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Outline 

•  Brief overview of  experiments  
•  Vicsek Models  
•  Continuum Models 
•  Novel Material Properties   



Active matter 

•  Definition: Energy is spent locally to produce directed, persistent, 
non-random motion 

•  Examples abound: in biology (animals, cells, motor proteins…) 
but not only (micro- and nano-swimmers, ‘smart’ colloids, 
robots…) 

•  Largely unexplored, novel collective properties  

•  “Swarm intelligence”, self-organized dynamical structures, new 
materials…  

 



Most convincing experiments 

•  Shaken granular particles, rolling colloids 

•  Microtubule motility assay 

•  Bacterial  suspensions 

•  And, of course, bird flocks, fish schools, animal swarms  



Shaken Granular Particles  

•  Vortices in vertically 
vibrated rods 

•  Swarming of vibrated 
polar disks 

Blair and Kudrolli Deseigne et al 



!  Dynein-c motor proteins, grafted on a substrate, move stabilized 
microtubules 

!  with high density of motors (1000/µm2), smooth, constant-speed motion 
of single MT 

25nm 

10-20µm Plus end�

In vitro motility assay: dyneins + microtubules   
(Sumino et al.) 



Bacterial Suspension   

Inelastic collisions   
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Bacterial Turbulence  

Sokolov, Goldstein, Kessler, I.A PRL (2007)  



Swarm Intelligence 

•  A low-cost scalable robot system  
   demonstrating collective behavior  
•  http://www.eecs.harvard.edu/ssr/projects/progSA/

kilobot.html 
•  Cost – 50$ per robot (but you may get a discount)  
•  Includes differential drive locomotion, on-board 

computer, neighbor-neighbor communication  
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Swarm Intellegence   
Kilobot project, Harvard University   



Vicsek-style models: 

•  Constant-speed point particles 

•  Discrete time update algorithm  

•  local alignment within a certain distance  
distance  

•  In competition with noise  

•  2 main parameters: global density and noise 
strength 



Vicsek-style models: 

"  Polar particles with ferromagnetic alignment 
(original VM)-birds, swimming bacteria  

"  Apolar nematic particles with nematic alignment 
(“active nematics”)- suspensions of microtubules and 
molecular motors, myxobacteria 

"  Polar particles with nematic alignment (“self-
propelled rods”) –  gliding assay of microtubules  

3 possible classes depending on symmetry:  



1. Polar orienting interaction in a noisy environment 

2. Streaming: motion along  the polar direction 

The Original Vicsek Model   
•  Driven overdamped (no inertia effects) dynamics (velocity rather than 

acceleration proportional to applied force)  

• Strictly local interaction range  

• Alignment according to average direction of the neighbors 

• Simple update algorithm for the position/orientation of particles 
• Not necessarily reproduce observed phenomenology   



The Original (Polar) Vicsek Model 
(angular noise)    

• Particles with position xi, velocity vi and orientation θi 
 
•  Velocity vi points in the direction  θi      ​"↓$ = ​"↓0 (​cos⁠(') ), ​sin ⁠(') ), ​"↓0 
=const 

• At each time step particle assumes the average direction of motion 
in its local neighborhood S(i) (e.g. a circle of radius R) 

•   Δt time step, ξ random variable from uniform distribution [�η,η]  

θi (t +Δt) = θ (t)
S (i )

+ξ

xi (t +Δt) = xi (t)+ vi (t)Δt,vi = v0 (cos(θ ),sin(θ ))

Vicsek et al, PRL 1995 

vi = v0 (cos(θ ),sin(θ )),v0



How to understand “average direction”    

• We should not average the angles  θi  
•  We should average unit vectors of orientation τ=(​cos⁠(') , ​sin ⁠(') ) 

• Summation is taken over all j particles within radius R of a particle i 

τ x + iτ y = e
iθ

θ (t)
S (i )

= arg 1
N

eiθ j
j
∑

"

#
$
$

%

&
'
'

Vicsek et al, PRL 1995 



Results from the original Vicsek paper     

Vicsek et al, PRL 1995 
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The actual simulations were carried out in a square
shaped cell of linear size L with periodic boundary
conditions. The particles were represented by points
moving continuously (off lattice) on the plane. We
used the interaction radius r as the unit to measure
distances (r = 1), while the time unit At = 1 was the
time interval between two updatings of the directions
and positions. In most of our simulations we used the
simplest initial conditions: (i) at time t = 0, N particles
were randomly distributed in the cell and (ii) had the
same absolute velocity v and (iii) randomly distributed
directions 0. the velocities (v;) of the particles were
determined simultaneously at each time step, and the
position of the ith particle updated according to

(a) ~ p q~&. ~ "„~ (b)

Here the velocity of a particle v; (r + 1) was constructed
to have an absolute value v and a direction given by
the angle 0(t + 1). This angle was obtained from the
expression

where (0(t))„denotes the average direction of the
velocities of particles (including particle i) being
within a circle of radius r surrounding the given par-
ticle. The average direction was given by the angle
arctan[(sin (0(t))„/(cos (0(t)))„]. In Eq. (2) 50 is a
random number chosen with a uniform probability from
the interval [—rI/2, g/2]. Thus the term 50 represents
noise, which we shall use as a temperaturelike variable.
Correspondingly, there are three free parameters for a
given system size: g, p, and v, where v is the distance
a particle makes between two updatings.
We have chosen this realization because of its simplic-

ity, however, there may be several more interesting alter-
natives of implementing the main rules of the model. In
particular, the absolute value of the velocities does not
have to be fixed, one can introduce further kinds of parti-
cle interactions and or consider lattice alternatives of the
model. In the rest of this paper we shall concentrate on
the simplest version, described above, and investigate the
nontrivial behavior of the transport properties as the two
basic parameters of the model, the noise g and the density
p = N/L, are varied. We used v = 0.03 in the simula-
tions we report on for the following reasons. In the limit
v ~ 0 the particles do not move and the model becomes
an analog of the well-known XY model. For v ~ ~ the
particles become completely mixed between two updates,
and this limit corresponds to the so-called mean-field be-
havior of a ferromagnet. We use v = 0.03 for which the
particles always interact with their actual neighbors and
move fast enough to change the configuration after a few
updates of the directions. According to our simulations,
in a wide range of the velocities (0.003 & v & 0.3), the
actual value of v does not affect the results.

FIG. l. In this figure the velocities of the particles are
displayed for varying values of the density and the noise. The
actual velocity of a particle is indicated by a small arrow, while
their trajectory for the last 20 time steps is shown by a short
continuous curve. The number of particles is N = 300 in each
case. (a) t = 0, L = 7, rj = 2.0. (b) For small densities and
noise the particles tend to form groups moving coherently in
random directions, here L = 25, ri = 0.1. (c) After some
time at higher densities and noise (L = 7, 71 = 2.0) the
particles move randomly with some correlation. (d) For higher
density and small noise (L = 5, rl = 0.1) the motion becomes
ordered. All of our results shown in Figs. 1—3 were obtained
from simulations in which v was set to be equal to 0.03.

Va
1

Nv Pv, (3)

Figures 1(a)—1(d) demonstrate the velocity fields dur-
ing runs with various selections for the value of the pa-
rameters p and g. The actual velocity of a particle is in-
dicated by a small arrow, while their trajectory for the last
20 time steps is shown by a short continuous curve. (a) At
t = 0 the positions and the direction of velocities are dis-
tributed randomly. (b) For small densities and noise the
particles tend to form groups moving coherently in ran-
dom directions. (c) At higher densities and noise the par-
ticles move randomly with some correlation. (d) Perhaps
the most interesting case is when the density is large and
the noise is small; in this case the motion becomes or-
dered on a macroscopic scale and all of the particles tend
to move in the same spontaneously selected direction.
This kinetic phase transition is due to the fact that

the particles are driven with a constant absolute velocity;
thus, unlike standard physical systems in our case, the net
momentum of the interacting particles is not conserved
during collision. We have studied in detail the nature of
this transition by determining the absolute value of the
average normalized velocity

1227

Phases for different density and noise  



Results from the original Vicsek paper     

Vicsek et al, PRL 1995 

Dependence of the OP on the noise and density   

VOLUME 75, NUMBER 6 PH YS ICAL REVIEW LETTERS 7 AUcUsT 1995

of the entire system of particles as the noise and the
density were changed. This velocity is approximately
zero if the direction of the motion of the individual
particles is distributed randomly, while for the coherently
moving phase (with ordered direction of velocities) v, =
1 so that we can consider the average velocity as an order
parameter.
First we gradually decreased the amount of noise g in

cells of various sizes for a fixed density p and observed
a transition from a disorderly moving phase to a phase
with a coherent motion of the particles [Fig. 2(a)]. The
uncertainty of the data points is within the range of the
symbols except for runs carried out with 4000 and 10000
particles close to the transition. For these g values the
statistical errors estimated from five runs with different
initial conditions are in the range of 5% (resulting in an
overlap of the results for a limited number of zI values)
due to the slow convergence and large fluctuations. In
Fig. 2(b) we show how v, changes if the noise is kept
constant and the density is increased.
Quite remarkably, the behavior of the kinetic order pa-

rameter Ij, is very similar to that of the order parameter
of some equilibrium systems close to their critical point.
The strongest indication of a transition in our nonequilib-
rium model is the fact that as we go to larger system sizes
the region over which the data show scaling is increas-

ing [see Fig. 3(a)]. Only an extremely unusual crossover
could change this tendency. A plausible physical picture
behind our finding is the following: Since the particles
are diffusing, there is mixing in the system resulting in an
effective (long range) interaction radius.
Thus we can assume that in the thermodynamic limit

our model exhibits a kinetic phase transition analogous
to the continuous phase transition in equilibrium systems,
i.e.,

and

(4)
where P and 6 are critical exponents and rI, (p) and
p, (rI) are the critical noise and density (for L ~ ~),
respectively. We can determine p and 6 corresponding
to the rate of vanishing of the order parameter from
plotting ln v, as a function of ln([rI, (L) —rI]/zj, (L))
and ln([p —p, (L)]/p, (L)) for some fixed values
of p and ri, respectively (Fig. 3). For finite sizes
rj, (L) and p, (L) are L dependent; thus we used such
values of quantities for which the plots in Fig. 3 were
the straightest in the relevant region of noise or density
values. The slope of the lines fitted to the data can
be associated with the critical exponents for which we
obtained p = 0.45 ~ 0.07 and 6 = 0.35 ~ 0.06. The
errors in determining P and 6 are due to the uncertainties
in the (i) v, and the (ii) rI, (L) and p, (L) values. Since
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FIG. 2. (a) The absolute value of the average velocity
(v, ) versus the noise 7I in cells of various sizes for
a fixed density p. The symbols correspond to
N = 40, L = 3 1 + N = 100, L = 5 X N = 400, L =
10;6:N = 4000, L = 31.6; C': N = 10000, L = 50. In
(b) (for L = 20) we show how v, changes if the noise is kept
constant and the density is increased.
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FIG. 3. Dependence of lnv, on In([rj, (L) —rl]/tI, (L)) and
ln([p —p, (L)]/p, (L)). The slope of the lines fitted to the
data can be associated with the critical exponents P and B.
(a) is for p = 0 4, (b) is for L = 20 and rI = 2 0.
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of the entire system of particles as the noise and the
density were changed. This velocity is approximately
zero if the direction of the motion of the individual
particles is distributed randomly, while for the coherently
moving phase (with ordered direction of velocities) v, =
1 so that we can consider the average velocity as an order
parameter.
First we gradually decreased the amount of noise g in

cells of various sizes for a fixed density p and observed
a transition from a disorderly moving phase to a phase
with a coherent motion of the particles [Fig. 2(a)]. The
uncertainty of the data points is within the range of the
symbols except for runs carried out with 4000 and 10000
particles close to the transition. For these g values the
statistical errors estimated from five runs with different
initial conditions are in the range of 5% (resulting in an
overlap of the results for a limited number of zI values)
due to the slow convergence and large fluctuations. In
Fig. 2(b) we show how v, changes if the noise is kept
constant and the density is increased.
Quite remarkably, the behavior of the kinetic order pa-

rameter Ij, is very similar to that of the order parameter
of some equilibrium systems close to their critical point.
The strongest indication of a transition in our nonequilib-
rium model is the fact that as we go to larger system sizes
the region over which the data show scaling is increas-

ing [see Fig. 3(a)]. Only an extremely unusual crossover
could change this tendency. A plausible physical picture
behind our finding is the following: Since the particles
are diffusing, there is mixing in the system resulting in an
effective (long range) interaction radius.
Thus we can assume that in the thermodynamic limit

our model exhibits a kinetic phase transition analogous
to the continuous phase transition in equilibrium systems,
i.e.,

and

(4)
where P and 6 are critical exponents and rI, (p) and
p, (rI) are the critical noise and density (for L ~ ~),
respectively. We can determine p and 6 corresponding
to the rate of vanishing of the order parameter from
plotting ln v, as a function of ln([rI, (L) —rI]/zj, (L))
and ln([p —p, (L)]/p, (L)) for some fixed values
of p and ri, respectively (Fig. 3). For finite sizes
rj, (L) and p, (L) are L dependent; thus we used such
values of quantities for which the plots in Fig. 3 were
the straightest in the relevant region of noise or density
values. The slope of the lines fitted to the data can
be associated with the critical exponents for which we
obtained p = 0.45 ~ 0.07 and 6 = 0.35 ~ 0.06. The
errors in determining P and 6 are due to the uncertainties
in the (i) v, and the (ii) rI, (L) and p, (L) values. Since
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FIG. 2. (a) The absolute value of the average velocity
(v, ) versus the noise 7I in cells of various sizes for
a fixed density p. The symbols correspond to
N = 40, L = 3 1 + N = 100, L = 5 X N = 400, L =
10;6:N = 4000, L = 31.6; C': N = 10000, L = 50. In
(b) (for L = 20) we show how v, changes if the noise is kept
constant and the density is increased.
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ln([p —p, (L)]/p, (L)). The slope of the lines fitted to the
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(a) is for p = 0 4, (b) is for L = 20 and rI = 2 0.

Conjecture on continuous phase transition  
with the scaling exponents β=0.45 & δ=0.35  



Simulations of the Vicsek model: Vicsek bands   

Chate and Gregoire,PRL 2004 

1,000,000 particles 



Common features at microscopic level: 
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microscopic 
disorder 

gas 

(quasi) ordered 
liquid 

•  Disordered gas phase at low 
density/strong noise 

•  (Quasi-) ordered liquid phase at 
high density/low noise, with 
superdiffusion 

•  In between: phase-separated 
inhomogeneous phase with 
dense and ordered regions 



Vicsek model with the vectorial noise 

θ j
i+1 = arg eiθk

k
∑ +ηN je

iξ j
"

#
$

%

&
'

N j − current # of neighbors 

ξ j −delta-correlated noise ξ ∈ [-π ,π ] 

η-noise amplitude 

Chate and Gregoire, PRL 2004 



Discontinuons   transition  

at large size,  discontinuous transition  

Order parameter: ( ) ∑
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Discontinuons   transition in the orignal 
Vicsek Model (angular noise)   

at large size,  discontinuous transition  

Order parameter: 
 
 
 
 
Binder cumulant 

φ t( ) = 1
N

vi (t)
i=1

N

∑

G =1− φ 4 / 3 φ 2
2

Comment on ‘‘Phase Transitions in Systems of Self-
Propelled Agents and Related Network Models’’

In a recent Letter [1], Aldana et al. study order-disorder
phase transitions in random network models and show that
the nature of these transitions may change with the way
noise is implemented in the dynamics. Arguing that these
networks are limiting cases of simple models of interacting
self-propelled agents of the type of the Vicsek model (VM)
[2], they claim that the conclusions reached for the net-
works may carry over to the transitions to collective motion
of the VM-like systems. They suggest, in particular, that in
the case of ‘‘angular’’ noise [i.e., as in the original VM [3],
or in their Eq. (1)] the transition to collective motion is
continuous, in contradiction with some of the conclusions
of [4]. While we agree with the analysis of the network
models, we argue here that it has no bearing on VM-like
systems. We show, in particular, that the transition to
collective motion, for angular noise, remains discontinuous
for any finite microscopic velocity v and finite density !,
however large, confirming [4].

