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Lecture 3:
Simulation of Transitional Physiology
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Transitional Stages
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Control Mechanisms of Flow and Pressure

Global control of Pressure

Baroreflex system

Vasomotor Center
(CNS)

Baroreceptors
(stretch sensing cells)

Afferent nerves
(to CNS)

Efferent nerves
(from CNS)
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Local control of Flow and Pressure

Organ-specific Auto-regulations

3
Cerebral Auto-regulation ©

180 )

B _ -

160 I
"

. - )
-
" 5

N
o

£ ;

5 0] €

2 120

E /4 )
3 1004 :
a I
Secomb J
80 T T T T )
0 50 100 150 200 .
Intraluminal pressure (mmHg) )
-
oo
. =
Coronary Auto-regulation |
©
(@)
)
)
20
[
Flow 3
D
Dole 2
g
Pressure .
(&)
©

Renal Auto-regulation

1600 +

1
-
(2]
o

Renal blood flow
- 120
Glomerular filtration
rate

L] 1

& B8
Glomerular filtration

rate (ml/min)

Renal blood flow
(mi/min)
R o0 —m‘
8 8 8
1 1 L

0- Guyton & Hall
http://b|00u||uw.=||9|l|.un||t.||.cuul

]
o
(O}



Global control: modeling the baroreflex

COLLEGE OF ENGINEERING & MEDICAL SCHOOL

COMPUTATIONAL VASCULAR BIOMECHANICS LAB

UNIVERSITY OF MICHIGAN http://bloodflow.engin.umich.edu/

© C. Alberto Figueroa — figueroc@med.umich.edu



Sympathetic system (the gas pedal)

* The sympathetic nerves innervate:
* Small arteries & arterioles
Sympathetic

) Veins chain
* Heart

* Increased sympathetic activity stimulates:

* |ncrease in vessel constriction in small arteries &
arterioles and veins

* Increase in heart rate
* Increase in maximum heart contractility

Vasomotor center
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Guyton, Human Physiology and
Mechanisms of Disease, 5th Ed.
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Parasympathetic system (the brake)

* The parasympathetic nerve (vagus nerve) only
innervates:

Sympathetic

e Heart EERin ‘

* Increased parasympathetic activity stimulates:

* Decrease in heart rate

* Decrease in maximum heart contractility
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Berne and Levy, 6t edition Mechanisms of Disease, 5th Ed.
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The baroreceptors

Glossopharyngeal
nerve

Internal carotid

artery External carotid

artery
Vagus nerve

Sinus nerve

Superior cervical
ganglion

Carotid body

Carotid sinus

Common carotid
artery

Berne and Levy, 6t edition
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Example: Hemodynamic changes during trauma
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Regulation of cardiac output

Cardiac :
Coupling
factors faciore
Heart Preload
rate
i * * |
Cardiac
output
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Myocardial Afterload

contractility
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Control of heart rate

* Heart rate is principally controlled by autonomic nervous system
through sympathetic (increase heart rate) and parasympathetic
(decreases heart rate) pathways.

* Parasympathetic tone dominates in healthy individuals, so blocking =
these mechanisms increases heart rate.
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Brainbridge reflex

* The Bainbridge reflex, also called the atrial reflex, is an increase in
heart rate due to an increase in central venous pressure

* Increased blood volume is detected by stretch receptors
(baroreceptors) located in both atria at the venoatrial junctions

* The baroreceptor reflex can correct for a change in arterial
pressure by increasing or decreasing heart rate. In contrast, the
Bainbridge reflex responds to changes in blood volume

Increases Atrial po—
Intraven ; : Bainbridge
bravonousy right atrial ——- receptors - d
infusion : reflex
pressure stimulated 7
Heart
Increases Increases -
: : Baroreceptor
cardiac -~ arterial > reflexp 4
output pressure

Berne and Levy, 6t edition
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Control of Stroke Volume

* Myocardium can adapt to changing hemodynamic conditions by
intrinsic mechanisms (know this from experiments in denervated
hearts).

