Hierarhy of fluid models and environmental problem.

Didier Bresch

LAMA UMR5127 CNRS

E-mail: didier.bresch@univ-savoie.fr

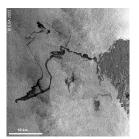
Part 1

Thanks to the organizers for the invitation

CIRM - CEMRACS, July 2015

Examples

Powder-snow avalanche



Main objectives

- ▶ Understand the structure of the systems used in modelization
- ▶ Go as closed as possible to weakest regularity (Energy regularity).
- ▶ Understand continuous level to hope to enrich the discrete level.

Mixture system

Consider the following system in periodic box:

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) &= 0, \\ [\mathit{M} - \mathit{NS}] \ \partial_t \left(\varrho \mathbf{u}\right) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\varrho)D(\mathbf{u})) - \nabla(\lambda(\varrho)\operatorname{div}\mathbf{u}) + \nabla\Pi &= \mathbf{0}, \\ \operatorname{div}\mathbf{u} &= -2\kappa\Delta\varphi(\varrho). \end{split}$$
 where $D(\mathbf{u}) = (\nabla u + \nabla^t u)/2$ or equivalently
$$\partial_t \varrho + \nabla\varrho \cdot (\mathbf{u} + 2\kappa\nabla\varphi(\varrho)) - 2\kappa\operatorname{div}(\varrho\nabla\varphi(\varrho)) &= 0, \\ \partial_t \left(\varrho \mathbf{u}\right) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\varrho)D(\mathbf{u})) - \nabla(\lambda(\varrho)\operatorname{div}\mathbf{u}) + \nabla\Pi &= \mathbf{0}, \\ \operatorname{div}\mathbf{u} &= -2\kappa\Delta\varphi(\varrho). \end{split}$$

Note here κ const

Physical literature

Such system:

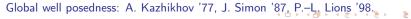
- ▶ 1) Low mach number limit from Heat-conducting compressible Navier-Stokes eq. with large heat release. See the book by P.-L. Lions.
- 2) Formally obtained as mixture equations with Fick law to close the system.
 See the book by Rajagopal and Tao.

Some special cases:

- ▶ 1) For $\mu(\varrho) = \log(\varrho)$ (i.e. $\varphi(\varrho) = -1/\varrho$) we recover combustion model. See works by Embid, Majda, Lions, Laffitte, Dellacherie, Penel...
- ▶ 2) For $\mu(\varrho) = \mathrm{const}$ (i.e. $\varphi(\varrho) = \log \varrho$) we recover pollutant model. See works by Graffi, Straughan, Antonsev, Kazhikhov, Monakov...

$$\kappa=0$$
 \Longrightarrow Non-homogeneous incompressible Navier–Stokes equations.

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{u}) &= 0, \\ [\textit{NH} - \textit{INS}] \ \partial_t \left(\varrho \textbf{u}\right) + \text{div}(\varrho \textbf{u} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho) D(\textbf{u})) + \nabla \Pi &= \textbf{0}, \\ \text{div } \textbf{u} &= \textbf{0}. \end{split}$$



Mathematical literature on the mixture system

► Local strong solutions

- Beirão Da Veiga '82, Secchi '82, Danchin & Liao '12 (in critical Besov spaces).
- ► Global in time solutions
 - Kazhikov & Smagulov '77: Modified conv. term, constraint on c_0 existence of generalized solution which is unique in 2d, Lions '98: 2d weak solutions ($\varphi=-1/\varrho$), small perturb. const. ρ_0 , Secchi '88: 2d unique solution for small c_0 Danchin & Liao '12: Small perturb. const. ρ + small initial velocity.
- ▶ No smallness assumption
 - B., Essoufi & Sy '07, for special relation

$$arphi'(s) = \mu'(s)/s, \quad \kappa = 1 \implies \mathsf{Kazhikhov\text{-}Smagulov}$$
 type system

Cai, Liao & Sun '12: Uniqueness in 2d, Liao '14: Global strong solution in 2d, critical Besov spaces.

