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Main objective

I Extend the frame covered by P.–L. Lions and E. Feireisl’ theory
with constant viscosities (or temperature dependent).

Motivations:

No monotonicity assumption on ∂%P(%) or ∂%P(%, ϑ)

Pressure in mind (virial) in temperature dependent case:

P(%, θ) = % θ (
∑
n≥0

Bn(θ)%n
)
with Bn(θ) some functions.

and

Anisotropy on the diffusion: − µx∆xu − µz∂
2
z u with µx 6= µz const.

Books on compressible NS eqs (global weak solutions):
P.–L. Lions (1998), E. Feireisl (2004), A. Novotny - I. Straskraba (2004),
E. Ferireisl - A. Novotny (2009), P. Plotnikov - J. Sokolowski (2012),
E. Feireisl - M. Pokorny (2014 - Notes on web).

Based on joint work with:
P.–E. JABIN (Maryland USA)



What is known actually on global weak solutions with constant viscosities?

Barotropic case:

[CNS ]
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− µ∆u − (λ+ µ)∇divu +∇P(%) = 0,

with a given law s 7→ P(s), µ > 0 and λ+ 2µ/d > 0.

The case P(s) = a sγ with a > 0:
I P.–L. Lions (1993–1998): γ ≥ 3d/(d + 2)

I E. Feireisl (2001) with co-authors: γ > d/2
I Note the recent work: P. Plotnikov-W. Weigant (2015): d = 2 and γ = 1

Some important non-monotone cases
I E. Feireisl (2002)
I B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskarba (2004)

Hypothesis on P with P ′(ρ) ≥ C−1%γ−1 − C for all % ∈ [0,+∞).



Case P(%) = a%γ (Estimates):

Energy estimates:

sup
t∈[0,T ]

(1
2

∫
Πd

%|u|2 +
1

γ − 1

∫
Πd

%γ
)

+µ

∫ T

0

∫
Πd

|∇u|2 + (λ+µ)

∫ T

0

∫
Πd

|divu|2

≤ 1
2

∫
Πd

|m0|2

%0
+

1
γ − 1

∫
Πd

%γ0

Extra integrability on the density (Bogovskii operator):∫
Πd

%p =

∫
Πd

%γ+θ ≤ C < +∞

with
θ ≤ 2γ/d − 1.

Remark. We have % square integrable namely p ≥ 2 if γ ≥ 3d/(d + 2)
(P.–L. Lions constraint)



Compactness to pass to the limit in %u and %u ⊗ u mostly relies on

I compactness (negative sobolev space) on %kuk : Aubin-Lions-Simon Lemma
I convergence in norm to have compactness on

√
%
k
uk in L2((0,T )× Πd)



The main difficulty in the proof: passage to the limit in %γk in weak formulation

How to get compactness on % in Lebesgue spaces?

The main step where the monotonicity is required (case γ ≥ 3d/(d + 2))

∂t(% ln %) + div(% ln %u) + %divu = 0.

noticing that
s 7→ s ln s

is a strictly convex function and

s 7→ p(s)

is an increasing function.

Goal: show that
% ln % = % ln %

=⇒ commutation between stricly convex function and weak limit



∂t(% ln %) + div(s% ln %u) + %divu = 0.

This uses the property (effective flux property): weak compactness

ρ divu − P(ρ)ρ

λ+ 2µ
= ρ divu − P(ρ)ρ

λ+ 2µ

which gives

ρdivu−ρdivu =
P(ρ)ρ− P(ρ)ρ

λ+ 2µ
=⇒ appropriate sign due to monotonicity

For more general γ, use a clever troncature procedure: see E. Feireisl.



In the anisotropic case

−µx∆xu − µz∂
2
z u − λ∇divu with µx 6= µz const

Then

%divu − %divu ≤ %Aµ%γ − %Aµ%γ
µx + λ

where Aµ = aµ(∆− (µx − µz)∂2
z )−1∂2

z with aµ = (µx − µz).

No a priori sign on the right-hand side: Non-local effects.

=⇒ difficulty: Possible mixing phenomena (small/large value of density)

See discussions in D.B., B. Desjardins, D. Gérard-Varet (2004).



The first compressible Navier-Stokes system under consideration

Consider the following barotropic system in periodic box:

[CNS ]
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− µ∆u − (λ+ µ)∇divu +∇P(%) = 0,

with the pressure P locally Lipschitz on [0,+∞), with P(0) = 0 and

C−1%γ − C ≤ P(%) ≤ C%γ + C

and for all s ≥ 0, we only assume

|P ′(s)| ≤ s γ̃−1

for some γ̃ > 1.