* Frank-Starling mechanism is one important way that stroke
volume changes.

* Increased preload (right ventricular filling pressure just before
ventricular contraction) causes increased SV, EDV, but HR constant.

* Dilation of heart due to increased EDV increases myocardial fiber
length which increases contractility.

* Increased afterload (aortic pressure the heart pumps against)
causes decreased HR, but constant SV.
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Frank-Starling mechanism

* Also known as the “Law of the
heart”

* Maintains balance between
right and left ventricles.

* If the atrial pressures were the
same, then the output of the
right side would exceed the left
leading to an increase in left
ventricular diastolic volume,
which would increase left
ventricular output, resulting in
equilibration of cardiac outputs.
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Modeling the baroreflex

* To model the baroreflex mechanism the minimum set of
components required are:

* Heart

* Large arteries

 Small arteries and arterioles
* Veins

* The effect of the baroreflex requires the control of:
* Arterial resistance (small arteries and arterioles)
* Peripheral blood volume (veins)
* Heart rate
* Heart contractility
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Modeling the baroreflex

I R, C, V, control I R control
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Patient Specific Geometry

* The basis of the geometry is taken from a previously
published model

1.CTA 2. Pathlines 3. Segmentation 4. Lofting 5. 3-D Model

Aorta
and
Coronary

J.S. Coogan, J.D. Humphrey, C.A. Figueroa. BMMB 2013
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Patient Specific Geometry

* Here the geometry has been reduced to 7 branches:

Right subclavian
Right internal carotid
Right external carotid
Left internal carotid
Left external carotid
Left subclavian

Descending aorta
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Patient-specific geometry

* Wall thickness and elastic
modulus derived from a
vessel diameter, pulse
wave velocity relationship
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Inflow BC — the heart model

* The inlet of the 3D geometry is implicitly coupled to a 0D
model of the left heart

I Left atrial pressure I I Left ventricular pressure
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Inflow BC — the heart model

* The time varying pumping action of
the left ventricle is modelled using
via an non-dimensional elastance

function

r "
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Universal functional form for the elastance function

DCM dilated cardiomyopathy
CAD coronary artery disease with normal LV function
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* Once normalised, the elastance function is self similar under a
wide range of conditions.
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Arterial outflow BCs

* Each vessel branch in 3D is implicitly coupled to a 3-element
Windkessel

'_____________1
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Arterioles and veins

* Each Windkessel is attached a circuit that represents the
arterioles, venules and small veins

- = = - e e _ - - - - - -
| From | I |
TR |

I 1 Ry Lip
—_— 'V::ﬁ \ IQI AQa i Rt :
c——= " | q|az== ™ ezt CaZ” |

I

- R e OZ O .
= = I

* The flow from each Windkessel branch is added and passed

to the arterioles and veins circuit
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Pressure feedback

* The average pressure at each carotid branch is compared to its
target value, the maximum difference is used as the control
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Control response

 The baroreflex is modelled as a 15t order ODE whose RHS
depends on the sympathetic n, and parasympathetic n,

activity
| |
dr, === . ) .
K {l’; +E:Ei (t)i: QjTls (pcs) o .-"‘Ij)fn'p (pcs) + Vi

Venous Unstressed

Heart Rate Volume
Heart Contractility Arterial Resistance Venous Compliance
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Control parameters

e Gain parameters (ot and B) have been fitted to steady state
values from literature
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Systemic circuit

* The circuit is numerically implemented by using the following
relationships

V, P
e AN
AP =RQ ]
; E dVIdt=Qn—-Qour — _ ¢
o (_)0000 CP.=V -V,
AP = L dQJ/dt e

* The resulting algebraic system has the form

AX-?H—l — Bx" + Cqﬂ,—l—l +D
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I 0D variables I x' =[P,...,P0,Pic,. s Poc, Vas Vor, Va2, Qu2, Vias Qo Vie
[QZ??Q’)’L}