Numerical literature

- J. Etienne, E. Hopfinger, P. Saramito.
 Numerical simulations of high density ratio lock-exchange flows.
 No change of variable.
 Finite element + characteristic method with mesh refinements.
- \blacktriangleright C. Acary-Robert, D. Bresch, D. Dutykh. Numerical simulation of powder-snow avalanche interaction with obstacle. Numerical test using Open-Foam, change of variable + relation between μ and φ Discussion around a new entropy encountered in a theoretical paper.
- ► C. Calgaro, E. Creusé, T. Goudon. Simulation of Mixture Flows: Pollution Spreading and Avalanches. Change of variable + get ride of high-order terms (Kazhikhov-Smagulov type system). Numerical schemes: hybrid Finite Volume/Finite Element method. Test and comparison.

Goal of this part on this powder snow avalanches system:

A two-velociy hydrodynamics in this model

The case
$$\mu'(s) = s\varphi'(s)$$
:

- ⇒ A non-linear hypocoercivity property!
- ⇒ A two-velocity hydrodynamic in the spirit of H. Brenner but......
- with two different velocities:
 - not volume and mass velocities as in H. Brenner's work

That means not **u** and $\mathbf{u} + 2\kappa\nabla\varphi(\rho)$ but two others specified later on.

- ⇒ Global existence of weak solutions for a wide range of coefficient.
- ⇒ An answer to an open question in P.–L. Lions's book.
- ⇒ An interesting numerical scheme (work in progress with P. Noble, J.–P. Vila).

The case
$$\mu'(s) \neq s\varphi'(s)$$
:

A conclusion under some inequalities constraints.

⇒ An answer to an other open question in P.–L. Lions's book.

Special case where φ and μ are related: Two velocity hydrodynamics

Let us remark

$$\int \nabla \Pi_1 \cdot \mathbf{u} = 2 \,\kappa \int \Pi_1 \Delta \varphi(\varrho)$$

and

$$\int \nabla \mathsf{\Pi}_1 \cdot (\mathbf{u} + 2 \nabla \varphi(\varrho)) = -2 (1 - \kappa) \int \mathsf{\Pi}_1 \Delta \varphi(\varrho)$$

Thus

$$\int \nabla \Pi_{\mathbf{1}} \cdot ((\mathbf{1} - \kappa)\mathbf{u}) + \int \nabla \Pi_{\mathbf{1}} \cdot (\kappa(\mathbf{u} + 2\nabla \varphi(\varrho))) = 0$$

Momentum equation on u:

$$\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\rho)D(\mathbf{u})) = -\nabla \Pi_1$$

Momentum equation on $\mathbf{v} = \mathbf{u} + 2\nabla \varphi(\varrho)$:

$$\begin{split} \partial_t(\varrho \mathbf{v}) + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{u}) - 2 \operatorname{div}(\mu(\varrho) A(\mathbf{v})) - 2\nabla \Big((\mu'(\varrho)\varrho - \mu(\varrho)) \operatorname{div} \mathbf{u} \Big) &= -\nabla \Pi_1 \\ \text{where } A(\mathbf{v}) &= (\nabla \mathbf{v} - \nabla^t \mathbf{v})/2. \end{split}$$

Additional entropy equality

Testing Eq on ${\bf u}$ by $(1-\kappa){\bf u}$ and Eq on ${\bf v}$ by $\kappa{\bf v}$ and adding we get

$$\begin{split} \frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} \varrho \left((1 - \kappa) \frac{|\mathbf{u}|^2}{2} + \kappa \frac{|\mathbf{v}|^2}{2} \right) \, \mathrm{d}x \\ + 2(1 - \kappa) \int_{\Omega} \mu(\varrho) |D(\mathbf{u})|^2 \, \mathrm{d}x + 2\kappa \int_{\Omega} \mu(\varrho) |A(\mathbf{u})|^2 \, \mathrm{d}x \\ + 2(1 - \kappa) \kappa^2 \int_{\Omega} (\mu'(\varrho)\varrho - \mu(\varrho)) |2\Delta \varphi|^2 \, \mathrm{d}x = 0, \end{split}$$

which generalizes the "B-D" entropy to the M-NS system.

Two-velocity hydrodynamic: joint velocity and drift velocity

Remark that:

$$(1-\kappa)|\mathbf{u}|^2 + \kappa|\mathbf{u} + 2\nabla\varphi|^2 = |\mathbf{w}|^2 + (1-\kappa)\kappa|2\nabla\varphi|^2.$$

⇒ See two-velocity hydrodynamics papers by S.C. Shugrin and S. Gavrilyuk Defining a new velocity vector field (joint velocity)

$$\mathbf{w} = \mathbf{u} + \kappa \nabla \varphi(\varrho)$$
, we see that $\operatorname{div} \mathbf{w} = 0$

Note that $\mathbf{v_1} = 2\nabla \varphi(\varrho)$ is called the drift velocity.

