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Lecture 4.
Advanced Topics, Clinical Applications and Challenges
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Importance of Validation in CFD
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US FDA’s CFD Challenge: : T T

Steady flow through a nozzle at different o o
Reynolds numbers
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FIGURE 1. Nozzle specifications: (a) dimensions of nozzle (inlet and outlet lengths unspecified); (b) cross-sectional cuts defined
for data submission for the sudden expansion.

@

Stewart et al., CVET 2012 . _r?o

Steady flow through a nozzle at differerit

©

TABLE 1. Flow rates and Reynolds numbers used in simu- ReynOIdS numbers e

lations. g

.20

Fi t Throat Reynold Inlet Reynold . -

) number (A8) number (R8) 28 groups around the world submitted ¢

. Q

521 x 10° 500 167 their results g

2.08 x 10° 2000 667 S

3.64 x 10° 3500 1167 ©
210 o000 by Different modeling assumptions were

used: Laminar, and a number of
turbulent models

COLLEGE OF ENGINEERING & MEDICAL SCHOOL

COMPUTATIONAL VASCULAR BIOMECHANICS LAB p

UNIVERSITY OF MICHIGAN http://bloodflow.engin.umich.edu/



Importance of Validation in CFD

Very discouraging results were reported:

Up to 5 submissions reported solutions in which the errors on volumetric flow were

above 10% Re (throat) = 500
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Importance of Validation in CFD

Very discouraging results were reported:

Up to 5 submissions reported solutions in which the errors on volumetric flow were

above 10%
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Importance of Validation in CFD

Axial velocity profiles for the Re = 500 (easiest case)

Simulations with errors > 10% are omitted
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Validation in a clinical setting
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Aortic Coarctation

e Aortic Coarctation (CoA)

* 8%-11% of congenital heart defects (10
000 patients annually in Western world)

>

End-to-end anastomosis End-to-side anastomosis

* Treatment: alleviate blood pressure (BP) s, P 8\W& 8\(%
* Open repair or stenting

gradient through the coarctation 7
* Diagnosis and treatment planning: importance of BP metrics:
* BP at rest:

* Catheter-driven transducer (accurate but invasive)
* Sphygmometer (less accurate but non-invasive)
* Doppler ultrasound imaging (Bernoulli’s equation)

© C. Alberto Figueroa — figi

e BP at stress (pharmacologically-induced):
e Catheter-driven transducer (accurate but invasive)

e Current putative treatment guideline: BP gradient > 20 mmHg at rest
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Pressure gradient (drop) through a stenosis

U, : mean velocity unobstructed tube

D,, A, : Diameter/Area unobstructed tube

ich.edu

D,, A, : Diameter/Area obstructed tube 2

Reynolds number: | Re = DoUo

L4

V. fluid viscosity

For medium-large Re,

oN
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Pressure gradient has a complex,
nonlinear dependency on flow
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MICCAI 2012: Data

8-year old female patient, moderate thoracic aortic coarctation (=65% area
reduction) Body surface area (BSA) was 0.94 m?2.

Geometry Flow Pressure
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Aortic Flow
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Goal: to report pressure gradient between specific locations

" 0(-2.01, -16.9, 99.5) 5
n(0.00,0.27,0.96) ®©

Assumptions
 Rigid walls (fluid computation only)
* Newtonian behavior
e Mass density: 0.001 g/mm?3
* Dynamic viscosity: 0.004 g/mm/s

. - . ‘0(1.22, -25.8,73.2)
Deliverables n(0.00, 0.14, 0.99)

* Flow splits between all outlets (supra-aortic and descending aorta
* Peak pressure difference between P1 and P2
* Mean pressure difference between P1 and P2

© C. Alberto Figueroa — figueroc@med.umich.ed

* Pressure in ascending aorta (systolic and diastolic)
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Full data — including estimated pressure gradient

Flow Distribution AAo0 Pressures Results
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Pressure amplification

True coarctation pressure drop can only be estimated invasively or with modeling!

Upper Body
Pressures:

=530 cm/s

SBP: 115 mmHg T

DBP: 65 mmHg

=520 cm/s

Upper Body to
Lower Body Gradient:

=920 cm/s

\
2777

12 mmHg [ s

Latham et al., Circulation 1985

Amplification of the Pressure Pulse in the periphery Nichols & Singh, Curr Opin Cardiol 2002
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Results

No winners/losers: we are all ‘competing’ against ourselves... and the goal is always the same: to

replicate physiology.

Flow Distribution

AAo0 Pressures

Results
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Results: 6 participants

No winners/losers: we are all ‘competing’ against ourselves... and the goal is always the same: to

- - 3
replicate physiology. 3
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Results: 6 participants

No winners/losers: we are all ‘competing’ against ourselves... and the goal is always the same: to

. . 3
replicate physiology. B
=
Flow Distribution AAo Pressures Results E
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Results: 6 participants

No winners/losers: we are all ‘competing’ against ourselves... and the goal is always the same: to

. . 3
replicate physiology. B
N
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Results: 6 participants

No winners/losers: we are all ‘competing’ against ourselves... and the goal is always the same: to

. . 3
replicate physiology. 3
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Again, the issue is the boundary conditions...

Versatility of coupled outflow BCs to reproduce realistic results with scarce data

Prescribed flow splits approach VS
Right Carotid ,
\‘>"
Right ‘_
Subclavian ?;;((E/OCA
DA QLA
4.26
Upper:41.16

Ascending Aortic Flow
250000 - - —

Aortic Root

200000 T
E 150000 /\
E 100000 \
é 50000 /

0 '/ ! Pt e~V P Z
0 01 02 03 04 05 0i6 0.7 X
-50000

Time (sec)

AN

Q_DAO: 58.8
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PC-MRI Data
(24 frames)

http://bloodflow.engin.umich.edu/

Flow (ccfs)

Flow (cc/s)
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60.00 Left Renal Flow

40.00

[ 0.25 05 0.5 1

time (s)

Rightlliac Flow

Les et al, Annals Biomed Eng 2010
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Take-home messages

* No winners/losers: we are all ‘competing’ against ourselves... and
the goal is always the same: to replicate physiology.

