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Examples

Powder-snow avalanche

Spreading of pollutant in water,

=




Main objectives
» Understand the structure of the systems used in modelization
> Go as closed as possible to weakest regularity (Energy regularity).

» Understand continuous level to hope to enrich the discrete level.



Mixture system

Consider the following system in periodic box:

0o + div(pu) =0,
[M — NS] 0 (ou) + div(ou ® u) — 2div(p(0)D(u)) — V(A(g) divu) + VI =0,
divu = —2rkAp(0).
where D(u) = (Vu + V*u)/2 or equivalently
Oco+ Vo (u+2:Vep(0)) — 2rdiv(eVe(0)) = 0,
O (ou) + div(pu ® u) — 2div(p(@)D(u)) — V(A(p) divu) + V1 = 0,
divu = —2kAp(0).

Note here & const



Physical literature

Such system:

» 1) Low mach number limit from
Heat-conducting compressible Navier-Stokes eq. with large heat release.

See the book by P.—L. Lions.
> 2) Formally obtained as mixture equations with Fick law to close the

system.
See the book by Rajagopal and Tao.

Some special cases:
> 1) For u(0) = log(o) (i-e. v(0) = —1/0) we recover combustion model.
See works by Embid, Majda, Lions, Laffitte, Dellacherie, Penel...

> 2) For p(o) = const (i.e. ¢(0) = log o) we recover pollutant model.
See works by Graffi, Straughan, Antonsev, Kazhikhov, Monakov...

x =0 = Non-homogeneous incompressible Navier—Stokes equations.
Oro + div(pu) =0,
[VH — INS] 0 (ou) + div(pu ® u) — 2div(u(e)D(u)) + VI = 0,
divu = 0.
Global well posedness: A. Kazhikhov '77, J. Simon '87, P.—L. Lions '98.



Mathematical literature on the mixture system

» Local strong solutions
@ Beirdo Da Veiga '82, Secchi '82,
Danchin & Liao "12 (in critical Besov spaces).
» Global in time solutions

@ Kazhikov & Smagulov '77: Modified conv. term, constraint on co
existence of generalized solution which is unique in 2d,
Lions '98: 2d weak solutions (¢ = —1/p), small perturb. const. po,
Secchi '88: 2d unique solution for small co
Danchin & Liao '12: Small perturb. const. p + small initial velocity.

» No smallness assumption
@ B., Essoufi & Sy '07, for special relation
¢'(s)=p'(s)/s, k=1 = Kazhikhov-Smagulov type system

Cai, Liao & Sun '12: Uniqueness in 2d,
Liao '14: Global strong solution in 2d, critical Besov spaces.



Numerical literature

» J. Etienne, E. Hopfinger, P. Saramito.
Numerical simulations of high density ratio lock-exchange flows.
No change of variable.
Finite element + characteristic method with mesh refinements.

» C. Acary-Robert, D. Bresch, D. Dutykh.
Numerical simulation of powder-snow avalanche interaction with obstacle.
Numerical test using Open-Foam,
change of variable + relation between 1 and ¢
Discussion around a new entropy encountered in a theoretical paper.

» C. Calgaro, E. Creusé, T. Goudon.
Simulation of Mixture Flows: Pollution Spreading and Avalanches.
Change of variable + get ride of high-order terms
(Kazhikhov-Smagulov type system).
Numerical schemes: hybrid Finite Volume/Finite Element method.
Test and comparison.



Goal of this part on this powder snow avalanches system:
A two-velociy hydrodynamics in this model

The case u/(s) = s¢'(s):

= A non-linear hypocoercivity property!
= A two-velocity hydrodynamic in the spirit of H. Brenner but.......
. with two different velocities:

not volume and mass velocities as in H. Brenner's work

That means not u and u + 25V (p) but two others specified later on.
= Global existence of weak solutions for a wide range of coefficient.
= An answer to an open question in P.—L. Lions's book.
= An interesting numerical scheme

(work in progress with P. Noble, J.—P. Vila).