In [4], it was shown that the transition in the original VM
appears continuous only when the linear system size L is
smaller than some crossover size L!"!; v# and thus is
discontinuous in the thermodynamic limit (see Fig. 2(a)
there). These results were obtained for values of ! and v of
order unity. The same scenario occurs in the large-v or
large ! limit of interest here. Figure 1(a) here displays
results akin to Fig. 1 of [1] except that the VM order
parameter curves were obtained in systems such that L>
L!"!; v#, whereas in [1] L ’ 100<L!"!; v# (see below for
our estimates of L!). Clearly, the transition is discontinu-
ous, as demonstrated by the minimum shown by the Binder
cumulant [Fig. 1(b)] and by the bimodality of the order
parameter distribution in the transition region (not shown).

The key difference between the network models and
interacting self-propelled agents is indeed that the latter
move, inducing a local coupling between order and density,
which is well known to be crucial for understanding col-
lective properties of active particles [5]. In the VM, this
coupling gives rise to strong density and order variations
on length scales of the order of L!. While the network
models in [1] capture the long-range interactions due to
large velocities, they obviously cannot account for any
coupling between density and order. The network models
only represent VM-like models of size L & L!.

The crossover scale L! is difficult to estimate with high
accuracy, but our data indicate that L! increases roughly
linearly with v (for ! $ 2, L! $ 150% 25, 175% 25,
250% 50, 550% 50 for v $ 5, 10, 20, 40, respectively).
Thus, we expect L! to be finite at any finite v. As a
consequence, the transition is always discontinuous in the
thermodynamic limit, although its asymptotic behavior is
harder to observe as v is taken larger and larger. When v is
taken to infinity first, the transition is continuous for all

finite ‘‘sizes’’, but then the notion of distance in physical
space is abolished.

In summary, the transition to collective motion in VM-
like systems with angular noise remains discontinuous for
large v values. Thus, the networks studied in [1] at best
constitute a singular v! 1 limit of these systems [6].
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FIG. 1 (color online). Order-disorder transition for the Vicsek
model at different v values (solid lines) and the network of fixed
vectors of [1] (dashed line), both with angular noise. (a) Time-
averaged order parameter h i vs noise strength ". (b) Same as
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Vicsek bands (solitons) in 2D and 3D     

Chate t al, PRE 2008   

easier to observe bands in the ordered phase of vectorial
noise dynamics !3", as in Fig. 11!d".

Bands may be observed asymptotically without and with a
repulsive interaction #Fig. 12!c"$ and for both kinds of noise.
They appear for various choices of boundary conditions #see,
for instance, Figs. 12!a" and 12!b", where reflecting bound-
ary conditions have been employed$, which may play a role
in determining the symmetry-broken mean direction of mo-
tion. For instance, bands traveling parallel to one of the axes
are favored when periodic boundary conditions are employed
in a rectangular box !they represent the simplest way in
which an extended structure can wrap around a torus, and are
thus reached more easily from disordered initial conditions",
but bands traveling in other directions may also appear, al-
beit with a smaller probability.

Bands can be described quantitatively through local quan-
tities, such as the local density !!!x! , t", measured inside a
domain V!x!" centered around x!, and the local order param-
eter

"!!x!,t" =
1

v0
%&v! i!t"'r!i!V!x!"% . !11"

Further averaging these local quantities perpendicularly to
the mean velocity !7", one has the density profile !!!x( , t"
= &!!!x! , t"'! and the order parameter profile "!!x( , t"
= &"!!x! , t"'!, where x( indicates the longitudinal direction
with respect to the mean velocity. Bands are characterized by
a sharp kink in both the density and the order parameter
profiles #see Figs. 13!a", 13!c", and 13!d"$. They are typically

asymmetric, as can be expected for moving structures, with a
rather sharp front edge, a well-defined mid-height width
w—which typically is of the same order as Lb—and an ex-
ponentially decaying tail with a characteristic decay length
of the order of w #Fig. 13!b"$.

Large systems may accommodate several bands at the
same time, typically all moving in the same direction #see,
for instance, Fig. 11!c" and the density profile in Fig. 14!e"$.
However, they do not form well-defined wave trains, but
rather a collection of solitary objects, as hinted by the fol-
lowing numerical experiments.

We investigated the instability of the density-
homogeneous, ordered state in a series of numerical simula-
tions starting from particles uniformly distributed in space
but strictly oriented along the major axis in a large rectangu-
lar domain. Figures 14!a" and 14!b" show space-time plots of
the density profile: initially flat, it develops structures with
no well-defined wavelength #Fig. 14!c"$. Density fluctuations
destroy the initially ordered state in a rather unusual way: a
dynamical Fourier analysis of the density profile show a
weakly peaked, wide band of wavelengths growing subexpo-
nentially #Fig. 14!d"$. This is at odds with a finite-
wavelength supercritical instability, which would lead to a
wave train of traveling bands. Furthermore, the asymptotic
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FIG. 11. !Color online" Typical snapshots in the ordered phase.
Points represent the position of individual particles and the red ar-
row points along the global direction of motion. !a"–!c" Angular
noise, !=1 /2, v0=0.5, #=0.3, and increasing system sizes, respec-
tively, L=64, 256, and 1024. Sharp bands can be observed only if L
is larger than the typical bandwidth w. !d" Vectorial noise, !=1 /2,
v0=0.5, #=0.55, and L=64: bands appear at relatively small system
sizes for this type of noise. For clarity, only a representative sample
of 10 000 particles is shown in !b" and !c". Boundary conditions are
periodic.
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FIG. 12. !Color online" Same as Fig. 11 but in different geom-
etries and boundary conditions or space dimensions. !a",!b" Vecto-
rial noise !#=0.325, !=1 /8, and v0=0.5"; boundary conditions are
periodic along the y !vertical" axis and reflecting in x. !a" A long
single band travels along the periodic direction. !b" The domain size
along the periodic direction is too small to accommodate bands, and
a single band bouncing back and forth along the nonperiodic direc-
tion is observed. !c" Angular noise, repulsive force, and periodic
boundary conditions !!=2, #=0.23, and v0=0.3". !d" High-density
sheet traveling in a three-dimensional box with periodic boundary
conditions !angular noise with amplitude #=0.355, !=1 /2, and
v0=0.5".
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Density profiles   

Chate et al, PRE 2008   

!late-time" power spectra of the density profiles are not
peaked around a single frequency either, but rather broadly
distributed over a large range of wave numbers #Fig. 14!f"$.
In the asymptotic regime, bands are extremely long-lived
metastable !or possibly stable" objects, which are never
equally spaced #a typical late-time configuration is shown in
Fig. 14!e"$.

To summarize, the emerging band or sheet structure in the
asymptotic regime is not a regular wave train characterized
by a single wavelength, but rather a collection of irregularly
spaced localized traveling objects, probably weakly interact-
ing through their exponentially decaying tails.

B. Low-noise regime and giant density fluctuations

As the noise amplitude is decreased away from the tran-
sition point, bands are less sharp, and eventually disappear,
giving way to an ordered state characterized by a homoge-
neous local order parameter and large fluctuations of the lo-
cal density.

A quantitative measure of the presence, in the ordered
phase, of structures spanning the dimension transverse to the
mean motion !i.e., bands or sheets" is provided by the vari-
ances of the density and order parameter profiles:

!"!
2 !t" = Š#"!!x%,t" − &"!!x%,t"'%$2‹% ,

!#!
2 !t" = Š##!!x%,t" − &#!!x%,t"'%$2‹% , !12"

where &·'% indicates the average of the profile in the longitu-
dinal direction with respect to mean velocity. Indeed, these

profile widths vanish in the infinite-size limit except if band
or sheet structures are present.

In Figs. 15!a" and 15!b", we plot these profile widths av-
eraged over time as a function of noise amplitude. Both
quantities present a maximum close to the transition point in
the ordered phase, and drop drastically as soon as the disor-
dered phase is entered. Lowering the noise away from the
transition point, these profiles decrease steadily: bands and
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FIG. 13. !Color online" !a" Typical density !black line" and or-
der parameter !dashed red line" profiles for bands in two dimensions
!vectorial noise, "=2, $=0.6, and v0=0.5". !b" Tail of the density
profile shown in !d" !black line" and its fit !blue dashed line" by the
formula "!!x% , t"(a0+a1!t"exp!−x% /w", with w(6.3 !lin-log
scale". !c",!d" Traveling sheet in three dimensions !angular noise,
"=1 /2, $=0.355, and v0=0.5". !c" Projection of particle positions
on a plane containing the global direction of motion !marked by red
arrow". !d" Density !black line" and order parameter !dashed red
line" profiles along the direction of motion x%.

0 100 200 k
0

0.4

0.8

S
(c)

0 400 800 t
0

0.4

0.8

Sk

(d)

0 800 1600 x//
0

4

8

ρ⊥
(e)

0 100 200 k
0

0.4

0.8

S

(f)

0 75

0.05

0.1
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Vicsek Model with local attraction  

Gregoire and Chate, PRL 2004   

Formation of the dense cohesive 
flocks due to local attraction between 
the particles  

θ j
i+1 = arg α eiθk

k
∑ +β f jke

iθkj

k
∑ +ηN je

iξ j
!

"
#

$

%
&

N j − current # of neighbors 

α,β − strength of aligment and adhesion 
f -repulsive for very small r and atractive for larger r 
  

‘‘flights,’’ occurring when a particle is caught in a moving
ordered patch, separated by normal diffusion in the dis-
ordered regions. The mean square displacement of par-
ticles h!r2i varies similar to t" with " ! 1:65"5#.

We now turn to the onset of collective motion in the
presence of cohesion. As shown in [12], the cohesion of a
population of particles can be maintained without resolv-
ing to long-range or global interactions. In the spirit of
the VM, and following [15], a two-body short-range
interaction force competing with the alignment tendency
is introduced, leading to the model

#t$1
j ! arg

!
"
X
k%j

ei#
t
k $ $

X
k%j

ftjke
i#tjk $ %ntje

i&tj

"
; (4)

where " and $ control the strength of alignment and
cohesion, and #tjk is the direction of the vector linking
particle j to particle k. The interaction force between
these two particles, of amplitude ftjk, is actually repulsive
up to an intermediate equilibrium distance re, with a
short-range hard core at rc and attractive up to the inter-
action range r0. In the following, as in [12], we used

fjk !
(&1 if rjk < rc
1
4
rjk&re
ra&re

if rc < rjk < ra
1 if ra < rjk < r0;

(5)

where rjk is the distance between j and k, with rc ! 0:2,
re ! 0:5, and ra ! 0:8. Note that vectorial noise was
chosen in (4) in the hope of reaching asymptotic proper-
ties more easily.

The above model has three main parameters, ", $, and
%, only two of which are independent. The phase diagram
in the "";$# plane (with % ! 1 fixed arbitrarily) was
presented in [12], where, moreover, only neighbors in
the Voronoi sense are considered in the sums of (4). For
large enough $, cohesion is maintained, even in the zero-
density limit. This ‘‘gas/liquid’’ transition is followed, at
larger $ values, by the onset of positional (quasi) order,
i.e., a ‘‘liquid/solid’’ transition. For large ", these liquid or
solid cohesive groups move, whereas they remain static
(up to finite-size fluctuations) for small ".

In the ‘‘liquid case’’ (intermediate $ values), the onset
of motion is accompanied by a loss of cohesion: While
small groups set in motion smoothly without breaking up
[Fig. 3(a), dashed lines], larger groups gradually subdi-
vide into several parts of roughly equivalent size linked
by filamentary structures, in contrast with their more
compact shapes before and after onset (Fig. 4). The fila-
ments themselves are quite static [Fig. 4(d)] but are dis-
placed by the subgroups which move coherently so that
they eventually break up, as indicated by the dip in the
normalized largest connected cluster size n=N in Fig. 3(a).
Increasing ", large groups follow the same precursor of
the transition as smaller groups, but when their fragmen-
tation occurs the order parameter falls back, leaving
an intermediate peak [around " ! 1:7 in Fig. 3(a)].

Increasing " further, h’i rises again and finally jumps
to h’i ! 1 when full cohesion is recovered [for " ! 1:88
in Fig. 3(a)]. This discontinuous jump is the true location
of the transition: For an infinite group, the onset of
motion must occur abruptly near this value, as the pre-
cursory features described above disappear because the
population divides into infinitely many subgroups whose
influences average themselves out. Meanwhile, cohesion
is only lost at the transition point in this asymptotic
picture.

The breakup of large cohesive groups around threshold
is probably closely related to what happens in the case
without cohesion: The subgroups connected by filaments
may correspond to the ordered patches seen in the disor-
dered phase near threshold in Fig. 2(d). The breakup itself
can be seen as resulting from the maximal effect of
acoustic modes on the shape of the group [13]. Also
affecting the shape dynamics are rotational modes: The
subgroups seen in Fig. 4(a) not only move but they also
rotate slowly [16]. Rotation is not steady, but intermittent.
We recorded the rotation times and their corresponding
angles. Extremal statistics analysis reveal that the ten-
dency to rotate is maximal at the onset of motion
[Fig. 3(b)]. Moreover, at threshold, the distribution of
rotation times is algebraic with a decay exponent such
that it has no finite mean [inset of Fig. 3(b)].

The onset of motion of the ‘‘solid’’ groups (large $
values) is accompanied by a loss of positional order:
These crystals melt near the transition [inset of
Fig. 3(a)]. Given the above results in the liquid case,
one can expect very large solid groups to melt and
then subdivide and lose cohesion in the transition
region, making the onset of motion asymptotically
discontinuous.
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FIG. 3. Onset of motion of cohesive groups in model (4) with
% ! 1, v0 ! 0:05. (a) h’i and n=N (normalized size of largest
connected cluster) vs " [' ! 1

16 , $ ! 20 (liquid phase): dashed
lines, N ! 4096; solid lines, N ! 16 384]. Inset: solid group
($ ! 84) of N ! 4096 particles: dashed line, h’i; solid line,
relative diffusion of initially neighboring particles ! '
h 1nj

P
k%j(1& r2jk"t#=r2jk"t$ T#)ij;t, where T * 20N (! ’ 1 in

the liquid phase, while ! ’ 0 in the solid phase, see [12]).
(b) Variation with " of the maximal absolute rotation angle j!j
averaged over 100 samples of 1000 vortices [N ! 2048, ' ! 1

32 ,
$ ! 30 (liquid phase)]. Dashed line: h’i during the same runs.
Inset: Distribution of rotation times at the transition with decay
exponent %1:3.
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Vicsek Model with apolar interaction (apolar rods)   

Ginelli et al, PRL 2010   

Reversal of particle direction 
does not  change outcome of 
interaction  
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We study, in two space dimensions, the collective properties of constant-speed polar point particles

interacting locally by nematic alignment in the presence of noise. This minimal approach to self-propelled

rods allows one to deal with large numbers of particles, which exhibit a rich phenomenology distinctively

different from all other known models for self-propelled particles. Extensive simulations reveal long-

range nematic order, phase separation, and space-time chaos mediated by large-scale segregated

structures.