* Lack of ground truth
* Amplification of the Pressure Pulse in the periphery
 Value of Simulation (when property validated)

* 3 types of results:

* Globally satisfy all measurements, it requires techniques that have the
ability of accommodating uncertainties and lack of completeness in the data

* Physically-plausible solution, but unable to reproduce clinical measurements

* Non-physical solution
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Take-home messages

* Velocity-centric submissions

* Pressures are often times ignored (set to zero!)

Imposing flow splits when waveform is not known forces different
pressure gradients in the model (even when the waveforms are
known: we need to considered differences between model and
measurement)

1D Methods not appropriate for coarctation or aneurysms
* Turbulence models or laminar flow assumptions
* Methods with uniform grid size are at a clear disadvantage

* Importance of grid independence assessment
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CoA validation study at KCL with ground-truth pressure dat
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X-MR Setup at St Thomas’ Hospital

Pressure Traces in the Aorta
at Two Locations

Catheter Asc.Aa
s Catheter Dis.Ao
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16 yo (Cl: 0.85) 15 yo (Cl: 0.46) 25 yo (Cl: 0.67) 21 yo (Cl: 0.93)

, [
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CMR & pressure data in repair CoA patients at rest & stress
2D PC-MRI data

Flow (mm3/s)

Flow (mm3/s)
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CMR & pressure data in repair CoA patients at rest & stress

Pressure wire data

100 - Rest Pressure
— 80 -
=T+
I
o
2 40 -
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& 20 -
0 T T 1
0 0.5 1 1.5
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CMR & pressure data in repair CoA patients at rest & stress
2D-SSFP data

Ascending Aorta Distensibility

2D SSFP,

2D SSFP,

Descending Aorta Distensibility

http://bloodflow.engin.umich.edu/
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Arterial Stiffness estimated from Pressure & Vessel Motion

Simultaneous knowledge of distensibility

AND pressure is used to derived elastic properties

Diastolic

>
Stiffness E R

Configuration
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Arterial Stiffness in repaired CoA patients at rest & stress

Vessel stiffness increases with stress (pressure)

Patient 3
O
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Results — CFD predictions

Pressure (mmHg) Velocity (cm/s) WSS (dyn/cm?)
50 60 70 75 0 25 50 75 100 ¢ 10
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Pressure (mmHg)

(Wire - CFD)

Validation of computational predictions

Pressure gradient (Rest)
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First real-life application of virtual surgical planning
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Fontan patient
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Pulmonary Arterio-venous malformations

20 yo Fontan Female Patient w pacemaker & AVMs
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Virtual Surgical Planning Application — Congenital Disease
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Anatomy and hemodynamic data
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Anatomy and hemodynamic data
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Hemodynamic Verification
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Hemodynamic Verification
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Flow rate [mm3/s]
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Mean RPA Flow = 105526.203313 mm®/s

Mean LPA Flow = 54460.252899 mm?®/s
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Virtual Graft Insertion — Optimal Protrusion Length?

13mm x 5 cm graft — various fixation lengths @ IVC
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Particle tracking of different configurations

Pre-Operative Model
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Particle tracking of different configurations

17.5 mm protrusion
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Particle tracking of different configurations

20.0 mm protrusion
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Particle tracking of different configurations

22.5 mm protrusion
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Particle tracking of different configurations

25.0 mm protrusion
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Particle tracking of different configurations

27.5 mm protrusion
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Particle tracking of different configurations

30.0 mm protrusion
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Particle tracking of different configurations

Pre-Op Optimal Protrusion

Velocity (mm/s)

0 250 >500

' (S 74 (¥

COLLEGE OF ENGINEERING & MEDICAL SCHOOL

COMPUTATIONAL VASCULAR BIOMECHANICS LAB

UNIVERSITY OF MICHIGAN http://bloodflow.engin.umich.edu/




Split of hepatic factors as a function of protrusion length

17.5 mm

Protrusion

Model Length
Pre-Op -
17.5

20
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Post-Op

# of
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22.5 mm

Number of Particles at:

Right PA Left PA

18566
34654
39377
46279
39237
27560
18316

82543
65867
60928
53573
59836
70392
79754

Elsewhe
re
113
701
917
1370
2149
3270
3152

Percentage of Particles at:

Right PA Left PA Elsewhere

18.34% 81.55%
34.24% 65.07%
38.90% 60.19%
45.72% 52.93%
38.76% 59.11%
27.23% 69.54%
18.09% 78.79%

30.0 mm

0.11%
0.69%
0.91%
1.35%
2.12%
3.23%
3.11%
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Split of hepatic factors as a function of protrusion length
17.5 mm 22.5mm 30.0 mm
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Procedure done on July 10t" 2015

Virtual @raft Deployment Virtual Hepatic Transport Pre-op  Virtual Hepatic Transport Post-op
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Patient is doing well and is being monitored for changes in AVMs and pulmonary flow
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Conclusions

* Mathematical modeling of blood flow can have an impact on:
* Disease research
* Medical device design

 Surgical planning

* A trial-and-error paradigm can be replaced by a virtual design and
optimization paradigm
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Conclusions

e “Everything should be made as simple as possible, but no simpler”

* Parameter estimation is a key effort in the CV modeling field: your
model will only be as good as your parameters!
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