The case p/(s) # s¢'(s):

A conclusion under some inequalities constraints.
= An answer to an other open question in P.—L. Lions’s book.



Special case where ¢ and 1 are related: Two velocity hydrodynamics

/Vl_ll-u=2f<;/|_|1A<p(g)

[ ¥ @ 29u(@) = -2 - 0) [ Mmae(e)

Let us remark
and

Thus
/vm (1= K)u) +/vn1 (k(u + 2V(0))) = 0

Momentum equation on u:
Ot(ou) + div(ou ® u) — 2div(p(e)D(u)) = —VIy
Momentum equation on v = u + 2Vp(p):
0(ov) + div(ev © ) — 2div((2)A(v)) — 2V ({1 (e)e — () divu) =~y

where A(v) = (Vv — V'v)/2.



Additional entropy equality

Testing Eq on u by (1 — k)u and Eq on v by kv and adding we get
d > v
dt/ﬂg((l—/ﬁ)2 —|—/€2 dx
+2(1- H)/ #(@)ID(u)[* dx + 2/@/ p()|A(u)* dx
Q Q

+20 =0 [ (0o~ u(e))28¢ dx =0,

which generalizes the "B-D" entropy to the M-NS system.



Two-velocity hydrodynamic: joint velocity and drift velocity

Remark that:
(1— /<a)|u\2 + Klu+ 2Vg0|2 = \w|2 +(1- H)H|2Vg0|2.

— See two-velocity hydrodynamics papers by S.C. Shugrin and S. Gavrilyuk
Defining a new velocity vector field (joint velocity)

w=u+xVp(o), weseethat divw=0

Note that vi = 2V (p) is called the drift velocity.

Appropriate unknowns: w and /(1 — Kk)Kv1.



If K =1, then we get the following system on (g, v):

Oo +div(ov) —2Au(0) =0,
[KS] O: (ov) + div(ov ® u) — 2div(p(e)A(u)) + VI =0,
divv =10

with u = v — 2V p(p) (Note that v is divergence free).
— Kazhikhov-Smagulov type system
Global well posedness without asking any size constraint on the initial density !!

Proved by D.B., E. Hassan Essoufi, M. Sy '07

With the r-entropy type estimate: More general results!!



Special case where ¢ and p are related

For 0 < T < oo, 2 = T? and the low Mach number system
O¢0 + div(ou) = 0,
[M — NS] 0 (ou) + div(ou @ u) — 2div(p(e)D(u)) — V(A(e) divu) + V1 =0,
divu = —2rAp(0),
with ' (s) = 1/ (s)/s, 0 < k < 1 we have:

T1: For the initial conditions satisfying
V(1 —r)re® € HY(Q), 0<r<® <R<oo, u®+2kVep(p°)e€H,
u(0) such that u(e) € C*([r, R]), #'(¢) >0, > ¢ > 0on [r, R], and
(S5m0 + i (@)e) 2 e > 0.
There exists a global in time weak solution™ to [M-NS].

T2: For k — 0 this solution converges to the weak solution of the non-homogenous

incompressible N-S equations; for & — 1 (and k% € H*(f)) it converges to the weak
solutions of the Kazhikhov-Smagulov system.

ﬁ D.B., V. Giovangigli, E. Zatorska '14



General case

For T < oo, Q = T® and the General low Mach number system
¢ 0 + div(gu) = 0,
[M — NS — G] 0 (ou) + div(ou ® u) — 2div(u(e)D(u)) — V(A(e)divu) + VI =0,
divu = —2Ag(p),
with @'(s) = fi’(s)/s, we have:

T3: Under previous assumptions on the data and, for u(-) € C*([r,R]), #/(:) >0, u > c >0
on [r, R] and @(-) € C*([r, R]) and u(e), fi(e) related by

c< QZ’[TR] (n(e) — A(e)),

(1(e) — (o) — &ile))? o 1—d._
celr 2 (u(e) — file) <& ming (u (0o + Tu(g)) .

for some positive constants c, £. There exists global weak solution to [M-NS-G].