DOI: 10.1103/PhysRevLett.104.184502 PACS numbers: 47.54.!r, 05.65.+b, 87.18.Gh, 87.18.Hf

Collective motion is a ubiquitous phenomenon observ-
able at all scales, in natural systems [1] as well as human
societies [2]. The mechanisms at its origin can be remark-
ably varied. For instance, they may involve the hydrody-
namic interactions mediated by the fluid in which bacteria
swim [3], the long-range chemical signaling driving the
formation and organization of aggregation centers of
Dictyostelium discoideum amoeba cells [4], or the local
cannibalistic interactions between marching locusts [5]. In
spite of this diversity, one may search for possible universal
features of collective motion, a context in which the study
of ‘‘minimal’’ models is a crucial step. Recently, the in-
vestigation of the simplest cases, where the problem is
reduced to the competition between a local aligning inter-
action and some noise, has revealed a wealth of unexpected
collective properties. For example, constant-speed, self-
propelled, polar point particles with ferromagnetic inter-
actions subjected to noise (as in the Vicsek model [6]) can
form a collectively moving fluctuating phase with long-
range polar order even in two spatial dimensions [7], with
striking properties such as spontaneous segregation into
ordered solitary bands moving in a sparse, disordered sea,
or anomalous (‘‘giant’’) density fluctuations [8]. In con-
trast, active apolar particles with nematic interactions only
exhibit quasi-long-range nematic order in two dimensions
with segregation taking the form of a single, strongly
fluctuating, dense structure with longitudinal order and
even stronger density fluctuations than in the polar-
ferromagnetic case [9,10].

Noting that these differences reflect those in the local
symmetry of particles and their interactions, a third situ-
ation can be defined, intermediate between the polar-
ferromagnetic model and the apolar nematic one, that of
self-propelled polar particles aligning nematically. Such a
mechanism is typically induced by volume exclusion in-
teractions, when elongated particles colliding almost head-
on slide past each other (Fig. 1). Thus, self-propelled polar
point particles with apolar interactions can be conceived as

a minimal model for moving rods interacting by inelastic
collisions [11–13]. Other relevant situations can be found
in biology, such as gliding myxobacteria moving on a
substrate [14], or microtubules driven by molecular motors
grafted on a surface [15].
In this Letter, we study constant-speed polar point par-

ticles interacting locally by nematic alignment in the pres-
ence of noise. The simplicity of this model allows us to
deal with large numbers of particles, revealing a phenome-
nology previously unseen in more complicated models
sharing the same symmetries [11–13] but in agreement
with the linear analysis of [16]. Our study, restricted to
two space dimensions, shows, in particular, collective
properties distinctively different from both those of the
polar-ferromagnetic case and of active nematics: only ne-
matic order arises in spite of the polar nature of the
particles, but it seems genuinely long-ranged. Spontane-
ous density segregation is also observed, but here it appears
as a bona fide phase separation: in the ordered side, a dense
band occupying a fraction of space along which particles
move in both directions arises when noise is strong enough.
Its instability marks the order-disorder transition. It van-
ishes at strong noise, splitting the disordered phase in two.
The class of polar particles aligning nematically exhibits
thus a total of four phases.
Our model consists of N point particles moving off

lattice at constant speed v0. In two dimensions, particle j
is defined by its (complex) position rtj and orientation !tj,

updated at discrete time steps according to

FIG. 1. Nematic alignment of polar particles illustrated by
inelastic collisions of rods. Particles incoming at a small angle
(left) align ‘‘polarly,’’ but those colliding almost head-on slide
past each other, maintaining their nematic alignment (right).
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where the sum is taken over all particles k within unit
distance of j (including j itself), and # is a white noise
uniformly distributed in ½& $

2 ;
$
2( [17]. (A continuous-time

version of this model can be found in [18].) The system has
two main control parameters: the noise amplitude ", and
the particle density % ¼ N=A, where A is the domain area.
We consider periodic boundary conditions. Polar and ne-
matic order can be characterized by means of the two time-
dependent global scalar order parameters PðtÞ ¼
jhexpði!tjÞijj (polar) and SðtÞ ¼ jhexpði2!tjÞijj (nematic),

as well as their asymptotic time averages P ¼ hPðtÞit and
S ¼ hSðtÞit.

Here, we mostly report on the behavior of the system for
% ¼ 1

8 and v0 ¼ 1
2 , varying ". We start with a brief survey

of the stationary states observed in a square domain of
linear size L ¼ 2048 (Figs. 2 and 3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise, while P always remains near zero (not
shown). This is in agreement with the findings of [16].
Both the ordered and the disordered regimes are subdi-
vided in two phases, one that is spatially homogeneous
[Figs. 2(a) and 2(e)], and one where density segregation
occurs, leading to high-density ordered bands along which
the particles move back and forth [Figs. 2(b)–2(d)]. A total
of four phases is thus observed, labeled I to IV by increas-
ing noise strength hereafter. Phases I and II are nematically
ordered, phases III and IV are disordered.

Phase I, present at the lowest " values, is ordered and
spatially homogeneous [Fig. 2(a)]. Nematic order arises
quickly from any initial condition, even though long-lived
dense polar packets are observed locally: statistically, two
subpopulations of particles migrate in opposite directions
[Fig. 4(a)], constantly exchanging particles. These ‘‘turn
around’’ events occur at exponentially-distributed times &
[Fig. 4(b)]. Increasing system size, the nematic order pa-
rameter S is almost constant, decaying slower than a power

law [Fig. 4(c)]. A good fit of this decay is given by an
algebraic approach to a constant asymptotic value S).
Thus, our data seem to indicate the existence of true
long-range nematic order. (Quasi-long-range order, ex-
pected classically for two-dimensional nematic phases, is
characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
general grounds for homogeneous ordered phases of active
particles [10], phase I exhibits so-called giant number
fluctuations: the fluctuations !n2 ¼ hðn& hniÞ2i of the
average number of particles hni ¼ %‘2 contained in a
square of linear size ‘ follow the power law !n# hni'
with '> 1

2 [Fig. 4(d)]. Our estimate of ' is compatible to

that measured for polarly ordered phases ' ¼ 0:8 [8].
Phase II differs from phase I by the presence, in the

steady state, of a low-density disordered region. In large-
enough systems, for " * "I-II ’ 0:098ð2Þ, a narrow, low-
density channel emerges rather suddenly, like in a nuclea-
tion process [Fig. 2(b)]. It becomes wider at larger "
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
decay of S with system size, giant number fluctuations).
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FIG. 3 (color online). Nematic order parameter S (in black)
and its rms fluctuations !S (in red) as function of the squared
noise amplitude "2 for a square domain of linear size L ¼ 2048.
Here, and throughout the Letter, time averages are over at least
106 time steps.
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FIG. 2 (color online). (a)–(c) Typical steady-state snapshots at different noise values (linear size L ¼ 2048). (a) " ¼ 0:08,
(b) " ¼ 0:10, (c) " ¼ 0:13, (d) " ¼ 0:168, (e) " ¼ 0:20. Arrows indicate the polar orientation of particles [except in (d)]; only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [19].
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where the sum is taken over all particles k within unit
distance of j (including j itself), and # is a white noise
uniformly distributed in ½& $

2 ;
$
2( [17]. (A continuous-time

version of this model can be found in [18].) The system has
two main control parameters: the noise amplitude ", and
the particle density % ¼ N=A, where A is the domain area.
We consider periodic boundary conditions. Polar and ne-
matic order can be characterized by means of the two time-
dependent global scalar order parameters PðtÞ ¼
jhexpði!tjÞijj (polar) and SðtÞ ¼ jhexpði2!tjÞijj (nematic),

as well as their asymptotic time averages P ¼ hPðtÞit and
S ¼ hSðtÞit.

Here, we mostly report on the behavior of the system for
% ¼ 1

8 and v0 ¼ 1
2 , varying ". We start with a brief survey

of the stationary states observed in a square domain of
linear size L ¼ 2048 (Figs. 2 and 3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise, while P always remains near zero (not
shown). This is in agreement with the findings of [16].
Both the ordered and the disordered regimes are subdi-
vided in two phases, one that is spatially homogeneous
[Figs. 2(a) and 2(e)], and one where density segregation
occurs, leading to high-density ordered bands along which
the particles move back and forth [Figs. 2(b)–2(d)]. A total
of four phases is thus observed, labeled I to IV by increas-
ing noise strength hereafter. Phases I and II are nematically
ordered, phases III and IV are disordered.

Phase I, present at the lowest " values, is ordered and
spatially homogeneous [Fig. 2(a)]. Nematic order arises
quickly from any initial condition, even though long-lived
dense polar packets are observed locally: statistically, two
subpopulations of particles migrate in opposite directions
[Fig. 4(a)], constantly exchanging particles. These ‘‘turn
around’’ events occur at exponentially-distributed times &
[Fig. 4(b)]. Increasing system size, the nematic order pa-
rameter S is almost constant, decaying slower than a power

law [Fig. 4(c)]. A good fit of this decay is given by an
algebraic approach to a constant asymptotic value S).
Thus, our data seem to indicate the existence of true
long-range nematic order. (Quasi-long-range order, ex-
pected classically for two-dimensional nematic phases, is
characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
general grounds for homogeneous ordered phases of active
particles [10], phase I exhibits so-called giant number
fluctuations: the fluctuations !n2 ¼ hðn& hniÞ2i of the
average number of particles hni ¼ %‘2 contained in a
square of linear size ‘ follow the power law !n# hni'
with '> 1

2 [Fig. 4(d)]. Our estimate of ' is compatible to

that measured for polarly ordered phases ' ¼ 0:8 [8].
Phase II differs from phase I by the presence, in the

steady state, of a low-density disordered region. In large-
enough systems, for " * "I-II ’ 0:098ð2Þ, a narrow, low-
density channel emerges rather suddenly, like in a nuclea-
tion process [Fig. 2(b)]. It becomes wider at larger "
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
decay of S with system size, giant number fluctuations).

0.01 0.02 0.03

η2

10-3

10-2

10-1

100

S

I II

III

IV

∆S

FIG. 3 (color online). Nematic order parameter S (in black)
and its rms fluctuations !S (in red) as function of the squared
noise amplitude "2 for a square domain of linear size L ¼ 2048.
Here, and throughout the Letter, time averages are over at least
106 time steps.
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FIG. 2 (color online). (a)–(c) Typical steady-state snapshots at different noise values (linear size L ¼ 2048). (a) " ¼ 0:08,
(b) " ¼ 0:10, (c) " ¼ 0:13, (d) " ¼ 0:168, (e) " ¼ 0:20. Arrows indicate the polar orientation of particles [except in (d)]; only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [19].
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Collective motion of millions of  
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Discontinuons   transition in the apolar model   

at large size,  discontinuous transition  

Nematic (apolar) Order parameter: S t( ) = 1
N

exp(2iθ j
j=1

N

∑ )

!tþ1
j ¼ arg

!X

k#j

sign½cosð!tk & !tjÞ(ei!
t
k

"
þ "#t

j (1)

r tþ1
j ¼ rtj þ v0e

i!tþ1
k ; (2)

where the sum is taken over all particles k within unit
distance of j (including j itself), and # is a white noise
uniformly distributed in ½& $

2 ;
$
2( [17]. (A continuous-time

version of this model can be found in [18].) The system has
two main control parameters: the noise amplitude ", and
the particle density % ¼ N=A, where A is the domain area.
We consider periodic boundary conditions. Polar and ne-
matic order can be characterized by means of the two time-
dependent global scalar order parameters PðtÞ ¼
jhexpði!tjÞijj (polar) and SðtÞ ¼ jhexpði2!tjÞijj (nematic),

as well as their asymptotic time averages P ¼ hPðtÞit and
S ¼ hSðtÞit.

Here, we mostly report on the behavior of the system for
% ¼ 1

8 and v0 ¼ 1
2 , varying ". We start with a brief survey

of the stationary states observed in a square domain of
linear size L ¼ 2048 (Figs. 2 and 3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise, while P always remains near zero (not
shown). This is in agreement with the findings of [16].
Both the ordered and the disordered regimes are subdi-
vided in two phases, one that is spatially homogeneous
[Figs. 2(a) and 2(e)], and one where density segregation
occurs, leading to high-density ordered bands along which
the particles move back and forth [Figs. 2(b)–2(d)]. A total
of four phases is thus observed, labeled I to IV by increas-
ing noise strength hereafter. Phases I and II are nematically
ordered, phases III and IV are disordered.

Phase I, present at the lowest " values, is ordered and
spatially homogeneous [Fig. 2(a)]. Nematic order arises
quickly from any initial condition, even though long-lived
dense polar packets are observed locally: statistically, two
subpopulations of particles migrate in opposite directions
[Fig. 4(a)], constantly exchanging particles. These ‘‘turn
around’’ events occur at exponentially-distributed times &
[Fig. 4(b)]. Increasing system size, the nematic order pa-
rameter S is almost constant, decaying slower than a power

law [Fig. 4(c)]. A good fit of this decay is given by an
algebraic approach to a constant asymptotic value S).
Thus, our data seem to indicate the existence of true
long-range nematic order. (Quasi-long-range order, ex-
pected classically for two-dimensional nematic phases, is
characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
general grounds for homogeneous ordered phases of active
particles [10], phase I exhibits so-called giant number
fluctuations: the fluctuations !n2 ¼ hðn& hniÞ2i of the
average number of particles hni ¼ %‘2 contained in a
square of linear size ‘ follow the power law !n# hni'
with '> 1

2 [Fig. 4(d)]. Our estimate of ' is compatible to

that measured for polarly ordered phases ' ¼ 0:8 [8].
Phase II differs from phase I by the presence, in the

steady state, of a low-density disordered region. In large-
enough systems, for " * "I-II ’ 0:098ð2Þ, a narrow, low-
density channel emerges rather suddenly, like in a nuclea-
tion process [Fig. 2(b)]. It becomes wider at larger "
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
decay of S with system size, giant number fluctuations).
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FIG. 3 (color online). Nematic order parameter S (in black)
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noise amplitude "2 for a square domain of linear size L ¼ 2048.
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FIG. 2 (color online). (a)–(c) Typical steady-state snapshots at different noise values (linear size L ¼ 2048). (a) " ¼ 0:08,
(b) " ¼ 0:10, (c) " ¼ 0:13, (d) " ¼ 0:168, (e) " ¼ 0:20. Arrows indicate the polar orientation of particles [except in (d)]; only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [19].
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characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
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tion process [Fig. 2(b)]. It becomes wider at larger "
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
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Bands in the apolar model    

Ω – surface fraction  

The (rescaled) band possesses a well-defined profile with
sharper and sharper edges as L increases [Fig. 5(a)]. The
fraction area ! occupied by the band is asymptotically
independent of system size and decreases continuously as
the noise strength ! increases [Fig. 5(b)]. This, together
with the nucleationlike process leading to the band, is
suggestive of phase separation.