Mathematical result

Theorem. Let (%0, u0) such that

E(%0, u0) =

∫
Πd

|m0|2

2%0
+ %0e(%0) < +∞

with e(s) =
∫ s

0 P(τ)/τ2dτ . Let P satisfying the previous hypothesis with

γ > (max (2, γ̃) + 1) d/(d + 2)

then there exists a global weak solution to the compressible Barotropic
Navier-Stokes equations (CNS).

Remark:
I If γ̃ = γ then γ > 3d/(d + 2).
I Truncated procedure as introduced by E. Feireisl could give γ > d/2.
I Importance of such pressure: biology, solar events........



The second compressible Navier-Stokes system under consideration

Consider the following barotropic system in periodic box:

[ACNS ]
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− div(A(t)∇u)− (λ+ µ)∇divu +∇P(%) = 0,

with the pressure P locally Lipschitz on [0,+∞), with P(0) = 0 and

C−1ργ−1 − C ≤ P ′(ρ) ≤ Cργ−1 + C

and a d × d matrix A = µId + δA(t) with time dependent smooth coefficient.

Remarks:
I Case usually encountered in geophysics: −νx∆xu − νz∂2

z u
(see Handbook R. Temam and M. Ziane).

I We can consider: −div(A(t)D(u)) + λ∇divu.
I Incompressible flows - weak sol.: anisotropy no problem if not degenerate.
I Compressible feature: Possible "density mixing"due to non-local operator.



Mathematical result

Theorem. Let (%0, u0) such that

E(%0, u0) =

∫
Πd

|m0|2

2%0
+ %0e(%0) < +∞

with e(s) =
∫ s

0 P(τ)/τ2dτ . Let P satisfying the monotonicity assumption
and assume that

γ >
d

2

[(
1 +

1
d

)
+

√
1 +

1
d2

]
.

There exists a universal constant C? > 0 such that if

‖δA‖∞ ≤ C?(2µ+ λ).

then there exists a global weak solution to the compressible Barotropic
Navier-Stokes equations (CNS).

Remark. Seems a straightforward perturbation result......
BUT it is trickier than the non-monotone pressure case due to non-local terms!!



How it works on a more simple case?

Let us consider the following system

[CS ]
∂t%+ div(%u) = 0,
divu = P(%) + Q

with a given pressure law s 7→ P(s): System encountered in biology for
instance.

We assume the pressure P locally Lipschitz on [0,+∞), with P(0) = 0 and

C−1%γ − C ≤ P(%) ≤ C%γ + C

and for all s ≥ 0, we only assume

|P ′(s)| ≤ sγ−1.

Compactness on the density?



A compactness Lemma

Let %k bounded in Lp((0,T )× Πd) (with 1 ≤ p < +∞) and

∂t%k ∈ Lq(0,T ;W−1,q(Πd))

with q > 1. Let Kh positive, bounded functions s.t.

∀η > 0, sup
h

∫
|x|≥η

Kh(x) dx < +∞

and
‖Kh‖L1(Πd ) → +∞ when h→ +0

If

lim sup
k

lim sup
t

[ 1
‖Kh‖L1

∫
Πd

Kh(x−y)|%k(t, x)−%k(t, y)|p dxdy
]
→ 0, as h→ 0

Then %k compact in Lp((0,T )× Πd).



A compactness Lemma

Some references:
I J. Bourgain, H. Brézis, P. Mironescu: Functional spaces (2001)
I A.C. Ponce: Functional spaces (2004)
I F. Ben Belgacem, P.–E. Jabin: Nonlinear continuity equations (2013)



The problem:

Weak solutions:
No Sobolev regularity propagation on % for compressible Navier-Stokes Eqs.

The frame:

I Weak regularity on the velocity field
I Vacuum state for the density.

The idea:

I Introduce some appropriate weights wk in the quantity to be controlled
Precise the rate of convergence in terms of h.

I Derive appropriate properties on these weights
Go back to the definition without weights without too much lost in h.



Introduce weights: first idea

In the sequel, we write: divuk = P(%k) + Qk

with Qk compact in k (with a corresponding εk(h)).

1) Introduce:

Rh(t) =

∫
Πd

Kh(x − y)|%k(t, x)− %k(t, y)|w(t, x)w(t, y)dxdy

with w solution of
∂tw + uk · ∇w + λDw = 0

with D an appropriate positive damping term linked to (%k , uk).

Choose appropriate damping terms in D:
=⇒ to control the propagation of the quantity Rh in time explicitly in h



2) Show some properties of the weights when D is chosen:

For instance:
0 ≤ w ≤ 1,

∫
%k | logw |θ < +∞

with some θ > 0.

Remove the weights using their properties to apply the compactness lemma



Let w be solution of

∂tw + uk · ∇w = −λ(M|∇uk |+ %γk )w , w |t=0 = 1

where Mf is the maximal function of f namely

Mf (x) = sup
r≤1

1
|B(0, r)|

∫
B(0,r)

f (x + z) dz .