Appropriate unknowns: **w** and
$$\sqrt{(1-\kappa)\kappa}\mathbf{v}_1$$
.

If $\kappa = 1$, then we get the following system on (ϱ, \mathbf{v}) :

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{v}) - 2\Delta \mu(\varrho) &= 0, \\ [\textit{KS}] \ \partial_t \left(\varrho \textbf{v}\right) + \text{div}(\varrho \textbf{v} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho) A(\textbf{u})) + \nabla \Pi_1 &= \textbf{0}, \\ \frac{\text{div } \textbf{v} = \textbf{0}}{} \end{split}$$

with $\mathbf{u} = \mathbf{v} - 2\nabla \varphi(\varrho)$ (Note that \mathbf{v} is divergence free).

 \implies Kazhikhov-Smagulov type system

Global well posedness without asking any size constraint on the initial density !!

Proved by D.B., E. Hassan Essoufi, M. Sy '07

With the κ -entropy type estimate: More general results!!

Special case where φ and μ are related

For 0 < T < $\infty,$ $\Omega=\mathbb{T}^{3}$ and the low Mach number system

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \mathbf{u}) &= 0, \\ [\textit{M} - \textit{NS}] \ \partial_t \left(\varrho \mathbf{u}\right) + \text{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2 \, \text{div}(\mu(\varrho) D(\mathbf{u})) - \nabla(\lambda(\varrho) \, \text{div} \, \mathbf{u}) + \nabla \Pi &= \mathbf{0}, \end{split}$$

 $\operatorname{div} \mathbf{u} = -2\kappa\Delta\varphi(\rho).$

with $\varphi'(s) = \mu'(s)/s$, $0 < \kappa < 1$ we have:

T1: For the initial conditions satisfying

$$\begin{split} \sqrt{(1-\kappa)\kappa}\varrho^{\mathbf{0}} \in H^{\mathbf{1}}(\Omega), \quad 0 < r \leq \varrho^{\mathbf{0}} \leq R < \infty, \quad \mathbf{u^{0}} + 2\kappa\nabla\varphi(\rho^{\mathbf{0}}) \in H, \\ \mu(\varrho) \text{ such that } \mu(\varrho) \in C^{\mathbf{1}}([r,R]), \ \mu'(\varrho) > 0, \ \mu \geq c > 0 \text{ on } [r,R], \text{ and} \\ \left(\frac{1-d}{d}\mu(\varrho) + \mu'(\varrho)\varrho\right) \geq c > 0. \end{split}$$

There exists a global in time weak solution* to [M-NS].

- T2: For $\kappa \to 0$ this solution converges to the weak solution of the non-homogenous incompressible N-S equations; for $\kappa \to 1$ (and $\kappa \varrho_{\kappa}^{\mathbf{0}} \in H^{\mathbf{1}}(\Omega)$) it converges to the weak solutions of the Kazhikhov-Smagulov system.

D.B., V. Giovangigli, E. Zatorska '14

General case

For $T<\infty$, $\Omega=\mathbb{T}^3$ and the General low Mach number system

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{u}) &= 0, \\ [\textbf{\textit{M}} - \textbf{\textit{NS}} - \textbf{\textit{G}}] \ \partial_t \left(\varrho \textbf{u}\right) + \text{div}(\varrho \textbf{u} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho) D(\textbf{u})) - \nabla(\lambda(\varrho) \, \text{div} \, \textbf{u}) + \nabla \Pi &= \textbf{0}, \\ \text{div} \, \textbf{u} &= -2\Delta \tilde{\varphi}(\varrho), \end{split}$$

with $\tilde{\varphi}'(s) = \tilde{\mu}'(s)/s$, we have:

T3: Under previous assumptions on the data and, for $\mu(\cdot) \in C^1([r,R])$, $\mu'(\cdot) > 0$, $\mu \ge c > 0$ on [r,R] and $\tilde{\varphi}(\cdot) \in C^1([r,R])$ and $\mu(\varrho)$, $\tilde{\mu}(\varrho)$ related by

$$c \leq \min_{\varrho \in [r,R]} (\mu(\varrho) - \tilde{\mu}(\varrho)),$$

$$\max_{\varrho \in [r,R]} \frac{(\mu(\varrho) - \tilde{\mu}(\varrho) - \xi \tilde{\mu}(\varrho))^2}{2 \left(\mu(\varrho) - \tilde{\mu}(\varrho)\right)} \leq \xi \min_{\varrho \in [r,R]} \left(\tilde{\mu}'(\varrho)\varrho + \frac{1-d}{d} \tilde{\mu}(\varrho) \right).$$

for some positive constants c, ξ . There exists global weak solution to [M-NS-G].

D.B., V. Giovangigli, E. Zatorska '14

Remarks

▶ For $\mu(\varrho) = \varrho^{\alpha}$ the exponent α from T1 is

$$\alpha > 1 - \frac{1}{d}$$
.

In particular, it does not depend on κ .

Assume that all assumptions of T3 are satisfied and $\mu(\varrho)$, $\tilde{\mu}(\varrho)$ are replaced by

$$\mu(\varrho) = \varrho, \quad \tilde{\mu}(\varrho) = \log \varrho \quad \text{(i.e. } \tilde{\varphi}(\varrho) = -1/\varrho\text{)}.$$

Then there exist a non-empty interval $[\tilde{r}, \tilde{R}]$ such that if

$$0<\tilde{r}\leq\varrho^{0}\leq\tilde{R}<0,$$

then the weak solution to [M-NS-G] exists globally in time, which corresponds to the dense gas approximation:

S. Chapman and T.G. Cowling:

The mathematical theory of non-uniform gases, 1970.

⇒ Generalization of P.–L. Lions's result to the 3d case!

Construction of solution

We consider the augmented regularized system with three unknowns ($\varrho, \mathbf{w}, \mathbf{v_1}$):

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{w}) - 2\kappa \Delta \mu(\varrho) &= 0, \\ \partial_t \left(\varrho \mathbf{w}\right) + \operatorname{div}(\left(\varrho \mathbf{w} - 2\kappa \nabla \mu(\varrho)\right) \otimes \mathbf{w}\right) - 2(1-\kappa)\operatorname{div}(\mu(\varrho)D(\mathbf{w})) \\ &- 2\kappa\operatorname{div}(\mu(\varrho)A(\mathbf{w})) + \nabla \Pi_\mathbf{1} + \varepsilon \Delta^2 \mathbf{w} = -2\kappa(1-\kappa)\operatorname{div}(\mu(\varrho)\nabla \mathbf{v_1}), \\ \partial_t (\varrho \mathbf{v_1}) + \operatorname{div}(\left(\varrho \mathbf{w} - 2\kappa \nabla \mu(\varrho)\right) \otimes \mathbf{v_1}) - 2\kappa\operatorname{div}(\mu(\varrho)\nabla \mathbf{v_1}) \\ &- 2\kappa \nabla ((\mu'(\varrho)\varrho - \mu(\varrho))\operatorname{div}\mathbf{v_1}) = -2\operatorname{div}(\mu(\varrho)\nabla^t \mathbf{w}), \\ \operatorname{div}\mathbf{w} &= 0. \end{split}$$

Of course, we have to prove that $\mathbf{v_1} = 2\nabla \varphi(\varrho)$ to solve the initial system. To do that Important property: div $\mathbf{w} = 0$.

Augmented system in other topics: numerical schemes (D. Jamet et al.)

For compressible NS equations (see later-on): an extra integrability needed This is the term $-\varepsilon \operatorname{div} (|\nabla \mathbf{w}|^2 \nabla \mathbf{w})$: An hyper diffusive term introduced by O.A. Ladhyzenskaya.

Extensions to density dependent viscosities compressible NS equations

$$\begin{array}{l} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0, \\ [\mathit{CNS}] \quad \partial_t \left(\varrho \mathbf{u} \right) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2 \operatorname{div}(\mu(\varrho) D(\mathbf{u})) - \nabla(\lambda(\varrho) \operatorname{div} \mathbf{u}) + \nabla P(\varrho) = \mathbf{0} \end{array}$$

with $\lambda(\varrho) = 2(\mu'(\varrho)\varrho - \mu(\varrho))$ (algebraic relation found by D.B., B. Desjardins).

$$P(\rho)=
ho^2/2, \qquad \mu(\varrho)=\mu\varrho \implies {\sf Viscous\ shallow-water\ type\ system}$$

Let us introduce an arbitrary coefficient κ such that $0 < \kappa < 1$.

