Image-based modeling of the cardiovascular system

C. Alberto Figueroa, PhD

Edward B. Diethrich M.D. Associate Professor of Surgery and Biomedical Engineering

University of Michigan

Honorary Senior Lecturer in Biomedical Engineering King's College London

CEMRACS 2015 Summer School

CIRM - Luminy July 20th – 21st 2015

figueroc@med.umich.edu

Т

University of London

Outline

- Lecture 1: Introduction to function and modeling of the CV system
- Lecture 2: Techniques for Parameter Estimation in the CV system
- Lecture 3: Simulation of Transitional Physiology
- Lecture 4: Advanced Topics, Clinical Applications and Challenges

Lecture 4: Advanced Topics, Clinical Applications and Challenges

US FDA's CFD Challenge:

Steady flow through a nozzle at different Reynolds numbers

Stewart et al., CVET 2012

TABLE 1.	Flow	rates	and	Reynolds	numbers	used	in	simu-
				lations.				

Flow rate (m ³ /s)	Throat Reynolds number (<i>Re</i> t)	Inlet Reynolds number (<i>Re</i> i)
5.21×10^{6}	500	167
2.08×10^5	2000	667
3.64×10^5	3500	1167
5.21×10^{5}	5000	1667
6.77×10^5	6500	2167

Z position of cross-sectional cut

FIGURE 1. Nozzle specifications: (a) dimensions of nozzle (inlet and outlet lengths unspecified); (b) cross-sectional cuts defined for data submission for the sudden expansion.

Steady flow through a nozzle at different Reynolds numbers

Reynolds numbers 28 groups around the world submitted their results

Different modeling assumptions were used: Laminar, and a number of turbulent models

0

Very discouraging results were reported:

Up to 5 submissions reported solutions in which the errors on **volumetric flow** were above 10% **Re (throat) = 500**

Very discouraging results were reported:

Up to 5 submissions reported solutions in which the errors on **volumetric flow** were above 10%

COLLEGE OF ENGINEERING & MEDICAL SCHOOL COMPUTATIONAL VASCULAR BIOMECHANICS LAB

Axial velocity profiles for the Re = 500 (easiest case)

Simulations with errors > 10% are omitted

ERSITY OF MICHIGAN

Validation in a clinical setting

http://bloodflow.engin.umich.edu/

Aortic Coarctation

- Aortic Coarctation (CoA)
 - 8%-11% of congenital heart defects (10 000 patients annually in Western world)
 - Treatment: alleviate blood pressure (BP) gradient through the coarctation
 - Open repair or stenting

OF MICHIGAN

Diagnosis and treatment planning: importance of BP metrics:

- BP at rest:
 - Catheter-driven transducer (accurate but invasive)
 - Sphygmometer (less accurate but non-invasive)
 - Doppler ultrasound imaging (Bernoulli's equation)
- BP at stress (pharmacologically-induced):
 - Catheter-driven transducer (accurate but invasive)

VASCULAR BIOMECHANICS LAB

Current putative treatment guideline: BP gradient > 20 mmHg at rest

Pressure gradient (drop) through a stenosis

MICCAI 2012: Data

8-year old female patient, moderate thoracic aortic coarctation (≈65% area reduction) Body surface area (BSA) was 0.94 m².

Goal: to report pressure gradient between specific locations

Assumptions

- Rigid walls (fluid computation only)
- Newtonian behavior
- Mass density: 0.001 g/mm³
- Dynamic viscosity: 0.004 g/mm/s

Deliverables

- Flow splits between all outlets (supra-aortic and descending aorta
- Peak pressure difference between P1 and P2
- Mean pressure difference between P1 and P2
- Pressure in ascending aorta (systolic and diastolic)

P₁

o(1.22, -25.8, 73.2)

n(0.00, 0.14, 0.99)

Full data – including estimated pressure gradient

Pressure amplification

ERSITY OF MICHIGAN

True coarctation pressure drop can only be estimated invasively or with modeling!

Results

No winners/losers: we are all 'competing' against ourselves... and the goal is always the same: to replicate physiology.