In phase III, spontaneous segregation into bands still
occurs (for large-enough domains); however these thinner
bands are unstable and constantly bend, break, reform, and
merge, in an unending spectacular display of space-time
chaos [Fig. 2(d)] [19]. Thus, the transition between phase II
and III, located near!II-III ’ 0:163ð1Þ, is the order-disorder
transition of the model. It resembles a long but finite wave-
length instability of the band [see for instance Fig. 6(c)]. In
this regime, SðtÞ fluctuates strongly (Fig. 3) and on very
large time scales [Figs. 6(a)]. Nevertheless, these fluctua-
tions behave normally [i.e., decrease like 1=

ffiffiffiffi
N

p
, Fig. 6(b)].

Thus, the space-time chaos self-averages, making phase III
a bona fide disordered phase, albeit one with huge corre-
lation lengths and times.

Increasing further the noise strength, the segregated
bands vanish, leaving phase IV, an ordinary disordered

phase, spatially homogeneous, and with very short corre-
lations in space and time [Fig. 2(e)]. Near the transition
point, at !III-IV ’ 0:169ð1Þ, the nematic order parameter
SðtÞ exhibits bistability between a low amplitude, fast
fluctuating state (typical of phase IV) and a larger ampli-
tude, slowly fluctuating one typical of phase III (not
shown). This suggests a discontinuous disorder-disorder
transition between phase III and IV.
At this point, the most crucial question is perhaps that of

the stability of the nematic order observed in phases I and
II. Indeed, much of what we described above for large but
finite systems relies on our conclusion of possible truly
long-range (asymptotic) order [Fig. 4(c)]. On the one
hand, one could argue that the exponential distributions
of flight times between the two opposite polar orientations
[Fig. 4(b)] define a finite persistence time " and a corre-
sponding finite persistence length scale # # v0" [indi-
cated by the vertical dashed line in Fig. 4(c)]. Therefore,
at scales much larger than #, the polar nature of our par-
ticles could become irrelevant, and the system would then
behave like a fully nematic one, with only quasi-long-
range order. As of now, we have been able to probe systems
sizes up to 3 or 4 times the persistence length #. So far, as
shown in Fig. 4(c), these systems comprising up to twenty
million particles show no sign of breakdown of order. On
the other hand, # is a single-particle quantity. Even though
it is finite and system size independent, particles travel
in rather dense polar packets which have flights longer
than #. Indeed, the giant density fluctuations reported
[Fig. 4(d)] indicate that denser, more ordered, and hence
probably longer-lived packets occur in larger systems. But
should this ‘‘polar packet lifetime’’ diverge with system
size, then one would have a mechanism opening the door
for the emergence of true long-range nematic order. To
summarize this discussion, nematic order could break
down for system sizes much larger than #, but our data
[Figs. 4(c) and 4(d)] and the argument above suggest the
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0:813063 vs L (red dashed line: L%2=3 decay). (d) Number
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(see text) in a system of size L ¼ 4096 (dashed line: algebraic
growth with exponent 0.8).
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Vicsek Model for the active nematic (apolar reversing rods)   
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We study, in two space dimensions, the collective properties of constant-speed polar point particles

interacting locally by nematic alignment in the presence of noise. This minimal approach to self-propelled

rods allows one to deal with large numbers of particles, which exhibit a rich phenomenology distinctively

different from all other known models for self-propelled particles. Extensive simulations reveal long-

range nematic order, phase separation, and space-time chaos mediated by large-scale segregated

structures.
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Collective motion is a ubiquitous phenomenon observ-
able at all scales, in natural systems [1] as well as human
societies [2]. The mechanisms at its origin can be remark-
ably varied. For instance, they may involve the hydrody-
namic interactions mediated by the fluid in which bacteria
swim [3], the long-range chemical signaling driving the
formation and organization of aggregation centers of
Dictyostelium discoideum amoeba cells [4], or the local
cannibalistic interactions between marching locusts [5]. In
spite of this diversity, one may search for possible universal
features of collective motion, a context in which the study
of ‘‘minimal’’ models is a crucial step. Recently, the in-
vestigation of the simplest cases, where the problem is
reduced to the competition between a local aligning inter-
action and some noise, has revealed a wealth of unexpected
collective properties. For example, constant-speed, self-
propelled, polar point particles with ferromagnetic inter-
actions subjected to noise (as in the Vicsek model [6]) can
form a collectively moving fluctuating phase with long-
range polar order even in two spatial dimensions [7], with
striking properties such as spontaneous segregation into
ordered solitary bands moving in a sparse, disordered sea,
or anomalous (‘‘giant’’) density fluctuations [8]. In con-
trast, active apolar particles with nematic interactions only
exhibit quasi-long-range nematic order in two dimensions
with segregation taking the form of a single, strongly
fluctuating, dense structure with longitudinal order and
even stronger density fluctuations than in the polar-
ferromagnetic case [9,10].

Noting that these differences reflect those in the local
symmetry of particles and their interactions, a third situ-
ation can be defined, intermediate between the polar-
ferromagnetic model and the apolar nematic one, that of
self-propelled polar particles aligning nematically. Such a
mechanism is typically induced by volume exclusion in-
teractions, when elongated particles colliding almost head-
on slide past each other (Fig. 1). Thus, self-propelled polar
point particles with apolar interactions can be conceived as

a minimal model for moving rods interacting by inelastic
collisions [11–13]. Other relevant situations can be found
in biology, such as gliding myxobacteria moving on a
substrate [14], or microtubules driven by molecular motors
grafted on a surface [15].
In this Letter, we study constant-speed polar point par-

ticles interacting locally by nematic alignment in the pres-
ence of noise. The simplicity of this model allows us to
deal with large numbers of particles, revealing a phenome-
nology previously unseen in more complicated models
sharing the same symmetries [11–13] but in agreement
with the linear analysis of [16]. Our study, restricted to
two space dimensions, shows, in particular, collective
properties distinctively different from both those of the
polar-ferromagnetic case and of active nematics: only ne-
matic order arises in spite of the polar nature of the
particles, but it seems genuinely long-ranged. Spontane-
ous density segregation is also observed, but here it appears
as a bona fide phase separation: in the ordered side, a dense
band occupying a fraction of space along which particles
move in both directions arises when noise is strong enough.
Its instability marks the order-disorder transition. It van-
ishes at strong noise, splitting the disordered phase in two.
The class of polar particles aligning nematically exhibits
thus a total of four phases.
Our model consists of N point particles moving off

lattice at constant speed v0. In two dimensions, particle j
is defined by its (complex) position rtj and orientation !tj,

updated at discrete time steps according to

FIG. 1. Nematic alignment of polar particles illustrated by
inelastic collisions of rods. Particles incoming at a small angle
(left) align ‘‘polarly,’’ but those colliding almost head-on slide
past each other, maintaining their nematic alignment (right).

PRL 104, 184502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
7 MAY 2010

0031-9007=10=104(18)=184502(4) 184502-1 ! 2010 The American Physical Society

θ j
i+1 =

1
2

arg 1
N j

ei2θk
k
∑

"

#
$
$

%

&
'
'
+ηξ j

x j
i+1 = x j

i ± v0n j
i

N j − current # of neighbors 

ξ j −delta-correlated noise ξ ∈ [-π / 2,π / 2] 

η-noise amplitude 
n=(cos(θ ),  sin(θ ))-director



Chaotic Dynamics of the bands    

Ngo  et al, PRL 2014   

We then obtain linear inhomogeneous self-adjoint equa-
tions for the functions r1, u1, and v1. The solvability
condition yields an explicit expression for the growth rate
λ in terms of the integrals of Q0 and ∂yQ0. The analysis,
detailed in [39], shows that λ > 0, implying that the band
solution is always unstable. However, the instability can
be suppressed in small systems. The root of this instability
is the competition between two fundamental mechanisms
cast in Eq. (3): stabilization of the front due to an effective
surface tension described by the Laplacian, and a destabi-
lization ultimately due to the density-dependent growth
rate ∝ μ0ρ via the conservation equation. Our analysis in
[39] shows that this last mechanism wins.
At the nonlinear level, for large enough systems, the

instability of the band first manifests itself as some periodic
modulation in space and time localized along its borders.
This then turns into localized chaotic behavior [Fig. 1(c)],
which eventually develops into full-blown spatiotemporal
chaos for large enough system sizes and integration times
[Fig. 1(d)]. There, distorted bandlike structures evolve on
very long time scales and large length scales, elongating,
splitting and merging, without ever forming the original
macroscopic band again (movies S1 and S2 in [39]). We
have observed this spectacular dynamics all along the
(σmin; σmax) interval [40]. As σ is varied from σmax to
σmin, the largest structures observed have increasing sizes.
We measured the global nematic order parameter SðtÞ ¼
jhQix;yj and the two-point spatial correlation function of the
density field for different square systems of linear size L.
For large enough systems, the time-averaged order param-
eter hSi decreases like 1=L, indicating the existence of a
finite, L-independent correlation length [Fig. 1(b)] [41].
The segregated phase of the hydrodynamic equations for
active nematics is thus asymptotically disordered.
We now investigate the robustness of the above results

with respect to fluctuations by coming back to the Vicsek-
like model defined by Eq. (1). This also provides an
opportunity to gauge the faithfulness—at a qualitative
level—of the hydrodynamic equations, (2) and (3), to
the model they were derived from. We performed extensive
simulations of Eq. (1) varying ρ0, η, and L, summarized in
the phase diagram of Fig. 2(b).
At large enough ρ0, we do observe, for low enough η, a

spatially homogeneous, nonsegregated, quasiordered phase
(not shown). Because it possesses unusually strong density
fluctuations (see below) which may be hard to distinguish
from the fluctuating structures of the segregated phase,
the location of ηlow, which marks the lower extent of the
inhomogeneous phase, is difficult to define beyond the
visual inspection provided by movies and snapshots. We
used scaling and fluctuation properties of the global
nematic order parameter S, whose full probability distri-
bution PðSÞ can be measured with good statistics only for
moderate system sizes (up to L ¼ 512). In the homo-
geneous phase, its mean hSi decreases algebraically with L

with an exponent ζðηÞ < 1=8 (quasi-long-range order),
and PðSÞ quickly converges, as L is increased, to the
Bramwell-Holdsworth-Pinton (BHP) distribution, well
known to describe almost perfectly the quasiordered,
vortex-free phase of the equilibrium XY model [42]
[Fig. 2(a)]. The inhomogeneous segregated phase, by
contrast, is characterized by a departure of PðSÞ from
the BHP distribution which grows with increasing
system size [Fig. 2(c)]. During the corresponding events,
the main dense ordered band typically observed at such
moderate system sizes reorganizes itself. We used the
finite-size behavior of PðSÞ to define—admittedly rather
roughly—the threshold value ηlow: for η < ηlow, PðSÞ falls
on the BHP distribution, whereas for η > ηlow, PðSÞ

(a)

(c)

(e) (f)

(d)

(b)

FIG. 2 (color online). Microscopic dynamics: (a),(c) Rescaled
distribution of S at various system sizes in the homogeneous
ordered (a) and inhomogeneous (c) phases. Insets of (a),(c): Log
log plots of hSi × L−ζ vs L, where ζ is estimated from a fit of the
initial decay of hSi. (b) Phase diagram in the ðη; ρ0Þ plane. (d)
Variance Δn2 as a function of the mean number of particle hni, in
the homogeneous ordered phase. Dashed lines: Power laws with
exponents 2 (magenta or dark gray in black and white) and 1.6
(cyan or light gray in black and white). (e),(f) Snapshots of
coarse-grained density in the chaotic phase of panel (c) for system
sizes L ¼ 8192 (e) and L ¼ 16 384 (f). Parameters: In all cases
v0 ¼ 0.3, for (a),(d): ρ0 ¼ 2, η ¼ 0.1, ζ ¼ 0.007 and for (c),(e),
(f): ρ0 ¼ 1=8, η ¼ 0.038, ζ ¼ 0.103. In (a),(c),(d), the arrow
indicates increasing system sizes.
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ODE version of the Vicsek model     

Peruani, Deutsch, Bar, EPJ 2008   

m=1 – polar case  
m=2 – apolar case   
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Connection with the Kuramoto model for globally coupled 
oscillators: large r0  limit       

ω  – frequencies   

Kuramoto Y (1984). Chemical Oscillations, Waves, and Turbulence. 
New York, NY: Springer-Verlag 
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Fig. 3. Phase diagram derived from the continuum approach. The unstable region corresponds to the
velocity orientational order, while stable means no orientational order can be observed.
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Fig. 4. Convergence towards the non-trivial stable steady state. (a) F-alignment, numerical integration
of Eq. (16) with Dθ = 0.3472. (b) LC-alignment, numerical integration of Eq. (20) with Dθ = 0.2813.
For both (a) and (b), C∗ = 0.3183, ∆t = 0.001 and ∆θ = 0.0785. The initial condition is a random
perturbation around C∗. Different curves correspond to different times. Notice that for large values of
t curves start to overlap on top of each other.

instabilities in more detail, Eq. (15) can be integrated numerically. Details about the numerical
methods are given in the Appendix. Fig. 2 has shown already the temporal evolution of C(θ, t).
The initial condition is a homogeneous state with small random perturbations: C(θn, t = 0) =
C∗ + η(n), where θn denotes the discrete angular variable, C∗ is the constant unperturbed
homogeneous state, which we have set to be in the unstable regime according to Eqs. (19)
and (22) for the F- and LC-alignment case, respectively, and η(n) is a white noise. In Fig. 4
the angular distribution for F- and LC-alignment is shown at different times. C(θ, t) tends
asymptotically to a non-trivial steady state, see Fig. 4. The width of the peaks in the steady
state is the result of the competition between influence of rotational diffusion, indicated by Dθ,
and the alignment force associated with the interactions.

3.6 Scaling of the order parameter close to the transition

For a given density, there is a critical Dθc . Close to Dθc we expect to observe that only one
mode dominates C(θ, t). As said before, n = 1 is dominant for F-alignment and n = 2 governs
LC-alignment. The steady state distribution Cst(θ) then takes the form:

Cst(θ) ≃ C∗ +B1
√
Dθc −Dθ cos(θ − θ0) (23)
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Exact steady-state solution to the FP equation  
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Long-Range Order in a Two-Dimensional Dynamical XYModel: How Birds Fly Together
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We propose a nonequilibrium continuum dynamical model for the collective motion of large groups
of biological organisms (e.g. , flocks of birds, slime molds, etc.) Our model becomes highly nontrivial,
and different from the equilibrium model, for d ~ d,. = 4; nonetheless, we are able to determine its
scaling exponents exactly in d = 2 and show that, unlike equilibrium systems, our model exhibits
a broken continuous symmetry even in d = 2. Our model describes a large universality class of
microscopic rules, including those recently simulated by Vicsek et al.

PACS numbers: 87.10.+e, 64.60.Cn, 64.60.Ht

The dynamics of flocking" behavior among living
things, such as birds, slime molds, and bacteria, has long
been a mystery. Recently, a number of simple numerical
models that exhibit such behavior have been studied [1,2].
For example, Ref. [2] considers a synchronous, discrete
time step rule in which an individual "bird" in a group
of "birds" determines its next direction of motion on each
time step by averaging the direction of its neighbors in a
certain area, and then adding some zero mean noise, while
keeping the magnitude of its velocity constant. Their
simulations in two dimensions find a transition between
an ordered phase in which the mean velocity of the flock
(v) 4 0 and a disordered phase with (v) = 0 as the
strength of the noise is increased.
The above two-dimensional model is very similar to

the 2D XY model [3,4] because the velocity of the
"bird, " like the local spin of the classical XY model,
also has fixed length and continuous rotational symmetry.
Indeed, it is easy to see that, in the limit that the
magnitude of the velocity goes to zero, on each time
step the "birds' are just picking a new direction, but
never actually move, the model reduces precisely to the
Monte Carlo dynamics of a two-dimensional XY model,
with the (small) bird velocity playing the role of the XY
spin. Since the 2D XY model does not exhibit a long-
range ordered phase at temperatures T ) 0 (due to spin
wave fluctuations), the long-range ordered state observed
in Ref. [2] seems very surprising. Indeed, in light of
the Mermin-Wagner theorem [5] for equilibrium systems,
its existence must depend on fundamentally dynamical,
nonequilibrium aspects of the model. In this paper,
we show, using a continuum dynamical equation which
describes a large universality class of related dynamical
models, that this is indeed the case. In particular, we
explicitly demonstrate the following: (1) that our model
differs from the equilibrium system for spatial dimensions
d ~ 4, (2) we can calculate the scaling exponents of this
model exactly for d = 2, and (3) the model does, indeed,
have a stable spontaneous symmetry broken state even in
two dimensions.