@ D.B., V. Giovangigli, E. Zatorska '14



Remarks

» For u(p) = 0° the exponent a from T1 is

1
1-——.
o > d

In particular, it does not depend on «.

> Assume that all assumptions of T3 are satisfied and u(p), fi(g) are
replaced by

(o) =o, fi(o)=loge (i.e. $(o)=-1/0).
Then there exist a non-empty interval [F, ﬁ] such that if
0<F<®<R<O,

then the weak solution to [M-NS-G] exists globally in time, which
corresponds to the dense gas approximation:
ﬁ S. Chapman and T.G. Cowling:

The mathematical theory of non-uniform gases, 1970.

— Generalization of P.—L. Lions's result to the 3d case!



Construction of solution

We consider the augmented regularized system with three unknowns (o, w,v1):

Oro + div(ow) — 2xApu(e) =0,

¢ (ow) + div((ow — 26V u(0)) ® w) — 2(1 — k) div(p(0)D(w))
— 2k div(pu(0)A(w)) + VN +eA’w = —2k(1 — k) div(p(e)Vva),

0:(ov1) + div((ew — 26V () ® v1) — 2k div(u(0)Vva)

—26V((1'(0)e — p(0)) divvy) = —2div(u(e)V'w),
divw = 0.

Of course, we have to prove that vi = 2V () to solve the initial system.
To do that Important property: divw = 0.

Augmented system in other topics: numerical schemes (D. Jamet et al.)
For compressible NS equations (see later-on): an extra integrability needed

This is the term —e div (|Vw[*Vw):
An hyper diffusive term introduced by O.A. Ladhyzenskaya.



Extensions to density dependent viscosities compressible NS equations

Oro + div(pu) =0,

LT 9 (ou) + div(ou © ) — 2div(u(e)D(w)) ~ V(A(e)divu) + VP(c) = 0

with A(e) = 2(1'(0)o — 1(0)) (algebraic relation found by D.B., B. Desjardins).

P(p) = p*/2, (o) = po = Viscous shallow-water type system

Let us introduce an arbitrary coefficient & such that 0 < xk < 1.



Extensions to density dependent viscosities compressible NS equations

For this compressible barotropic system we have generalized k- entropy:
2 bAvd 2
/ 0 (ﬂ +(1-— K)H7| ¢(e)l > (T) dx+/ oe(p) dx
Q 2 2 Q

T T
+20-x) [ [ o)D) axae+20—x) [ 14 (e)e - o) (@ivu)® ax e
T 2 Tr ' (e)p' () 2
+2m/0/nu(g)|A(w)| dx dt+2n/°-/nig |Vo|® dx dt

wo 2 2V 2
< / 0 (@ 1- K)Kﬂ dx+/ c0e(00) dx,
Q 2 2 Q

where we have introduced e(p) defined as

R iz(g) = p(0).

k-entropy may be used to construction of k-entropy solutions with a simple
construction scheme for the compressible system with extra terms (singular
pressure or drag terms).

ﬁ D.B., B. Desjardins, E. Zatorska '14



Extensions to density dependent viscosities compressible NS equations

» Global weak solution of the CNS depending on & through the x-entropy
> Non-linear extension of hypocoercivity property known for linearized CNS.

» Interesting framework for numerics:
In progress with P. Noble and J.-P. Vila



Euler-Korteweg systems (joint work with F. Couderc, P. Noble, J.-P. Vila)

Oro + div(pu) =0,

(£ K1 5, (ou) + div(ou @ u) + VP(o) = divK

with
K = (pdiv(K(p)Vp) + 5 (K(p) ~ oK' () Vol )1d ~ K(p) V0@ Vp

where K(p) is the capillary coefficient. Note that

= p(VK(P)A( / " VK() ds) = div(F(p)va)) ~V((F(p)~F (0)n)ag(p) )
with \/p¢’(p) = \/K(p)), F'( F(p)p.

= extended formulation of the Euler-Korteweg system with w = V(p).