			F	low Dist	ribution			AAo Pr	essures	Res	ults mich
Paper	Description	Q_IA	Q_LCCA	Q_LSA	Upper	Q_DAO	Sum	Systolic	Diastolic	Mean ∆P	Peak 4
ID	Description	25.6	11.3	4.26	41.16	58.8	99.96	115	65	12	me

.edu

© C. Alberto Figueroa – figueroc@

No winners/losers: we are all 'competing' against ourselves... and the goal is always the same: to replicate physiology.

		Flow Distribution						AAo Pr	essures	Results E		
Paper ID	Description	Q_IA	Q_LCCA	Q_LSA	Upper	Q_DAO	Sum	Systolic	Diastolic	Mean ΔP	Peak $\Delta \vec{P}$	
	Description	25.6	11.3	4.26	41.16	58.8	99.96	115	65	12	me	
		25	12	4.5	41.5	58.5	100	115	67	7	22 ®	

No winners/losers: we are all 'competing' against ourselves... and the goal is always the same: to replicate physiology.

		Flow Distribution						AAo Pr	essures	Results $\stackrel{1}{_{\mathrm{H}}}$	
Paper	Description	Q_IA	Q_LCCA	Q_LSA	Upper	Q_DAO	Sum	Systolic	Diastolic	Mean ∆P	Peak ΔP
ID	Description	25.6	11.3	4.26	41.16	58.8	99.96	115	65	12	me
47	In-house Code (Lattice Boltzmann)	33	14.5	7.2	54.7	67.4	122.1	135	65	2.60	24.74 م
14	In-house Code (Lattice Boltzmann)	27	12	4	43	57	100	113.1	62.3	9.2	iangi 10.6 ^g ij
19	In-house Code (Continuum)	29.28	13.72	4.3	47.3	52.7	100	115	65	12.92	15.46

© C. Alberto Figuerd

edu

No winners/losers: we are all 'competing' against ourselves... and the goal is always the same: to replicate physiology.

		Flow Distribution						AAo Pressures		Res	ults _D
Paper	Description	Q_IA	Q_LCCA	Q_LSA	Upper	Q_DAO	Sum	Systolic	Diastolic	Mean ΔP	Peak A
ID	Description	25.6	11.3	4.26	41.16	58.8	99.96	115	65	12	me
47	In-house Code (Lattice Boltzmann)	33	14.5	7.2	54.7	67.4	122.1	135	65	2.60	24.740 24.740
14	In-house Code (Lattice Boltzmann)	27	12	4	43	57	100	113.1	62.3	9.2	iəngij 10.6gij
19	In-house Code (Continuum)	29.28	13.72	4.3	47.3	52.7	100	115	65	12.92	15.46
8	Commercial Code	37.21	17.18	3.88	58.27	41.73	100	115	77	2.84	13 13
12	In-house Code (continuum)	25.6	11.3	4.3	41.2	58.8	100	147	65.5	5.81	30.02 ⁰
		-				•	\mathcal{I}	A			C. Albert
											O

http://bloodflow.engin.umich.edu/

edu

No winners/losers: we are all 'competing' against ourselves... and the goal is always the same: to replicate physiology.

		Flow Distribution						AAo Pr	essures	Results $\frac{1}{2}$	
Paper	Description	Q_IA	Q_LCCA	Q_LSA	Upper	Q_DAO	Sum	Systolic	Diastolic	Mean ΔP	Peak A
ID	Description	25.6	11.3	4.26	41.16	58.8	99.96	115	65	12	am
47	In-house Code (Lattice Boltzmann)	33	14.5	7.2	54.7	67.4	122.1	135	65	2.60	24.740 24.740
14	In-house Code (Lattice Boltzmann)	27	12	4	43	57	100	113.1	62.3	9.2	iəngij 10.6gij
19	In-house Code (Continuum)	29.28	13.72	4.3	47.3	52.7	100	115	65	12.92	15.46
8	Commercial Code	37.21	17.18	3.88	58.27	41.73	100	115	77	2.84	nero 13
12	In-house Code (continuum)	25.6	11.3	4.3	41.2	58.8	100	147	65.5	5.81	30.02 30.02
56	In-house Code (Continuum)	26.35	11.62	4.21	42.18	57.92	100.1	120.5	67.39	2.29	12.940

COLLEGE OF ENGINEERING & MEDICAL SCHOOL COMPUTATIONAL VASCULAR BIOMECHANICS LAB © C. A

edu

Again, the issue is the boundary conditions...