Our starting point is the continuum equations of motion
(EOM) [6]:
i), v + (v . iv')v = nv —Pivot v —VP + Dt V'(iv' v)

+Did'v+D2(v V) v+ f,
Bp + V. (vp) =0, (2)Bt

where P, Dt, D2, and DL are all positive, and n ( 0
in the disordered phase and n ) 0 in the ordered state.
The left hand side of Eq. (1) is just the usual convective
derivative of the coarse-grained velocity field v. The n
and P terms simply make the local v have a nonzero
magnitude (= Qn/P ) in the ordered phase. DL i z are
diffusion constants. The Gaussian random noise f has
correlations:

(f,(, t)f, ( ', t')) = »„~'(.— ')&(» —t'),
where 5 is a constant and i and j denote Cartesian
components. Finally, the pressure

P = P(p) = P c.(p —po)",n=l
where po is the mean of the local number density and
p(r) and o.„are coefficients in the pressure expansion.
The final equation (2) rejects conservation of birds.
The essential difference between our model and the

equilibrium XY model is the existence of the convective
term in our model, which makes the dynamics nonpoten-
tial and further stabilizes the ordered phase. A heuristic
argument for the stabilizing effect of the convective term
can be given if we consider our model in Lagrangian co-
ordinates. In those coordinates, the convective term drops
out and the interaction between the velocity field is local
at each instance. However, at different times, the "neigh-
bors ' of one particular bird will be different depending on
the velocity field itself. Therefore, two originally distant
birds can interact with each other at some later time. It
is exactly this time dependent variable ranged interaction
which stabilizes the ordered phase.

4326 0031-9007/95/75(23)/4326(4) $06.00 1995 The American Physical Society
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the ‘‘sum rule’’ that its integral over any macroscopic vol-
ume ~i.e., any volume large compared with the aforemen-
tioned microscopic lengths! be the total number of birds in
that volume. Indeed, the coarse-graining description just out-
lined is the way that one imagines, in principle, going over
from a description of a simple fluid in terms of equations of
motion for the individual constituent molecules to the con-
tinuum description of the Navier-Stokes equation.
We will also follow the historical precedent of the Navier-

Stokes @6# equation by deriving our continuum, long-
wavelength description of the flock not by explicitly coarse
graining the microscopic dynamics ~a very difficult proce-
dure in practice!, but, rather, by writing down the most gen-
eral continuum equations of motion for vW and r consistent
with the symmetries and conservation laws of the problem.
This approach allows us to bury our ignorance in a few phe-
nomenological parameters ~e.g., the viscosity in the Navier-
Stokes equation! whose numerical values will depend on the
detailed microscopic rules of individual bird motion. What
terms can be present in the EOM’s, however, should depend
only on symmetries and conservation laws, and not on the
microscopic rules.
To reduce the complexity of our equations of motion still

further, we will perform a spatial-temporal gradient expan-
sion, and keep only the lowest-order terms in gradients and
time derivatives of vW and r . This is motivated and justified
by our desire to consider only the long-distance, long-time
properties of the flock. Higher-order terms in the gradient
expansion are ‘‘irrelevant’’: they can lead to finite ‘‘renor-
malization’’ of the phenomenological parameters of the
long-wavelength theory, but cannot change the type of scal-
ing of the allowed terms.
With this lengthy preamble in mind, we now write down

the equations of motion:

] tvW 1l1~vW •π

W
!vW 1l2~π

W •vW !vW 1l3πW ~

uvW u2
!

5avW 2buvW u2vW 2π

W P1DBπ

W
~

π

W •vW !

1DTπ
2vW 1D2~vW •π

W
!

2vW 1 fW , ~2.6!

P5P
~

r

!

5
(

n51

`

sn~r2r0!
n, ~2.7!

]r

]t 1π•
~vW r

!

50, ~2.8!

where b , DB , D2 , and DT are all positive, and a,0 in the
disordered phase and a.0 in the ordered state ~in mean-
field theory!. The origin of the various terms is as follows:
the l terms on the left-hand side of Eq. ~2.6! are the analogs
of the usual convective derivative of the coarse-grained ve-
locity field vW in the Navier-Stokes equation. Here the ab-
sence of Galilean invariance allows all three combinations of
one spatial gradient and two velocities that transform like
vectors; if Galilean invariance did hold, it would force l2
5l350 and l151. However, Galilean invariance does not
hold, and so all three coefficients are nonzero phenomeno-
logical parameters whose nonuniversal values are deter-
mined by the microscopic rules. The a and b terms simply

make the local vW have a nonzero magnitude (5A
a/b) in the

ordered phase, where a.0. DL ,1,2 are the diffusion constants
~or viscosities! reflecting the tendency of a localized fluctua-
tion in the velocities to spread out because of the coupling
between neighboring ‘‘birds.’’ The fW term is a random driv-
ing force representing the noise. We assume it is Gaussian
with white noise correlations:

^

f i~rW ,t ! f j~r8W ,t8!

&

5Dd i jd
d
~

rW2r8W !

d

~

t2t8!

, ~2.9!

where D is a constant, and i , j denote Cartesian components.
Finally, P is the pressure, which tends to maintain the local
number density r(rW) at its mean value r0 , and dr5r

2r0 .
The final equation ~2.8! is just conservation of bird num-

ber ~we do not allow our birds to reproduce or die ‘‘on the
wing’’!.
Symmetry allows any of the phenomenological coeffi-

cients l i , a , sn , b , Di in Eqs. ~2.6! and ~2.7! to be func-
tions of the squared magnitude uvW u2 of the velocity, and of
the density r as well.

III. THE BROKEN SYMMETRY STATE

We are mainly interested in the symmetry broken phase,
specifically in whether fluctuations around the symmetry
broken ground state destroy it ~as in the analogous phase of
the 2D XY model!. For a.0, we can write the velocity field
as vW 5v0x̂ i1dvW , where v0x̂ i5^

vW
&

is the spontaneous aver-
age value of vW in the ordered phase. We will choose v0
5A

a/b ~which should be thought of as an implicit condition
on v0 , since a and b can, in general, depend on uvW u2); with
this choice, the equation of motion for the fluctuation dv i of
v i is

] tdv i52s1] idr22adv i1irrelevant terms. ~3.1!

Note now that if we are interested in ‘‘hydrodynamic’’
modes, by which we mean modes for which frequency v

!0 as wave vector q!0, we can, in the hydrodynamic
(v ,q!0) limit, neglect ] tdv i relative to adv i in Eq. ~3.1!.
The resultant equation can trivially be solved for dv i :

dv i52D
r

] idr , ~3.2!

where we have defined another diffusion constant D
r

[s1 /2a . Inserting Eq. ~3.2! in the equations of motion for
vW' and dr , we obtain, neglecting ‘‘irrelevant’’ terms:

] tvW'1g] ivW'1l1~vW'•π

W
'!vW'1l2~π

W
'•vW'!vW'

52π

W
'P1DBπ

W
'~

π

W
'•vW'!

1DTπ'
2 vW'1D i] i

2vW'1 fW' ,

~3.3!

]dr

]t 1roπW '•vW'1π

W
'•

~vW'dr

!

1v0] idr5D
r

] uu
2
dr ,

~3.4!

where D
r

, DB , DT , and D i[DT1D2v0
2 are the diffusion

constants, and we have defined
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β,DB, D2,DT>0 
α>0 – ordered state, α<0 disordered state 
f- random force  
  

Absence of the Galilean Invariance (GI) 
If the GI  did hold, it would imply  
λ2 =λ3=0, λ1=1 (compare the NS equation)  

the ‘‘sum rule’’ that its integral over any macroscopic vol-
ume ~i.e., any volume large compared with the aforemen-
tioned microscopic lengths! be the total number of birds in
that volume. Indeed, the coarse-graining description just out-
lined is the way that one imagines, in principle, going over
from a description of a simple fluid in terms of equations of
motion for the individual constituent molecules to the con-
tinuum description of the Navier-Stokes equation.
We will also follow the historical precedent of the Navier-

Stokes @6# equation by deriving our continuum, long-
wavelength description of the flock not by explicitly coarse
graining the microscopic dynamics ~a very difficult proce-
dure in practice!, but, rather, by writing down the most gen-
eral continuum equations of motion for vW and r consistent
with the symmetries and conservation laws of the problem.
This approach allows us to bury our ignorance in a few phe-
nomenological parameters ~e.g., the viscosity in the Navier-
Stokes equation! whose numerical values will depend on the
detailed microscopic rules of individual bird motion. What
terms can be present in the EOM’s, however, should depend
only on symmetries and conservation laws, and not on the
microscopic rules.
To reduce the complexity of our equations of motion still

further, we will perform a spatial-temporal gradient expan-
sion, and keep only the lowest-order terms in gradients and
time derivatives of vW and r . This is motivated and justified
by our desire to consider only the long-distance, long-time
properties of the flock. Higher-order terms in the gradient
expansion are ‘‘irrelevant’’: they can lead to finite ‘‘renor-
malization’’ of the phenomenological parameters of the
long-wavelength theory, but cannot change the type of scal-
ing of the allowed terms.
With this lengthy preamble in mind, we now write down

the equations of motion:

] tvW 1l1~vW •π

W
!vW 1l2~π

W •vW !vW 1l3πW ~

uvW u2
!

5avW 2buvW u2vW 2π

W P1DBπ

W
~

π

W •vW !

1DTπ
2vW 1D2~vW •π

W
!

2vW 1 fW , ~2.6!

P5P
~

r

!

5
(

n51

`

sn~r2r0!
n, ~2.7!

]r

]t 1π•
~vW r

!

50, ~2.8!

where b , DB , D2 , and DT are all positive, and a,0 in the
disordered phase and a.0 in the ordered state ~in mean-
field theory!. The origin of the various terms is as follows:
the l terms on the left-hand side of Eq. ~2.6! are the analogs
of the usual convective derivative of the coarse-grained ve-
locity field vW in the Navier-Stokes equation. Here the ab-
sence of Galilean invariance allows all three combinations of
one spatial gradient and two velocities that transform like
vectors; if Galilean invariance did hold, it would force l2
5l350 and l151. However, Galilean invariance does not
hold, and so all three coefficients are nonzero phenomeno-
logical parameters whose nonuniversal values are deter-
mined by the microscopic rules. The a and b terms simply

make the local vW have a nonzero magnitude (5A
a/b) in the

ordered phase, where a.0. DL ,1,2 are the diffusion constants
~or viscosities! reflecting the tendency of a localized fluctua-
tion in the velocities to spread out because of the coupling
between neighboring ‘‘birds.’’ The fW term is a random driv-
ing force representing the noise. We assume it is Gaussian
with white noise correlations:
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&

5Dd i jd
d
~

rW2r8W !

d

~

t2t8!
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where D is a constant, and i , j denote Cartesian components.
Finally, P is the pressure, which tends to maintain the local
number density r(rW) at its mean value r0 , and dr5r

2r0 .
The final equation ~2.8! is just conservation of bird num-

ber ~we do not allow our birds to reproduce or die ‘‘on the
wing’’!.
Symmetry allows any of the phenomenological coeffi-

cients l i , a , sn , b , Di in Eqs. ~2.6! and ~2.7! to be func-
tions of the squared magnitude uvW u2 of the velocity, and of
the density r as well.

III. THE BROKEN SYMMETRY STATE

We are mainly interested in the symmetry broken phase,
specifically in whether fluctuations around the symmetry
broken ground state destroy it ~as in the analogous phase of
the 2D XY model!. For a.0, we can write the velocity field
as vW 5v0x̂ i1dvW , where v0x̂ i5^

vW
&

is the spontaneous aver-
age value of vW in the ordered phase. We will choose v0
5A

a/b ~which should be thought of as an implicit condition
on v0 , since a and b can, in general, depend on uvW u2); with
this choice, the equation of motion for the fluctuation dv i of
v i is

] tdv i52s1] idr22adv i1irrelevant terms. ~3.1!

Note now that if we are interested in ‘‘hydrodynamic’’
modes, by which we mean modes for which frequency v

!0 as wave vector q!0, we can, in the hydrodynamic
(v ,q!0) limit, neglect ] tdv i relative to adv i in Eq. ~3.1!.
The resultant equation can trivially be solved for dv i :

dv i52D
r

] idr , ~3.2!

where we have defined another diffusion constant D
r

[s1 /2a . Inserting Eq. ~3.2! in the equations of motion for
vW' and dr , we obtain, neglecting ‘‘irrelevant’’ terms:
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the ‘‘sum rule’’ that its integral over any macroscopic vol-
ume ~i.e., any volume large compared with the aforemen-
tioned microscopic lengths! be the total number of birds in
that volume. Indeed, the coarse-graining description just out-
lined is the way that one imagines, in principle, going over
from a description of a simple fluid in terms of equations of
motion for the individual constituent molecules to the con-
tinuum description of the Navier-Stokes equation.
We will also follow the historical precedent of the Navier-

Stokes @6# equation by deriving our continuum, long-
wavelength description of the flock not by explicitly coarse
graining the microscopic dynamics ~a very difficult proce-
dure in practice!, but, rather, by writing down the most gen-
eral continuum equations of motion for vW and r consistent
with the symmetries and conservation laws of the problem.
This approach allows us to bury our ignorance in a few phe-
nomenological parameters ~e.g., the viscosity in the Navier-
Stokes equation! whose numerical values will depend on the
detailed microscopic rules of individual bird motion. What
terms can be present in the EOM’s, however, should depend
only on symmetries and conservation laws, and not on the
microscopic rules.
To reduce the complexity of our equations of motion still

further, we will perform a spatial-temporal gradient expan-
sion, and keep only the lowest-order terms in gradients and
time derivatives of vW and r . This is motivated and justified
by our desire to consider only the long-distance, long-time
properties of the flock. Higher-order terms in the gradient
expansion are ‘‘irrelevant’’: they can lead to finite ‘‘renor-
malization’’ of the phenomenological parameters of the
long-wavelength theory, but cannot change the type of scal-
ing of the allowed terms.
With this lengthy preamble in mind, we now write down

the equations of motion:
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where b , DB , D2 , and DT are all positive, and a,0 in the
disordered phase and a.0 in the ordered state ~in mean-
field theory!. The origin of the various terms is as follows:
the l terms on the left-hand side of Eq. ~2.6! are the analogs
of the usual convective derivative of the coarse-grained ve-
locity field vW in the Navier-Stokes equation. Here the ab-
sence of Galilean invariance allows all three combinations of
one spatial gradient and two velocities that transform like
vectors; if Galilean invariance did hold, it would force l2
5l350 and l151. However, Galilean invariance does not
hold, and so all three coefficients are nonzero phenomeno-
logical parameters whose nonuniversal values are deter-
mined by the microscopic rules. The a and b terms simply

make the local vW have a nonzero magnitude (5A
a/b) in the

ordered phase, where a.0. DL ,1,2 are the diffusion constants
~or viscosities! reflecting the tendency of a localized fluctua-
tion in the velocities to spread out because of the coupling
between neighboring ‘‘birds.’’ The fW term is a random driv-
ing force representing the noise. We assume it is Gaussian
with white noise correlations:
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where D is a constant, and i , j denote Cartesian components.
Finally, P is the pressure, which tends to maintain the local
number density r(rW) at its mean value r0 , and dr5r

2r0 .
The final equation ~2.8! is just conservation of bird num-

ber ~we do not allow our birds to reproduce or die ‘‘on the
wing’’!.
Symmetry allows any of the phenomenological coeffi-

cients l i , a , sn , b , Di in Eqs. ~2.6! and ~2.7! to be func-
tions of the squared magnitude uvW u2 of the velocity, and of
the density r as well.