I 3D flows I qT
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Baroreflex assessment: the tilt test

* Controlled assessment of the baroreflex is clinically examined by
controlling the orientation of the patient

* The change in orientation triggers the baroreflex due to a
gravitational pressure change
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Simulating the tilt test

* Using a time step At = 0.0001 s, 25 s of physical time were
simulated

e Two sets of simulations were performed:

* 90° tilt over 5 s with gravity, baroreflex control

* 90° tilt over 5 s with gravity, without baroreflex control

18°/s

ey \ /
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Effect of feedback on Pressure-Volume loop

Pressure [mmHg]
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Effect of feedback on Pressure-Volume loop
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Effect of feedback on control

Pressure [mmHg]
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Effect of feedback on control
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Effect of feedback on control

— Supine position
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Validation against clinical data

* Fitting the baroreflex response to physiological data

* Experimental data exhibit difference in pressure waveforms during
head up tilt

Experimental data Simulated data
1007
140t
90H
_ go} _ 130
[s18] oo
T T
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E ol ~ \ =120
' g
5 =
o L
a 60 \ ' = 110b
50F
100t
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Time [s] Time [s]

Williams et al., “Patient-specific modelling of head-up tilt”, Math Med Biol. 2013.
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Local control: modeling coronary auto-regulations
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Local control: Coronary auto-regulation

Simulation of alpha and beta adreno-receptors
and metabolic feedback in coronary vessel SMC
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Coronary Flow Control Systems

Feedforward Control = Parallel Control

>
o
Q
<
L
S
>
o
b}
£
O
o
—
o}
>
e
X
I
©
o
—
[}
>
.o
L
o
)
—_
[}
o)
<<
@)
©

Images by Wikimedia users Ranveig (TL) and Melburnian (TR)
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Coronary Flow Control Systems

Feedback control requires an error signal

- Oxygen supply-demand matching

- Vessel wall shear stress control

- Vessel hoop stress control

- Cardio-cardiac reflexes?

Images by Wikimedia users Ranveig (TL) and Melburnian (TR)
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What’s special about the coronary circulation?

* The flow occurs primarily in diastole to the contraction of the

myocardium in systole!

Superior
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/' Left Main
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Pulsatile nature of left coronary artery blood flow. Flow
islower during phases of isovolumetric contraction {a)
and ejection {b) than during diastole {(c).

http://www.cvphysiology.com/
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Modeling Coronary Flow Control

Epicardial Vessel

Myocardium
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Feedforward Control: o-Vasoconstriction

Vessels of diameter > 100 um

SR - |

Alpha Feedforward Epicardial Vessel

] L

i)

Myocardium

S\ Aa

a-vasoconstriction has been described as “paradoxical”: it has been postulated that
it acts to improve coronary perfusion by reducing retrograde systolic flow.

This mechanisms also affects vascular compliance reduction.
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Feedforward Control: 3-Vasodilation

Vessels of diameter < 100 um

Beta Feedforward
/A

Epicardial Vessel
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Feedback Control: Vasodilation

Vessels of diameter < 100 um

Metabolic Feedback Epicardial Vessel
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Coronary Vascular Model

Pa(z‘) R, Ry Ry
@ YWy '\/)&\' » % / - Feedforward
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Epicardial Vessel
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A Model of Coronary Microvasculature Resistance Control

e Key assumptions of the model:
* Myocardial oxygen supply should closely match myocardial oxygen demand

e Coronary flow control should primarily be via a feedback mechanism which
evaluates and acts to counter discrepancies in oxygen demand

* The control system should take into account the “historical” state of the
system, such that repayments of any oxygen “debts” are possible

* All changes in myocardial oxygen delivery are due to changes in flow: we
assume that coronary venous blood oxygen content and myocardial oxygen
extraction are constant
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A Model of Coronary Microvasculature Resistance Control

Instantaneous O2 Demand - Supply Discrepancy:

h(t) = MVO2(t) — vQ(t)