— Stable schemes under hyperbolic CFL condition.



Numerical simulations
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transverse perturbations. On the right: a two-dimensional roll-wave

Figure 1. Numerical simulation of a roll-wave in presence of surface tension. On the left: one dimensional roll-wave without

N



Relative k entropy (joint work with P. Noble, J.—P. Vila)

A useful tool to measure distance between quantities!!
Idea: Assume e(u, p) = e1(u) + e2(p), calculate

E(u, p) := e(u, p) — e(U,r) = Ver(u) - (u—U) —ex(r) - (p— 1)
If global strict-convexity then control of

lu—UP+p—rl?

See for instance:
C. Dafermos, R. Di Perna, H.T. Yau, Y. Brenier, C. Bardos, F. Otto,
A. Tzavaras, L. St Raymond........



Let

Elpovowlr. VW) = 3 [ ollw= W=V P)dct [ (Fle)=F()~F (1){e=r))dx
We calculate

I =E(p,v,w|r,V,W)(t) — E(p,v,w|r,V, W)(0)

w2 [ [ daw=vF <2 [ [ olD(/T= v = V) = Vitw = W)
+2f<eu/07/99[p'(9)V|0g9— p'(r)V log r] : [Vlogg—Vlog r}

for all 7 € [0, T] and for any pair of test functions

re ([0, T] x Q), r>o0, V,W e CY([0,T] x Q).
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Using that

o[p'(0)Vlog o — p'(r)Viegr] - [Vieg o — Viegr] =
op'(0)|Vlog o — Vlog r|* + V[p(e) — p(r) — p'(r)(e — r)] - Viogr
—[e(p'(0) = P'(r)) = P"(r) (e — r)r]|VIog r|?,

Let (r, V, W) strong solution with r > 0 then

E(p,v,w/r,V,W)(r) — E(p,v,w/r, V, W)(0)

< /OT [A(r, V, WY(E(p, v, w/r, V, W)]
where

A(r, V,W)(= [V V]l (@) + IV W[ (@) + |V log r[fe () + [|A log pll ()

= Weak strong uniqueness.

— useful to compare continuous to discrete solution.



An other application of the relative entropy:

Definition. The pair (9, 7) is a dissipative solution of the compressible Euler
equations if and only if (g, T) satisfies the relative energy inequality

t
E(o,1,0|r, U,0)(t) < E(2,1,0|r, U,0)(0) exp[Co(r)/ [divU(7) | o () dT]
0

+/0texp[co(r)/st||divU(T)HLoo(Q)] /QQE(r, U) - (U — @) dxds

for all smooth test functions (r, U) defined on [0, T] x Q) so that r is bounded
above and below away from zero and (r, w) solves

O¢r + div(rU) = 0,
U+ U-VU+VF'(r)=E(r,V)

for some residual E(r, U).



For constant viscosity: See C. Bardos and T. Nguyen.
For incompressible Euler: See P.—L. Lions' book.

For degenerate viscosity, using the x-relative entropy
Convergence of global x-entropy solutions of NS to dissipative solution of Euler



Relative entropy may be used for singular limit behavior:
» Low Mach Number limit
» High-rotating fluid
> Inviscid limit
» Low Weissenberg effect



Today:

» Low Mach number limit with large heat release
(Examples: Combustion, pollutant, avalanches)

» Compressible Navier-Stokes with degenerate viscosities
(Example: Shallow-water)

» Effect of bathymetry or stratification in the low mach number limit system
(Anelastic limit examples: lake equation, Durran model for atmopshere).

» Compressible Euler with dispersive term
(shallow-water with surface tension, Quantum Euler).

Tomorrow:

» Compressible Navier-Stokes equations:
Non-monotone pressure, anisotropy in stress tensor
Virial pressure (stellar), biology, eddy viscosity (geophysics)
» Multi-fluid system derivation.
Baer-Nunziato model 7 Justification of relaxation terms..
Aerated flows, nuclear industry, champagne (Stéphanie.....)



Thank you for your attention!