III. THE BROKEN SYMMETRY STATE

We are mainly interested in the symmetry broken phase,
specifically in whether fluctuations around the symmetry
broken ground state destroy it ~as in the analogous phase of
the 2D XY model!. For a.0, we can write the velocity field
as vW 5v0x̂ i1dvW , where v0x̂ i5^

vW
&

is the spontaneous aver-
age value of vW in the ordered phase. We will choose v0
5A

a/b ~which should be thought of as an implicit condition
on v0 , since a and b can, in general, depend on uvW u2); with
this choice, the equation of motion for the fluctuation dv i of
v i is

] tdv i52s1] idr22adv i1irrelevant terms. ~3.1!

Note now that if we are interested in ‘‘hydrodynamic’’
modes, by which we mean modes for which frequency v

!0 as wave vector q!0, we can, in the hydrodynamic
(v ,q!0) limit, neglect ] tdv i relative to adv i in Eq. ~3.1!.
The resultant equation can trivially be solved for dv i :

dv i52D
r

] idr , ~3.2!

where we have defined another diffusion constant D
r

[s1 /2a . Inserting Eq. ~3.2! in the equations of motion for
vW' and dr , we obtain, neglecting ‘‘irrelevant’’ terms:
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From particle models to (deterministic, coarse-grained) continuous 
theories: the  “Boltzmann Ginzburg-Landau” approach 

•  Start with the simple Boltzmann equation of ideal gases for the 
probability function f (r,θ,t)  

•  No external forces but a self-propulsion given by an advection (or 
diffusion) term  



Fourier expansion 

•  Introduce the angular Fourier expansion 

•  The first three modes give the density, the polar, and the nematic order 
parameters 

•  Use complex notations for simplicity, including: 



Vicsek polar model  

55 

In the expansion f1 is the most unstable and drives the dynamics   

θi (t +Δt) = θ (t)
S (i )

+ξ

xi (t +Δt) = xi (t)+ vi (t)Δt,vi = v0 (cos(θ ),sin(θ ))



Hydrodynamic equations in the polar case 

Continuity equation 

“Toner-Tu” equation 

With all the  transport coefficients depending on local density 
 and noise strength 
(in particular linear coefficient µ increases with ρ ) 

µ = !µ ρ −µ0 = !µ (ρ − ρt )



Solitons in the 1D equation (Vicsek bands)    

Consider moving localized solution  

Continuity equation  
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Solitons in the 1D equation (Vicsek bands)    
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Figure 8. Solitons in the numerical model. (a) Instantaneous snapshot, the band is moving
southwest; lengths are scaled by d0. (b) Example of trajectory in the direction of the averaged
velocity. (c) Mean profiles along the direction of the main motion. We plot the reduced
dimensionless density Rr = (⟨ρ(x − ct)⟩ − ρsat)d2

0 c/v0 (dotted line) and the dimensionless
momentum Wr = ⟨w(x − ct)⟩d2

0 /v0 (plain line), both being time-averaged in the comoving frame
of the soliton. (d and e) Same data as (c) on semi-log scales, emphasizing the exponential decay.
The scales are identical on vertical axes, but different on abscissas. Parameter values are p = 2−3,
σ = 0.163, L = 4096; the other ones correspond to set VII in table 1.

of several localized, randomly spaced bands. They are not part of a regular pattern, nor
a wave train [15]. They are all moving along the direction of the main motion, although
during the transient period they can pass through each other with only few interactions. The
space between two bands is filled with particles moving independently (the hydrodynamic
momentum vanishes) and homogeneously (the density is constant). In analogy to the liquid–
gas coexistence, we denote this state as the saturating vapour.

We observe that the bands move at a constant speed, at least on the duration necessary to
travel through the system size (figure 8(b)). From the trajectories, we measured the velocity
c of the solitons. On the density profiles, we extracted the value ρsat of the density outside
the peak. If these structures are only propagative and if the continuity equation is valid at a
coarse-grained level in the agent-based model (which is expected from mass conservation),
the density and momentum profiles should be related by W = c(R − ρsat), as in section 5.3.
Plotting on figure 8(c) both the reduced density c(R−ρsat) and the momentum W , we observe
that both curves match perfectly, confirming the propagative nature of this stripped pattern.

These solitary waves are quite similar to the soliton we found in the hydrodynamic
equations (see section 5.3), with an exponential decay of the momentum profile on both sides
(figure 8(d–e)) in particular. However, the asymmetry of the profile is much more pronounced
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Figure 8. Solitons in the numerical model. (a) Instantaneous snapshot, the band is moving
southwest; lengths are scaled by d0. (b) Example of trajectory in the direction of the averaged
velocity. (c) Mean profiles along the direction of the main motion. We plot the reduced
dimensionless density Rr = (⟨ρ(x − ct)⟩ − ρsat)d2

0 c/v0 (dotted line) and the dimensionless
momentum Wr = ⟨w(x − ct)⟩d2

0 /v0 (plain line), both being time-averaged in the comoving frame
of the soliton. (d and e) Same data as (c) on semi-log scales, emphasizing the exponential decay.
The scales are identical on vertical axes, but different on abscissas. Parameter values are p = 2−3,
σ = 0.163, L = 4096; the other ones correspond to set VII in table 1.

of several localized, randomly spaced bands. They are not part of a regular pattern, nor
a wave train [15]. They are all moving along the direction of the main motion, although
during the transient period they can pass through each other with only few interactions. The
space between two bands is filled with particles moving independently (the hydrodynamic
momentum vanishes) and homogeneously (the density is constant). In analogy to the liquid–
gas coexistence, we denote this state as the saturating vapour.

We observe that the bands move at a constant speed, at least on the duration necessary to
travel through the system size (figure 8(b)). From the trajectories, we measured the velocity
c of the solitons. On the density profiles, we extracted the value ρsat of the density outside
the peak. If these structures are only propagative and if the continuity equation is valid at a
coarse-grained level in the agent-based model (which is expected from mass conservation),
the density and momentum profiles should be related by W = c(R − ρsat), as in section 5.3.
Plotting on figure 8(c) both the reduced density c(R−ρsat) and the momentum W , we observe
that both curves match perfectly, confirming the propagative nature of this stripped pattern.

These solitary waves are quite similar to the soliton we found in the hydrodynamic
equations (see section 5.3), with an exponential decay of the momentum profile on both sides
(figure 8(d–e)) in particular. However, the asymmetry of the profile is much more pronounced
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Linear stability in 1D     
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We study, in two space dimensions, the collective properties of constant-speed polar point particles

interacting locally by nematic alignment in the presence of noise. This minimal approach to self-propelled

rods allows one to deal with large numbers of particles, which exhibit a rich phenomenology distinctively

different from all other known models for self-propelled particles. Extensive simulations reveal long-

range nematic order, phase separation, and space-time chaos mediated by large-scale segregated

structures.

DOI: 10.1103/PhysRevLett.104.184502 PACS numbers: 47.54.!r, 05.65.+b, 87.18.Gh, 87.18.Hf

Collective motion is a ubiquitous phenomenon observ-
able at all scales, in natural systems [1] as well as human
societies [2]. The mechanisms at its origin can be remark-
ably varied. For instance, they may involve the hydrody-
namic interactions mediated by the fluid in which bacteria
swim [3], the long-range chemical signaling driving the
formation and organization of aggregation centers of
Dictyostelium discoideum amoeba cells [4], or the local
cannibalistic interactions between marching locusts [5]. In
spite of this diversity, one may search for possible universal
features of collective motion, a context in which the study
of ‘‘minimal’’ models is a crucial step. Recently, the in-
vestigation of the simplest cases, where the problem is
reduced to the competition between a local aligning inter-
action and some noise, has revealed a wealth of unexpected
collective properties. For example, constant-speed, self-
propelled, polar point particles with ferromagnetic inter-
actions subjected to noise (as in the Vicsek model [6]) can
form a collectively moving fluctuating phase with long-
range polar order even in two spatial dimensions [7], with
striking properties such as spontaneous segregation into
ordered solitary bands moving in a sparse, disordered sea,
or anomalous (‘‘giant’’) density fluctuations [8]. In con-
trast, active apolar particles with nematic interactions only
exhibit quasi-long-range nematic order in two dimensions
with segregation taking the form of a single, strongly
fluctuating, dense structure with longitudinal order and
even stronger density fluctuations than in the polar-
ferromagnetic case [9,10].

Noting that these differences reflect those in the local
symmetry of particles and their interactions, a third situ-
ation can be defined, intermediate between the polar-
ferromagnetic model and the apolar nematic one, that of
self-propelled polar particles aligning nematically. Such a
mechanism is typically induced by volume exclusion in-
teractions, when elongated particles colliding almost head-
on slide past each other (Fig. 1). Thus, self-propelled polar
point particles with apolar interactions can be conceived as

a minimal model for moving rods interacting by inelastic
collisions [11–13]. Other relevant situations can be found
in biology, such as gliding myxobacteria moving on a
substrate [14], or microtubules driven by molecular motors
grafted on a surface [15].
In this Letter, we study constant-speed polar point par-

ticles interacting locally by nematic alignment in the pres-
ence of noise. The simplicity of this model allows us to
deal with large numbers of particles, revealing a phenome-
nology previously unseen in more complicated models
sharing the same symmetries [11–13] but in agreement
with the linear analysis of [16]. Our study, restricted to
two space dimensions, shows, in particular, collective
properties distinctively different from both those of the
polar-ferromagnetic case and of active nematics: only ne-
matic order arises in spite of the polar nature of the
particles, but it seems genuinely long-ranged. Spontane-
ous density segregation is also observed, but here it appears
as a bona fide phase separation: in the ordered side, a dense
band occupying a fraction of space along which particles
move in both directions arises when noise is strong enough.
Its instability marks the order-disorder transition. It van-
ishes at strong noise, splitting the disordered phase in two.
The class of polar particles aligning nematically exhibits
thus a total of four phases.
Our model consists of N point particles moving off

lattice at constant speed v0. In two dimensions, particle j
is defined by its (complex) position rtj and orientation !tj,

updated at discrete time steps according to

FIG. 1. Nematic alignment of polar particles illustrated by
inelastic collisions of rods. Particles incoming at a small angle
(left) align ‘‘polarly,’’ but those colliding almost head-on slide
past each other, maintaining their nematic alignment (right).
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In the expansion f2 is the most unstable and drives the dynamics   

!tþ1
j ¼ arg

!X

k#j

sign½cosð!tk & !tjÞ(ei!
t
k

"
þ "#t

j (1)

r tþ1
j ¼ rtj þ v0e

i!tþ1
k ; (2)

where the sum is taken over all particles k within unit
distance of j (including j itself), and # is a white noise
uniformly distributed in ½& $

2 ;
$
2( [17]. (A continuous-time

version of this model can be found in [18].) The system has
two main control parameters: the noise amplitude ", and
the particle density % ¼ N=A, where A is the domain area.
We consider periodic boundary conditions. Polar and ne-
matic order can be characterized by means of the two time-
dependent global scalar order parameters PðtÞ ¼
jhexpði!tjÞijj (polar) and SðtÞ ¼ jhexpði2!tjÞijj (nematic),

as well as their asymptotic time averages P ¼ hPðtÞit and
S ¼ hSðtÞit.

Here, we mostly report on the behavior of the system for
% ¼ 1

8 and v0 ¼ 1
2 , varying ". We start with a brief survey

of the stationary states observed in a square domain of
linear size L ¼ 2048 (Figs. 2 and 3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise, while P always remains near zero (not
shown). This is in agreement with the findings of [16].
Both the ordered and the disordered regimes are subdi-
vided in two phases, one that is spatially homogeneous
[Figs. 2(a) and 2(e)], and one where density segregation
occurs, leading to high-density ordered bands along which
the particles move back and forth [Figs. 2(b)–2(d)]. A total
of four phases is thus observed, labeled I to IV by increas-
ing noise strength hereafter. Phases I and II are nematically
ordered, phases III and IV are disordered.

Phase I, present at the lowest " values, is ordered and
spatially homogeneous [Fig. 2(a)]. Nematic order arises
quickly from any initial condition, even though long-lived
dense polar packets are observed locally: statistically, two
subpopulations of particles migrate in opposite directions
[Fig. 4(a)], constantly exchanging particles. These ‘‘turn
around’’ events occur at exponentially-distributed times &
[Fig. 4(b)]. Increasing system size, the nematic order pa-
rameter S is almost constant, decaying slower than a power

law [Fig. 4(c)]. A good fit of this decay is given by an
algebraic approach to a constant asymptotic value S).
Thus, our data seem to indicate the existence of true
long-range nematic order. (Quasi-long-range order, ex-
pected classically for two-dimensional nematic phases, is
characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
general grounds for homogeneous ordered phases of active
particles [10], phase I exhibits so-called giant number
fluctuations: the fluctuations !n2 ¼ hðn& hniÞ2i of the
average number of particles hni ¼ %‘2 contained in a
square of linear size ‘ follow the power law !n# hni'
with '> 1

2 [Fig. 4(d)]. Our estimate of ' is compatible to

that measured for polarly ordered phases ' ¼ 0:8 [8].
Phase II differs from phase I by the presence, in the

steady state, of a low-density disordered region. In large-
enough systems, for " * "I-II ’ 0:098ð2Þ, a narrow, low-
density channel emerges rather suddenly, like in a nuclea-
tion process [Fig. 2(b)]. It becomes wider at larger "
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
decay of S with system size, giant number fluctuations).
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FIG. 3 (color online). Nematic order parameter S (in black)
and its rms fluctuations !S (in red) as function of the squared
noise amplitude "2 for a square domain of linear size L ¼ 2048.
Here, and throughout the Letter, time averages are over at least
106 time steps.

(a) (b) (c) (d) (e)

VIIIIIII

FIG. 2 (color online). (a)–(c) Typical steady-state snapshots at different noise values (linear size L ¼ 2048). (a) " ¼ 0:08,
(b) " ¼ 0:10, (c) " ¼ 0:13, (d) " ¼ 0:168, (e) " ¼ 0:20. Arrows indicate the polar orientation of particles [except in (d)]; only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [19].
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r tþ1
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where eð!Þ is the unit vector along !, the sum is taken over
particles k within distance d0 of particle j (including j
itself), and " is a white noise with zero average and
variance#2. Like all Vicsek-style models, it shows orienta-
tional order at large-enough global density $0 and/or
small-enough noise strength #. It was shown in Ref. [16]
that the order is nematic and that both the ordered and
disordered phases are subdivided in two: The homogene-
ous nematic phase observed at low noise is replaced at
larger # values by a segregated phase where a dense,
ordered band occupying a fraction of space coexists with
a disordered, dilute, gas. The transition to disorder is given
by the onset of a long-wavelength instability of this band
leading to a chaotic regime where bands constantly form,
elongate, meander, and disappear over very long time
scales. At still larger # values, a ‘‘microscopically disor-
dered’’ phase is observed.