Extensions to density dependent viscosities compressible NS equations

For this compressible barotropic system we have generalized κ - entropy:

$$\begin{split} &\int_{\Omega}\varrho\left(\frac{|\mathbf{w}|^{2}}{2}+(1-\kappa)\kappa\frac{|2\nabla\varphi(\varrho)|^{2}}{2}\right)(T)\;\mathrm{d}x+\int_{\Omega}\varrho e(\varrho)\;\mathrm{d}x\\ &+2(1-\kappa)\int_{\mathbf{0}}^{T}\!\!\int_{\Omega}\mu(\varrho)|D(\mathbf{u})|^{2}\;\mathrm{d}x\;\mathrm{d}t+2(1-\kappa)\int_{\mathbf{0}}^{T}\!\!\int_{\Omega}(\mu'(\varrho)\varrho-\mu(\varrho))(\mathrm{div}\,\mathbf{u})^{2}\;\mathrm{d}x\;\mathrm{d}t\\ &+2\kappa\int_{\mathbf{0}}^{T}\!\!\int_{\Omega}\mu(\varrho)|A(\mathbf{w})|^{2}\;\mathrm{d}x\;\mathrm{d}t+2\kappa\int_{\mathbf{0}}^{T}\!\!\int_{\Omega}\frac{\mu'(\varrho)p'(\varrho)}{\varrho}|\nabla\varrho|^{2}\;\mathrm{d}x\;\mathrm{d}t\\ &\leq\int_{\Omega}\varrho_{\mathbf{0}}\left(\frac{|\mathbf{w}_{\mathbf{0}}|^{2}}{2}+(1-\kappa)\kappa\frac{|2\nabla\varphi(\varrho_{\mathbf{0}})|^{2}}{2}\right)\;\mathrm{d}x+\int_{\Omega}\varrho_{\mathbf{0}}e(\varrho_{\mathbf{0}})\;\mathrm{d}x, \end{split}$$

where we have introduced $e(\varrho)$ defined as

$$\frac{\varrho^2 \mathrm{d} e(\varrho)}{\mathrm{d} \varrho} = p(\varrho).$$

 κ -entropy may be used to construction of κ -entropy solutions with a simple construction scheme for the compressible system with extra terms (singular pressure or drag terms).

D.B., B. Desjardins, E. Zatorska '14

Extensions to density dependent viscosities compressible NS equations

- ▶ Global weak solution of the CNS depending on κ through the κ -entropy
- ▶ Non-linear extension of hypocoercivity property known for linearized CNS.
- ► Interesting framework for numerics: In progress with P. Noble and J.-P. Vila

Euler-Korteweg systems (joint work with F. Couderc, P. Noble, J.–P. Vila)

$$\begin{aligned} \partial_t \varrho + \mathsf{div}(\varrho \mathbf{u}) &= 0, \\ [E - K] \ \partial_t \left(\varrho \mathbf{u} \right) + \mathsf{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\varrho) &= \mathrm{div} \mathbf{K} \end{aligned}$$

with

$$\mathbf{K} = \left(\rho \operatorname{div}(K(\rho)\nabla\rho) + \frac{1}{2}(K(\rho) - \rho K'(\rho))|\nabla\rho|^2\right)\operatorname{Id} - K(\rho)\nabla\rho \otimes \nabla\rho$$

where $K(\rho)$ is the capillary coefficient. Note that

$$\mathbf{K} = \rho(\sqrt{K(\rho)}\Delta(\int_0^\rho \sqrt{K(s)} \, ds) = \operatorname{div}\Big(F(\rho)\nabla\nabla\varphi(\rho)\Big) - \nabla\Big((F(\rho) - F'(\rho)\rho)\Delta\varphi(\rho)\Big)$$

with
$$\sqrt{\rho}\varphi'(\rho) = \sqrt{K(\rho)}$$
, $F'(\rho) = \sqrt{F(\rho)\rho}$.

 \implies extended formulation of the Euler-Korteweg system with $w=\nabla \varphi(\rho)$.