Let us look at propagation of the quantity for the simple system

Rh(t) =

∫
Πd

Kh(x − y)|%k(t, x)− %k(t, y)|w(t, x)w(t, y) dxdy .

We get

d

dt
Rh(t) =

∫
Π2d
∇Kh(x − y) · (uk(t, x)− uk(t, y)) |%k(t, x)− %k(t, y)|w(t, x)w(t, y)

− 1
2

∫
Π2d

Kh(x − y) (divuk(t, x)− divuk(t, y)) (%k(x) + %k(y)) sk w(t, x)w(t, y)

+

∫
Π2d

Kh(x − y) |%k(t, x)− %k(t, y)| (∂tw(t, x) + uk(t, x) · ∇w(t, x))w(t, y)

+ symmetric.



∫
Π2d
∇Kh(x − y) · (uk(t, x)− uk(t, y)) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y)

≤ C

∫
Π2d

Kh(x − y)(M|∇uk |(t, x) + M|∇uk |(t, y))w(t, x)w(t, y)

Thanks to

|uk(t, x)− uk(t, y)| ≤ C |x − y |(M|∇uk |(t, x) + M|∇uk(t, y)|)

and
|∇Kh(x − y)||x − y | ≤ C Kh(x − y).



∫
Π2d

Kh(x − y) (divuk(t, x)− divuk(yt, )) (%k(t, x) + %k(t, y)) sk w(t, x)w(t, y)

≤ ‖Kh‖L1(εk(h))1−1/p

+

∫
Π2d

Kh(x − y) (P(ρk(t, x)− P(%k(t, y)) (%k(t, x) + %k(t, y)) sk w(t, x)w(t, y)

Using locally Lipschitz property of P and the control on |P ′(s)| ≤ Csγ−1.∫
Π2d

Kh(x − y) (P(%k(t, x)− P(%k(t, y)) (%k(t, x) + %k(t, y)) sk w(t, x)w(t, y)

≤ C

∫
Π2d

Kh(x − y)(%γk (t, x) + %γk (t, y))|%k(t, x)− %k(t, y)|w(t, x)w(t, y)



Thus

d

dt
R(t) ≤ C

∫
Π2d

Kh(x − y)(M|∇uk |(t, x) + %k(t, x)γ)|%(t, x)− %(t, y)|w(t, x)w(t, y)

− λ
∫

Π2d
Kh(x − y) |%k(t, x)− %k(t, y)|Pw(t, x)w(t, y)

+ symmetric

+ ‖Kh‖L1(εk(h))1−1/p

Therefore assuming λ large enough in the weight definition we get

d

dt
R(t) ≤ ‖Kh‖L1(εk(h))1−1/p



Property on the weight w :∫
Πd

| logw(t, x)|%k(t, x) ≤
∫ T

0

∫
Πd

P(ρk(t, x))%k(t, x) < +∞

=⇒ hypothesis p ≥ γ + 1 needed. This will be relax later-on!

Remind p index of the integrability of % through Bogovski type estimates

Control the size where w(t, x) is small by the size where ρ(t, x) is small !!



Do not control the size where w(t, y) small when in front of %k(t, x)......
Remark w(t, y) may be small when %(t, x) is large......
Therefore no compactness because no control close to vacuum !!!

Remark. If transport equation considered with compactness properties on divuk
then in many respect: Equivalent of the method of G. Crippa and C. De Lellis
at the PDE level instead of ODE level: No weight needed.

See paper by F. Ben Belgacem and P.–E. Jabin:
Nice results on non-linear continuity Eq.



Let us propose a better candidate for quantity Rh!!

Assume

1
‖Kh‖L1

∫
Πd

Kh(x − y)|%k(t, x)− %k(t, y)|(w(t, x) + w(t, y)) dxdy = o(h).

and ∫
Πd

ρk | logw | ≤ C < +∞

Then ∫
Πd

Kh(x − y)|%k(t, x)− %(t, y)| dxdy

≤ 1
η′

∫
Πd

1{w(t,x)≥η′ or w(t,y)≥η′}Kh(x−y)|%k(t, x)−%k(t, y)|(w(t, x)+w(t, y)) dxdy

+2
1

| log η′|1/2

∫
Πd

1{w(t,x)≤η′ and w(t,y)≤η′}Kh(x − y)ρk(t, x)| logw |1/2.

Use that % ∈ Lp with p > 2 and optimize η′ in terms of h to conclude
by the compactness Lemma.



For compressible Navier–Stokes equations:

More complicated (see D.B., P.–E. Jabin : arXiv:1507.04629)



Thank you for your attention!