Following Ref. [12], we write, in a dilute limit where
only binary interactions are considered and assuming that
orientations are decorrelated between them (‘‘molecular
chaos hypothesis’’), a Boltzmann equation governing the
evolution of the one-particle distribution fðr; !; tÞ:

@tfðr; !; tÞ þ v0eð!Þ )rfðr; !; tÞ ¼ Idif½f( þ Icol½f(; (3)

with the angular diffusion and collision integrals

Idif½f( ¼ &%fð!Þ þ %
Z &

&&
d!0fð!0Þ

*
Z 1

&1
d"P#ð"Þ'2&ð!0 & !þ "Þ;

Icol½f( ¼ &fð!Þ
Z &

&&
d!0Kð!0; !Þfð!0Þ

þ
Z &

&&
d!1fð!1Þ

Z &

&&
d!2Kð!1;!2Þfð!2Þ

*
Z 1

&1
d"P#ð"Þ'2&ð!ð!1; !2Þ & !þ "Þ; (4)

where P#ð"Þ is the microscopic noise distribution, '2&

is a generalized Dirac delta imposing that the argument
is equal to zero modulo 2&, Kð!1;!2Þ ¼ 2d0v0jeð!1Þ &
eð!2Þj is the collision kernel for dilute gases [12],
and !ð!1; !2Þ ¼ 1

2 ð!1 þ !2Þ þ &
2 ½H½cosð!1 & !2Þ( & 1$

for & &
2 < !2 & !1 <

3&
2 [with HðxÞ the Heaviside step

function] codes for the nematic alignment. Rescaling of
time, space, and density allows us to set the ‘‘collision
surface’’ S + 2d0v0=% ¼ 1 and v0 ¼ 1 below, without
loss of generality.

Next, the distribution function is expanded in the Fourier
series of the angle: fðr;!; tÞ ¼ 1

2&

P1
k¼&1 fkðr; tÞe&ik!,

with fk ¼ f,&k and jfkj - f0. The zero mode is nothing

but the local density, while f1 and f2 give access to the
polar and nematic order parameter fields P and Q:

$ ¼ f0; $P ¼
Ref1

Imf1

 !
;

$Q ¼ 1

2

Ref2 Imf2

Imf2 &Ref2

 !
: (5)

As amatter of fact, it is convenient to use f1 and f2, together
with the ‘‘complex’’ operators r + @x þ i@y and r, +
@x & i@y. The continuity equation governing $ is given by
integrating the Boltzmann equation over angles:

@t$þ Reðr,f1Þ ¼ 0: (6)

In Fourier space, the Boltzmann equation (3) yields an
infinite hierarchy of equations:
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To truncate and close this hierarchy, we adopt the fol-
lowing scaling structure, valid near onset of nematic order,
assuming, in a Ginzburg-Landau-like approach [18], small
and slow variations of the density and of the polar and
nematic fields:

$& $0 # ); ff2k&1; f2kgk.1 # )k; r# ); @t # ):

(9)

Note that the scaling of space and time is in line with the
propagative structure of our system, as seen in the con-
tinuity equation (6), which contains no diffusion term.
The first nontrivial order yielding well-behaved equa-

tions is )3: keeping only terms up to this order, equations
for fk>4 identically vanish, while those for f3 and f4
provide expressions of these quantities in terms of $, f1,
and f2, which allows us to write the closed equations:

@tf1 ¼ & 1

2
ðr$þr,f2Þ þ

*

2
f,2rf2

& ð+& ,jf2j2Þf1 þ -f,1f2; (10)
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4
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2
f,1rf2 &

0

2
r,ðf1f2Þ

þ ð1& 2jf2j2Þf2 þ!f21 þ 3jf1j2f2; (11)

where all coefficients depend only on the noise strength #
(via the P̂k coefficients) and the local density $:
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where eð!Þ is the unit vector along !, the sum is taken over
particles k within distance d0 of particle j (including j
itself), and " is a white noise with zero average and
variance#2. Like all Vicsek-style models, it shows orienta-
tional order at large-enough global density $0 and/or
small-enough noise strength #. It was shown in Ref. [16]
that the order is nematic and that both the ordered and
disordered phases are subdivided in two: The homogene-
ous nematic phase observed at low noise is replaced at
larger # values by a segregated phase where a dense,
ordered band occupying a fraction of space coexists with
a disordered, dilute, gas. The transition to disorder is given
by the onset of a long-wavelength instability of this band
leading to a chaotic regime where bands constantly form,
elongate, meander, and disappear over very long time
scales. At still larger # values, a ‘‘microscopically disor-
dered’’ phase is observed.

Following Ref. [12], we write, in a dilute limit where
only binary interactions are considered and assuming that
orientations are decorrelated between them (‘‘molecular
chaos hypothesis’’), a Boltzmann equation governing the
evolution of the one-particle distribution fðr; !; tÞ:
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Idif½f( ¼ &%fð!Þ þ %
Z &

&&
d!0fð!0Þ

*
Z 1

&1
d"P#ð"Þ'2&ð!0 & !þ "Þ;

Icol½f( ¼ &fð!Þ
Z &

&&
d!0Kð!0; !Þfð!0Þ

þ
Z &

&&
d!1fð!1Þ

Z &

&&
d!2Kð!1;!2Þfð!2Þ

*
Z 1

&1
d"P#ð"Þ'2&ð!ð!1; !2Þ & !þ "Þ; (4)

where P#ð"Þ is the microscopic noise distribution, '2&

is a generalized Dirac delta imposing that the argument
is equal to zero modulo 2&, Kð!1;!2Þ ¼ 2d0v0jeð!1Þ &
eð!2Þj is the collision kernel for dilute gases [12],
and !ð!1; !2Þ ¼ 1

2 ð!1 þ !2Þ þ &
2 ½H½cosð!1 & !2Þ( & 1$

for & &
2 < !2 & !1 <

3&
2 [with HðxÞ the Heaviside step

function] codes for the nematic alignment. Rescaling of
time, space, and density allows us to set the ‘‘collision
surface’’ S + 2d0v0=% ¼ 1 and v0 ¼ 1 below, without
loss of generality.

Next, the distribution function is expanded in the Fourier
series of the angle: fðr;!; tÞ ¼ 1

2&

P1
k¼&1 fkðr; tÞe&ik!,

with fk ¼ f,&k and jfkj - f0. The zero mode is nothing

but the local density, while f1 and f2 give access to the
polar and nematic order parameter fields P and Q:

$ ¼ f0; $P ¼
Ref1

Imf1

 !
;

$Q ¼ 1

2

Ref2 Imf2

Imf2 &Ref2

 !
: (5)

As amatter of fact, it is convenient to use f1 and f2, together
with the ‘‘complex’’ operators r + @x þ i@y and r, +
@x & i@y. The continuity equation governing $ is given by
integrating the Boltzmann equation over angles:

@t$þ Reðr,f1Þ ¼ 0: (6)

In Fourier space, the Boltzmann equation (3) yields an
infinite hierarchy of equations:

@tfk þ
1

2
ðrfk&1 þr,fkþ1Þ

¼ ðP̂k & 1Þfk þ
2

&

X1

q¼&1

!
P̂kJkq &

4

1& 4q2

"
fqfk&q;

(7)

where P̂k ¼
R1
&1 d"P#ð"Þeik" and

Jkq ¼
Z &=2

&&=2
d(

########sin
(

2

########e
iððk=2Þ&qÞ( þ cos

k&

2

*
Z 3&=2

&=2
d(

########sin
(

2

########e
iððk=2Þ&qÞ(: (8)

To truncate and close this hierarchy, we adopt the fol-
lowing scaling structure, valid near onset of nematic order,
assuming, in a Ginzburg-Landau-like approach [18], small
and slow variations of the density and of the polar and
nematic fields:

$& $0 # ); ff2k&1; f2kgk.1 # )k; r# ); @t # ):

(9)

Note that the scaling of space and time is in line with the
propagative structure of our system, as seen in the con-
tinuity equation (6), which contains no diffusion term.
The first nontrivial order yielding well-behaved equa-

tions is )3: keeping only terms up to this order, equations
for fk>4 identically vanish, while those for f3 and f4
provide expressions of these quantities in terms of $, f1,
and f2, which allows us to write the closed equations:

@tf1 ¼ & 1

2
ðr$þr,f2Þ þ

*

2
f,2rf2

& ð+& ,jf2j2Þf1 þ -f,1f2; (10)

@tf2 ¼ & 1

2
rf1 þ

.

4
r2f2 &

/

2
f,1rf2 &

0

2
r,ðf1f2Þ

þ ð1& 2jf2j2Þf2 þ!f21 þ 3jf1j2f2; (11)

where all coefficients depend only on the noise strength #
(via the P̂k coefficients) and the local density $:
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Coefficients   

65 P̂k = exp[− 1
2 k

2σ 2 ]

! ¼
!
136

35"
#þ 1# P̂3

"#1
! ¼ 8

"

!
1

6
#

ffiffiffi
2

p
# 1

2
P̂2

"

$ ¼ 8

"

!
2

ffiffiffi
2

p
# 1

3
P̂2 #

7

5

"
## 1þ P̂2 % ¼ 8

5"

& ¼ 8

"

!
1

3
# 1

4
P̂1

"
#þ 1# P̂1 ' ¼ !

2

"

!
4

5
þ P̂3

"

( ¼ !
8

15

!
19

7
#

ffiffiffi
2

p
þ 1

"
P̂2

"
) ¼ !

4

3"

!
P̂1 #

2

7

"

* ¼ '
8

15

!
19

7
#

ffiffiffi
2

p
þ 1

"
P̂2

"
+ ¼ )

2

"

!
4

5
þ P̂3

"

, ¼ 32

35"

!
1

15
þ P̂4

"!
13

9
# 6

ffiffiffi
2

p
þ 1

"
P̂2

"

$
!
8

3"

$
31

21
þ P̂4

5

%
#þ 1# P̂4

"#1
: (12)

Below, for convenience, we choose the Gaussian noise

distribution P-ð.Þ ¼ 1
-
ffiffiffiffiffi
2"

p exp½# .2

2-2( for which P̂k ¼
exp½# 1

2 k
2-2( [19]. A few remarks are, then, in order.

First, $ can change sign and become positive for large
enough #, while & is always positive. The homogeneous
disordered state (f1 ¼ f2 ¼ 0) undergoes an instability to
nematic order when $ ¼ 0, defining the basic transition
line -tð#0Þ in the ð#0;-Þ plane [Fig. 1(a)]. Next, , being
positive in the $> 0 region where the disordered solution
is unstable, Eqs. (10) and (11) possess a homogeneous

nematically ordered solution ðf1; f2Þ ¼ ð0;
ffiffiffiffiffiffiffiffiffiffi
$=,

p
Þ (assum-

ing order along x, so that f2 is real positive) [20]. The
nonlinear terms express the complicated relation between
the polar and nematic fields, which are both slow modes. In
particular, nonlinearities in Eq. (10) do depend on f2 and
prevent the trivial exponential decay of f1, as predicted by

linear theories [17], which would result in active nematic
field equations [9]. On the other hand, the familiar non-
linearities of the Toner-Tu theory for polar systems may
only be recovered if f2 would get enslaved to f1 [12],
which is not possible in a system with nematic interactions
where $> 0.
In the following, we further expand coefficients up to /3

in ## #0, which amounts to keeping the crucial # depen-
dence in $ and & and replacing # by #0 in all other
coefficients. This does not change any of our main results,
but allows us to find exact band solutions (see below).
We have studied the linear stability of the homogeneous

nematic solution with respect to perturbations of an arbitrary
wave vector in the full (#0, -) parameter plane (Fig. 1).
Similar to the polar case with ferromagnetic alignment
[12–14,21], this solution is unstable to long wavelengths in
a regionbordering the basic transition line. Themost unstable
modes in this region are roughly—but not exactly—
transversal to the order of the solution [22]. The homoge-
neous nematic solution becomes linearly stable deeper in the
ordered phase [line-s in Fig. 1(a)], but its stability domain is
limited by another instability region where q¼0 is the most
unstable mode (line -u, which can be shown to be given by

&þ%
ffiffiffiffiffiffiffiffiffiffi
$=,

p
#+$=,¼0). This strong instability, which

occurs at large densities and/orweak noise,maybe anartifact
introduced by our truncation [24].
To go beyond the linear stability analysis of spatially

homogeneous solutions, we performed numerical integra-
tions of Eqs. (6), (10), and (11) in rectangular domains with
periodic boundary conditions of typical linear sizes 50–200
[25]. For parameter values in the instability region of the
nematic homogeneous solution, we observe stationary
asymptotic solutions in which nematic order is confined
to and oriented along a dense band with local density #band

amidst a homogeneous disordered ‘‘gas’’ with #gas such

that #band > #s > #t > #gas [Fig. 2(a)], where #sð-Þ is

given by inverting -sð#0Þ. Varying system size and using
various domain aspect ratios, we find most often a single
band oriented along the shortest dimension of the domain,
which occupies a size-independent fraction! of space. All
these observations are in agreement with the behavior of
the original microscopic model [16].
Band solutions are also present beyond the region of

instability of the homogeneous ordered state. Starting
from, e.g., sufficiently inhomogeneous initial conditions,
we find band solutions both for #0 values larger than #s,
where they coexist with the homogeneous ordered phase,
and below #t, where the disordered homogeneous solution
is linearly stable. Working at fixed #0 varying - for clarity,
we thus find bands in a [-min, -max] interval larger than the
linear-instability interval [-s, -t] (Fig. 3). Along it, the
fraction occupied by the ordered band decreases from
! & 1 near -min to! * 0 near -max. Furthermore, within
a small layer -max < - ) -c, the bands are unstable,
giving rise to a chaotic regime where they twist, elongate,
break, and form again, in a manner strikingly similar to

FIG. 1 (color online). (a) Linear stability of homogeneous
solutions in the (#0, -) plane (plotted as a function of -2 to

enhance clarity). The line # ¼ 15"ðP̂2#1Þ
40P̂2ð2

ffiffi
2

p
#1Þ#64

, given by$ ¼ 0, is

the basic instability line defining #tð-Þ or -tð#0Þ: above it, the
disordered homogeneous solution is linearly stable; below, it

becomes unstable and the ordered solution f2 ¼
ffiffiffiffiffiffiffiffiffiffi
$=,

p
exists.

This solution is unstable between the -t and the -s lines. It is
linearly stable between -s, and -u, which marks the border of a
region where q ¼ 0 is the most unstable mode. The color scale
codes for the angle between the most unstable wave vector and
the direction of nematic order. (b) Largest eigenvalue sþ (when
positive) as a function of -2 for #0 ¼ 1.
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Exact expression for the Vicsek band   
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Consider stationary band along x-axis: f1=0, f2 is real and depend on y 
•  Continuity equation is trivially  satisfied    
•  Equation for f1 integrated to  

•  Equation for f2 yields  

⇢� f2 �
1

2
�f

2
2 = ⇢̃ = const

⌫

4
@2
yf2 + µ0f2(⇢̃� ⇢t + f2)�


⇠ � �µ0

2

�
f3
2 = 0

µ = µ0(⇢� ⇢t)



The band   
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f2(y) =
3(⇢t � ⇢̃)

1 + a cosh
⇣
2y

p
µ0
(⇢t � ⇢̃)/⌫

⌘

a =

p
19(⇠ � µ0�/2)(⇢̃� ⇢t)/2µ0

observations made in the original microscopic model
(Figs. 2(b)–2(d), [26]).