⇒ Stable schemes under hyperbolic CFL condition.

Numerical simulations

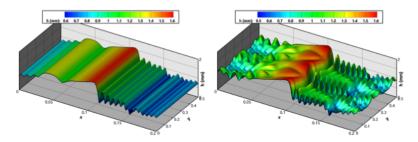


Figure 1. Numerical simulation of a roll-wave in presence of surface tension. On the left: one dimensional roll-wave without transverse perturbations. On the right: a two-dimensional roll-wave

Relative κ entropy (joint work with P. Noble, J.–P. Vila)

A useful tool to measure distance between quantities!!

Idea: Assume $e(u, \rho) = e_1(u) + e_2(\rho)$, calculate

$$E(u,\rho) := e(u,\rho) - e(U,r) - \nabla e_1(u) \cdot (u-U) - e'_2(r) \cdot (\rho-r)$$

If global strict-convexity then control of

$$|u-U|^2+|\rho-r|^2$$

See for instance:

C. Dafermos, R. Di Perna, H.T. Yau, Y. Brenier, C. Bardos, F. Otto,

A. Tzavaras, L. St Raymond......

Let

$$E(\rho, \mathbf{v}, \mathbf{w} | r, V, W) = \frac{1}{2} \int_{\Omega} \varrho(|\mathbf{w} - W|^2 + |\mathbf{v} - V|^2) dx + \int_{\Omega} (F(\varrho) - F(r) - F'(r)(\varrho - r)) dx$$

We calculate

$$\begin{split} I &= E(\rho, v, w \big| r, V, W)(\tau) - E(\rho, v, w \big| r, V, W)(0) \\ &+ 2\kappa \mu \int_0^\tau \int_\Omega \varrho [A(\mathbf{v} - V)]^2 + 2\mu \int_0^\tau \int_\Omega \varrho |D(\sqrt{(1 - \kappa)}(\mathbf{v} - V) - \sqrt{\kappa}(\mathbf{w} - W))|^2 \\ &+ 2\kappa \mu \int_0^\tau \int_\Omega \varrho \Big[p'(\varrho) \nabla \log \varrho - p'(r) \nabla \log r \Big] \cdot \Big[\nabla \log \varrho - \nabla \log r \Big] \end{split}$$

for all $au \in [0, T]$ and for any pair of test functions

$$r \in C^1([0, T] \times \overline{\Omega}), \qquad r > 0, \qquad V, W \in C^1([0, T] \times \overline{\Omega}).$$

$$I \leq \int_{0}^{\tau} \int_{\Omega} \varrho \Big(((\mathbf{v} - \sqrt{\frac{\kappa}{(1-\kappa)}} \mathbf{w}) \cdot \nabla W) \cdot (W - \mathbf{w}) + ((\mathbf{v} - \sqrt{\frac{\kappa}{(1-\kappa)}} \mathbf{w}) \cdot \nabla V) \cdot (V - \mathbf{v}) \Big) + \int_{0}^{\tau} \int_{\Omega} \varrho \Big(\partial_{t} W \cdot (W - \mathbf{w}) + \partial_{t} V \cdot (V - \mathbf{v}) \Big) + \int_{0}^{\tau} \int_{\Omega} \partial_{t} F'(r) (r - \varrho) - \int_{0}^{\tau} \int_{\Omega} \nabla F'(r) \cdot \Big[\varrho (\mathbf{v} - \sqrt{\frac{\kappa}{(1-\kappa)}} \mathbf{w}) - r(V - \sqrt{\frac{\kappa}{(1-\kappa)}} W) \Big] + \int_{0}^{\tau} \int_{\Omega} (p(r) - p(\varrho)) \operatorname{div}(V - \sqrt{\frac{\kappa}{(1-\kappa)}} W) - \kappa \int_{0}^{\tau} \int_{\Omega} p'(\varrho) \nabla \varrho \cdot \Big[2\mu \frac{\nabla r}{r} - \frac{1}{\sqrt{(1-\kappa)\kappa}} W \Big] + 2\mu \int_{0}^{\tau} \int_{\Omega} \varrho \Big(D(\sqrt{(1-\kappa)}V) - \nabla(\sqrt{\kappa}W) \Big) \Big) :$$

$$\Big(D(\sqrt{(1-\kappa)}(V - \mathbf{v})) - \nabla(\sqrt{\kappa}(W - \mathbf{w})) \Big) + 2\kappa\mu \int_{0}^{\tau} \int_{\Omega} \varrho A(V) : A(V - \mathbf{v}) + 2\kappa\mu \int_{0}^{\tau} \int_{\Omega} \frac{\varrho}{r} p'(r) \nabla r \cdot (\frac{\nabla r}{r} - \frac{\nabla \varrho}{\varrho}) \Big) \Big]$$

