility on substrate

from newtonian to non-newtonian rheologies
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