Versatility of coupled outflow BCs to reproduce realistic results with scarce data

VS

Prescribed flow splits approach

Coupled Outflow BC approach

Take-home messages

- No winners/losers: we are all 'competing' against ourselves... and the goal is always the same: to replicate physiology.
- Lack of ground truth
- Amplification of the Pressure Pulse in the periphery
- Value of Simulation (when property validated)
- 3 types of results:
 - Globally satisfy all measurements, it requires techniques that have the ability of accommodating uncertainties and lack of completeness in the data
 - Physically-plausible solution, but unable to reproduce clinical measurements
 - Non-physical solution

Take-home messages

- Velocity-centric submissions
- Pressures are often times ignored (set to zero!)
- Imposing flow splits when waveform is not known forces different pressure gradients in the model (even when the waveforms are known: we need to considered differences between model and measurement)
- 1D Methods not appropriate for coarctation or aneurysms
- Turbulence models or laminar flow assumptions
- Methods with uniform grid size are at a clear disadvantage
- Importance of grid independence assessment

CoA validation study at KCL with ground-truth pressure data

X-MR Setup at St Thomas' Hospital

COLLEGE OF ENGINEERING & MEDICAL SCHOOL COMPUTATIONAL VASCULAR BIOMECHANICS LAB

http://bloodflow.engin.umich.edu/

CMR & pressure data in repair CoA patients at rest & stress

MPUTATIONAL VASCULAR BIOMECHANICS LAB

CMR & pressure data in repair CoA patients at rest & stress

CMR & pressure data in repair CoA patients at rest & stress

2D-SSFP data

Ascending Aorta Distensibility

Descending Aorta Distensibility

http://bloodflow.engin.umich.edu/

Arterial Stiffness estimated from Pressure & Vessel Motion

Simultaneous knowledge of distensibility AND pressure is used to derived elastic properties

Arterial Stiffness in repaired CoA patients at rest & stress

Vessel stiffness increases with stress (pressure)

Results – CFD predictions

Validation of computational predictions

Sotelo, Valverde, Beerbaum, Grotenhius, Greil, Schaeffter, Hurtado, Uribe & Figueroa, in preparation VASCULAR BIOMECHANICS LAB http://bloodflow.engin.umich.edu/ OF MICHIGAN

Т

First real-life application of virtual surgical planning

Fontan patient

Pulmonary Arterio-venous malformations

20 yo Fontan Female Patient w pacemaker & AVMs

Virtual Surgical Planning Application – Congenital Disease

Anatomy and hemodynamic data

Anatomy and hemodynamic data

Hemodynamic Verification

http://bloodflow.engin.umich.edu/

Hemodynamic Verification

VERSITY OF MICHIGAN

VASCULAR BIOMECHANICS LAB

© C. Alberto Figueroa – figueroc@med.umich.edu

40

http://bloodflow.engin.umich.edu/

Virtual Graft Insertion – Optimal Protrusion Length?

13mm x 5 cm graft – various fixation lengths @ IVC

Optimal Protrusion

49

Split of hepatic factors as a function of protrusion length

Split of hepatic factors as a function of protrusion length

ERSITY OF MICHIGAN

Procedure done on July 10th 2015

Patient is doing well and is being monitored for changes in AVMs and pulmonary flow

Conclusions

- Mathematical modeling of blood flow can have an impact on:
 - Disease research
 - Medical device design
 - Surgical planning
- A trial-and-error paradigm can be replaced by a virtual design and optimization paradigm

Conclusions

• "Everything should be made as simple as possible, but no simpler"

 Parameter estimation is a key effort in the CV modeling field: your model will only be as good as your parameters!

Acknowledgements

United States National Institutes of Health Grant R01 HL105297

European Research Council Starting Grant 2012-307532 INTEG-CV-SIM

and skills

Wellcome Trust / EPSRC Medical Engineering Centre @ KCL

Integrated Cardiac Care using Patient-specific Cardiovascular Modelling