 $+2\sqrt{\kappa(1-\kappa)}\mu\int_{0}^{\tau}\int_{\Omega}\varrho\Big[A(W):A(\mathbf{v}-V)-A(\mathbf{w}-W):A(V)\Big]$

Using that

$$\varrho[p'(\varrho)\nabla\log\varrho - p'(r)\nabla\log r] \cdot [\nabla\log\varrho - \nabla\log r] = \\
\varrho p'(\varrho)|\nabla\log\varrho - \nabla\log r|^2 + \nabla[p(\varrho) - p(r) - p'(r)(\varrho - r)] \cdot \nabla\log r \\
- [\varrho(p'(\varrho) - p'(r)) - p''(r)(\varrho - r)r]|\nabla\log r|^2,$$

Let (r, V, W) strong solution with r > 0 then

$$E(\rho, v, w/r, V, W)(\tau) - E(\rho, v, w/r, V, W)(0)$$

$$\leq \int_0^{\tau} \Big[A(r, V, W) (E(\rho, v, w/r, V, W)) \Big]$$

where

$$A(r,V,W)(=\|\nabla V\|_{L^{\infty}(\Omega)}+\|\nabla W\|_{L^{\infty}(\Omega)}+\|\nabla \log r\|_{L^{\infty}(\Omega)}^2+\|\Delta \log \rho\|_{L^{\infty}(\Omega)})$$

⇒ Weak strong uniqueness.

⇒ useful to compare continuous to discrete solution.

An other application of the relative entropy:

Definition. The pair $(\overline{\varrho}, \overline{u})$ is a dissipative solution of the compressible Euler equations if and only if $(\overline{\varrho}, \overline{u})$ satisfies the relative energy inequality

$$E(\overline{\varrho}, \overline{u}, 0 | r, U, 0)(t) \leq E(\overline{\varrho}, \overline{u}, 0 | r, U, 0)(0) \exp[c_0(r) \int_0^t \|\operatorname{div} U(\tau)\|_{L^{\infty}(\Omega)} d\tau]$$

$$+ \int_0^t \exp\left[c_0(r) \int_s^t \|\operatorname{div} U(\tau)\|_{L^{\infty}(\Omega)}\right] \int_{\Omega} \varrho E(r, U) \cdot (U - \overline{u}) \, dx ds$$

for all smooth test functions (r, U) defined on $[0, T] \times \overline{\Omega}$) so that r is bounded above and below away from zero and (r, w) solves

$$\partial_t r + \operatorname{div}(rU) = 0,$$

 $\partial_t U + U \cdot \nabla U + \nabla F'(r) = E(r, U)$

for some residual E(r, U).

For constant viscosity: See C. Bardos and T. Nguyen.

For incompressible Euler: See P.-L. Lions' book.

For degenerate viscosity, using the κ -relative entropy Convergence of global κ -entropy solutions of NS to dissipative solution of Euler

Relative entropy may be used for singular limit behavior:

- ► Low Mach Number limit
- ► High-rotating fluid
- ► Inviscid limit
- ► Low Weissenberg effect
- **.....**

Today:

- ► Low Mach number limit with large heat release (Examples: Combustion, pollutant, avalanches)
- Compressible Navier-Stokes with degenerate viscosities (Example: Shallow-water)
- Effect of bathymetry or stratification in the low mach number limit system (Anelastic limit examples: lake equation, Durran model for atmopshere).
- Compressible Euler with dispersive term (shallow-water with surface tension, Quantum Euler).

Tomorrow:

- Compressible Navier-Stokes equations:
 Non-monotone pressure, anisotropy in stress tensor
 Virial pressure (stellar), biology, eddy viscosity (geophysics)
- Multi-fluid system derivation.
 Baer-Nunziato model ? Justification of relaxation terms..
 Aerated flows, nuclear industry, champagne (Stéphanie....)

Thank you for your attention!