Oversupplied O Hungry

Myocardial Hunger: - H > E
t ks £

H(t) := [ h(r)dr,
0

Damped Harmonic Motion: h = MVO2 - 02 Supply %’o
~ 40 TF zf:zf.ﬁ;?zfi??ssézzztfég%ééSz;l n[ e
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Canty and Klocke, Circulation, 1985.
Reduced Myocardial Perfusion in the Presence of Pharmacologic Vasodilator Reserve
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A Model of Coronary Microvasculature Resistance Control

Combining the equations on the previous slide:

dO(t) LdH() L dMVO2(t)
dt a ! di

define S(t) = [R(t)]~*
S(t)P(t) = Q(1)

Differentiating this, and combining with the top-line equation:

= kppyH(t) + g7

to Figueroa — figueroc@med

_dH(t) [ _;dMVO2(t)

— 2 Pl=kpy TH(t) + g7 - =

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
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A Model of Coronary Microvasculature Resistance Control
Arthurs, Lau, Asrress, Redwood & Figueroa, submitted to AJP - Heart and Circulatory Physiology
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Computing Myocardial Oxygen Demand, MVO2

* The amount of oxygen required by the myocardium should be
related to the cardiac work
)X 10* PV Loop, HR =70 BPM and SP = 140 mmHg

* Pressure Volume Area =
EP +
15 y
T /
S
2 * Total energy per beat =
nw 1 /
3 Stroke 3*PVA Joules [1]
= Work
- ///
0.5 ’ .
/ EIaSt'_c * O, demand per beat
/ Potential
A  +=3*PVA/20ml |2
0 0.2 0.4 0.6 0.8 1 1.2 1.4
LV Volume (m®) x10*

Kameyama et al., Circulation, 1992. Energy Conversion Efficiency in Human Left Ventricle
Coulson, J Physiol, 1976. Energetics of Isovolumic Contractions of the Isolated Rabbit Heart
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Classic Examples of Coronary Auto-regulation

The model reproduces classic results in coronary physiology
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Canty & Klocke, Circulation 1985 Marcus et al., Circ Research 1981
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Patient Data - Acquisition

* Percutaneous coronary intervention patient
(St Thomas’ Hospital, London, UK)

* Exertional angina

* Documented coronary artery disease
« Stenosis severity <80%
e Exercise on a supine cycle
* Intensity increments of 20 W
* Recording:
« Coronary Flow
* Aortic Pressure
« ECG

Pressure

Flow l

COLLEGE OF ENGINEERING & MEDICAL SCHOOL

COMPUTATIONAL VASCULAR BIOMECHANICS LAB

UNIVERSITY OF MICHIGAN http://bloodflow.engin.umich.edu/

© C. Alberto Figueroa — figueroc@med.umich.edu

54



Patient Data

250

200
150
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50

— Pulsatile Aortic Pressure Achieved (mmHg)
—Patient Peak Aortic Pressur¢ (mmHg)
—Patient Heart Rate (Hz / 60)

COLLEGE OF ENGINEERING & MEDICAL SCHOOL

COMPUTATIONAL VASCULAR BIOMECHANICS LAB

UNIVERSITY OF MICHIGAN

(approx. 20 minutes)

1000 1200 1400 1600 1800 2000
Time (s)

EXERCISE DURATION

http://bloodflow.engin.umich.edu/

© C. Alberto Figueroa — figueroc@med.umich.edu

55



Results: Coronary Auto-regulation via microvasculature control

The model reproduces human stress data acquired in the cath. lab

—Volumetric Flow With Control (Model) |
4. —Doppler-Acquired Flow Velociy (Patient Data) |
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Arthurs, Lau, Asrress, Redwood & Figueroa, in preparation
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Results — 3D Simulations

Flow Velocities
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Results — 3D Simulations

Early Exercise
Doppler-Acquired Flow Velocity (Patient)

Coronary Flow Velocity (3D Simulation)
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