Thus the region of linear instability of the homogeneous
ordered solution does not correspond to the existence (and
stability) domain of band solutions, which is wider. In the
original microscopic model, with its built-in fluctuations,
coexistence of band solutions and homogeneous order has
not been reported, but the homogeneous solution was
found metastable near the threshold of emergence of bands
where these appear ‘‘suddenly’’ [16]. At the other end of
the band existence region, no coexistence was reported
between band solutions and the homogeneous disordered
state, suggesting that the latter is always driven to the
former by intrinsic fluctuations. All this suggests that
transitions found in the microscopic model do not corre-
spond to the linear stability limits of homogeneous solu-
tions of our deterministic continuous equations, pointing to
a subcritical bifurcation scenario.

We now derive band solutions analytically. Suppose
that, as observed, f1 ¼ 0 for band solutions and that f2
is real and positive (i.e., nematic order is along x), and
depends only on y. For a stationary solution, Eq. (10) then
yields, after integration over y,

!" f2 "
1

2
"f22 ¼ ~!; (13)

where ~! is a constant. This allows us to write Eq. (11),
again looking for stationary solutions, in terms of f2 only:

#

4
@yyf2 ¼ "$0f2ð~!" !t þ f2Þ þ

!
%" "

2
$0

"
f32; (14)

where we have rewritten $ ¼ $0ð!" !tÞ, with $0 inde-
pendent of !. Direct integration of Eq. (14) yields, under
the condition limy!&1f2ðyÞ ¼ 0, the following solution

f2ðyÞ ¼
3ð!t " ~!Þ

1þ a coshð2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$0ð!t " ~!Þ=#

p
Þ
; (15)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9bð~!" !tÞ=2$0p

and b ¼ %"$0"=2.
The value of ~! can be obtained from the conditionR
L !ðyÞdy ¼ L!0, where L is the size of the box. We can

neglect the exponentially decreasing tails in the integral
and solve the equation

R1
"1½!ðyÞ " ~!(dy ¼ Lð!0 " ~!Þ.

Under the assumption L ! 1 we obtain

~! ) !t "
2$0

9b
ð1" K1e

"K2LÞ; (16)

where K1 and K2 are positive quantities depending on &
and !0 whose expression we omit for compactness.
Substituting this value in the expression of a gives us a ¼
K1e

"K2L=2, yielding a width of the band proportional to L,
in agreement with observations on the microscopic model.
As L ! 1, the value of ~! converges to the asymptotic
value ~!gas.
To determine the surface fraction ! occupied by the

ordered band, we use the relation !ð!band " !gasÞ þ
!gas ¼ !0. Substituting the value of !band obtained from
Eqs. (13) and (15) at y ¼ 0, we find for L ! 1

! ¼ 9b2ð!0 " !tÞ þ 2b$0

2$0ð"$0 þ 3bÞ : (17)

The condition 0<!< 1 yields the lower limit &min

and the upper limit &max of existence of the band solution.

FIG. 2 (color online). Numerically obtained density-segregated
solutions. (a) density and f2 profiles of a stationary banded
solution (f1 ¼ 0 throughout). The fronts linking the disordered
and ordered domains can be perfectly fitted to hyperbolic tangents
(not shown). (& ¼ 0:26, !0 ¼ 1, L¼100) (b, c, d) chaotic band
regime: snapshots of (respectively)!, jf1j, and jf2j. (& ¼ 0:2826,
!0 ¼ 1, L ¼ 200).

FIG. 3 (color online). Analytic band solutions for the slightly
simplified system (see text). (a) (!0, &) parameter plane with
basic instability line &t, stability limit of homogeneous ordered
phase &s, and limits of existence of band solutions &min and
&max. The short-dashed blue and red lines show the !gas and

!band density values of the band solutions for !0 ¼ 1 as a
function of & over their existence range [&min, &max], indicated
by the thin horizontal dashed violet lines. (b) variation with & of
!, the fraction of space occupied by the ordered part of the band
solution, for !0 ¼ 1.
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The (rescaled) band possesses a well-defined profile with
sharper and sharper edges as L increases [Fig. 5(a)]. The
fraction area ! occupied by the band is asymptotically
independent of system size and decreases continuously as
the noise strength ! increases [Fig. 5(b)]. This, together
with the nucleationlike process leading to the band, is
suggestive of phase separation.

In phase III, spontaneous segregation into bands still
occurs (for large-enough domains); however these thinner
bands are unstable and constantly bend, break, reform, and
merge, in an unending spectacular display of space-time
chaos [Fig. 2(d)] [19]. Thus, the transition between phase II
and III, located near!II-III ’ 0:163ð1Þ, is the order-disorder
transition of the model. It resembles a long but finite wave-
length instability of the band [see for instance Fig. 6(c)]. In
this regime, SðtÞ fluctuates strongly (Fig. 3) and on very
large time scales [Figs. 6(a)]. Nevertheless, these fluctua-
tions behave normally [i.e., decrease like 1=

ffiffiffiffi
N

p
, Fig. 6(b)].

Thus, the space-time chaos self-averages, making phase III
a bona fide disordered phase, albeit one with huge corre-
lation lengths and times.

Increasing further the noise strength, the segregated
bands vanish, leaving phase IV, an ordinary disordered

phase, spatially homogeneous, and with very short corre-
lations in space and time [Fig. 2(e)]. Near the transition
point, at !III-IV ’ 0:169ð1Þ, the nematic order parameter
SðtÞ exhibits bistability between a low amplitude, fast
fluctuating state (typical of phase IV) and a larger ampli-
tude, slowly fluctuating one typical of phase III (not
shown). This suggests a discontinuous disorder-disorder
transition between phase III and IV.
At this point, the most crucial question is perhaps that of

the stability of the nematic order observed in phases I and
II. Indeed, much of what we described above for large but
finite systems relies on our conclusion of possible truly
long-range (asymptotic) order [Fig. 4(c)]. On the one
hand, one could argue that the exponential distributions
of flight times between the two opposite polar orientations
[Fig. 4(b)] define a finite persistence time " and a corre-
sponding finite persistence length scale # # v0" [indi-
cated by the vertical dashed line in Fig. 4(c)]. Therefore,
at scales much larger than #, the polar nature of our par-
ticles could become irrelevant, and the system would then
behave like a fully nematic one, with only quasi-long-
range order. As of now, we have been able to probe systems
sizes up to 3 or 4 times the persistence length #. So far, as
shown in Fig. 4(c), these systems comprising up to twenty
million particles show no sign of breakdown of order. On
the other hand, # is a single-particle quantity. Even though
it is finite and system size independent, particles travel
in rather dense polar packets which have flights longer
than #. Indeed, the giant density fluctuations reported
[Fig. 4(d)] indicate that denser, more ordered, and hence
probably longer-lived packets occur in larger systems. But
should this ‘‘polar packet lifetime’’ diverge with system
size, then one would have a mechanism opening the door
for the emergence of true long-range nematic order. To
summarize this discussion, nematic order could break
down for system sizes much larger than #, but our data
[Figs. 4(c) and 4(d)] and the argument above suggest the
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FIG. 5 (color online). Phase II (stable bands) (a) Rescaled
transverse profiles in square domains of linear size L ¼ 512
(dashed black line), 1024 (dash-dotted red line), and 2048 (solid
blue line) at ! ¼ 0:14. (Data averaged over the longitudinal
direction and time, translated to be centered at the same loca-
tion.) Bottom: density profiles. Top: nematic order parameter
profiles. (b) Surface fraction ! as a function of ! (defined here
as the midheight width of the rescaled S profile).
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FIG. 4 (color online). Phase I (homogeneous nematic order,
! ¼ 0:095). (a) Polar orientation probability distribution in a
system of size L ¼ 2048. (b) Distribution of particle transition
times " between the two peaks of (a) for three different system
sizes L ¼ 512, 1024, and 2048 (black, red [light gray], and blue
[dark gray] lines, respectively). (c) Nematic order parameter S vs
system size L in square domains. The vertical dashed line marks
the persistence length # # 4400 (see text). Inset: S% S& ¼
0:813063 vs L (red dashed line: L%2=3 decay). (d) Number
fluctuations "n as a function of average particle number hni
(see text) in a system of size L ¼ 4096 (dashed line: algebraic
growth with exponent 0.8).
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Below, for convenience, we choose the Gaussian noise

distribution P-ð.Þ ¼ 1
-
ffiffiffiffiffi
2"

p exp½# .2

2-2( for which P̂k ¼
exp½# 1

2 k
2-2( [19]. A few remarks are, then, in order.

First, $ can change sign and become positive for large
enough #, while & is always positive. The homogeneous
disordered state (f1 ¼ f2 ¼ 0) undergoes an instability to
nematic order when $ ¼ 0, defining the basic transition
line -tð#0Þ in the ð#0;-Þ plane [Fig. 1(a)]. Next, , being
positive in the $> 0 region where the disordered solution
is unstable, Eqs. (10) and (11) possess a homogeneous

nematically ordered solution ðf1; f2Þ ¼ ð0;
ffiffiffiffiffiffiffiffiffiffi
$=,

p
Þ (assum-

ing order along x, so that f2 is real positive) [20]. The
nonlinear terms express the complicated relation between
the polar and nematic fields, which are both slow modes. In
particular, nonlinearities in Eq. (10) do depend on f2 and
prevent the trivial exponential decay of f1, as predicted by

linear theories [17], which would result in active nematic
field equations [9]. On the other hand, the familiar non-
linearities of the Toner-Tu theory for polar systems may
only be recovered if f2 would get enslaved to f1 [12],
which is not possible in a system with nematic interactions
where $> 0.
In the following, we further expand coefficients up to /3

in ## #0, which amounts to keeping the crucial # depen-
dence in $ and & and replacing # by #0 in all other
coefficients. This does not change any of our main results,
but allows us to find exact band solutions (see below).
We have studied the linear stability of the homogeneous

nematic solution with respect to perturbations of an arbitrary
wave vector in the full (#0, -) parameter plane (Fig. 1).
Similar to the polar case with ferromagnetic alignment
[12–14,21], this solution is unstable to long wavelengths in
a regionbordering the basic transition line. Themost unstable
modes in this region are roughly—but not exactly—
transversal to the order of the solution [22]. The homoge-
neous nematic solution becomes linearly stable deeper in the
ordered phase [line-s in Fig. 1(a)], but its stability domain is
limited by another instability region where q¼0 is the most
unstable mode (line -u, which can be shown to be given by

&þ%
ffiffiffiffiffiffiffiffiffiffi
$=,

p
#+$=,¼0). This strong instability, which

occurs at large densities and/orweak noise,maybe anartifact
introduced by our truncation [24].
To go beyond the linear stability analysis of spatially

homogeneous solutions, we performed numerical integra-
tions of Eqs. (6), (10), and (11) in rectangular domains with
periodic boundary conditions of typical linear sizes 50–200
[25]. For parameter values in the instability region of the
nematic homogeneous solution, we observe stationary
asymptotic solutions in which nematic order is confined
to and oriented along a dense band with local density #band

amidst a homogeneous disordered ‘‘gas’’ with #gas such

that #band > #s > #t > #gas [Fig. 2(a)], where #sð-Þ is

given by inverting -sð#0Þ. Varying system size and using
various domain aspect ratios, we find most often a single
band oriented along the shortest dimension of the domain,
which occupies a size-independent fraction! of space. All
these observations are in agreement with the behavior of
the original microscopic model [16].
Band solutions are also present beyond the region of

instability of the homogeneous ordered state. Starting
from, e.g., sufficiently inhomogeneous initial conditions,
we find band solutions both for #0 values larger than #s,
where they coexist with the homogeneous ordered phase,
and below #t, where the disordered homogeneous solution
is linearly stable. Working at fixed #0 varying - for clarity,
we thus find bands in a [-min, -max] interval larger than the
linear-instability interval [-s, -t] (Fig. 3). Along it, the
fraction occupied by the ordered band decreases from
! & 1 near -min to! * 0 near -max. Furthermore, within
a small layer -max < - ) -c, the bands are unstable,
giving rise to a chaotic regime where they twist, elongate,
break, and form again, in a manner strikingly similar to

FIG. 1 (color online). (a) Linear stability of homogeneous
solutions in the (#0, -) plane (plotted as a function of -2 to

enhance clarity). The line # ¼ 15"ðP̂2#1Þ
40P̂2ð2

ffiffi
2

p
#1Þ#64

, given by$ ¼ 0, is

the basic instability line defining #tð-Þ or -tð#0Þ: above it, the
disordered homogeneous solution is linearly stable; below, it

becomes unstable and the ordered solution f2 ¼
ffiffiffiffiffiffiffiffiffiffi
$=,

p
exists.

This solution is unstable between the -t and the -s lines. It is
linearly stable between -s, and -u, which marks the border of a
region where q ¼ 0 is the most unstable mode. The color scale
codes for the angle between the most unstable wave vector and
the direction of nematic order. (b) Largest eigenvalue sþ (when
positive) as a function of -2 for #0 ¼ 1.
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θ j
i+1 =

1
2

arg 1
N j

ei2θk
k
∑
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#
$
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+ηξ j
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i+1 = x j

i ± v0n j
i

N j − current number of neighbors 

In the expansion f2 is the most unstable and drives the dynamics, f1 is enslaved    

f(x, ✓, t) =
1

⇡

1X

�1

ˆf(x, t) exp(�i2k✓)

Q =

ˆf1(x, t), ⇢ =

ˆf0(x, t)
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positions xt
j and directors nt

j ≡ ðcos θtj; sin θtjÞT with θtj ∈
½−π=2; π=2$ of particles j ¼ 1;…; N are updated synchro-
nously at discrete time steps according to

θtþ1
j ¼ 1

2
Arg

!X

k∈Vj

ei2θ
t
k

"
þ ψ t

j; xtþ1
j ¼ xt

j ' v0n̂t
j; ð1Þ

where Vj contains particle j and its neighbors within the
unit distance, the ' sign is chosen randomly with equal
probability, and the random angle ψ t

j ∈ ½−ηπ=2; ηπ=2$
(with η ∈ ½0; 1$) drawn from a uniform distribution. This
model has not been much studied beyond the initial paper
[32] where numerical simulations performed on square
domains of linear size L at global density ρ0 ¼ N=L ¼ 1=2
concluded to an isotropic-to-nematic Berezinskii-
Kosterlitz-Thouless-like transition [36] as η is decreased,
with the quasiordered phase consisting of a single dense
ordered band supporting giant number fluctuations.
As shown in [34], the rather well-known hydrodynamic

equations for dry active nematics [35] can be derived in a
simple and controlled way from this model. Assuming
a dilute limit and molecular chaos allows us to write a
Boltzmann equation for the one-body distribution function
fðx; θ; tÞ. Expanding f in a Fourier series of θ, fðx; θ; tÞ ¼
ð1=πÞ

Pk¼∞
k¼−∞ f̂kðx; tÞe−i2kθ, the kinetic equation becomes

a hierarchy which is truncated and closed assuming a
diffusive scaling ansatz and the proximity of the onset of
the nematic order. This yields a nonlinear equation for the
nematic field Q≡ f̂1 coupled to the continuity equation
governing the density field ρ≡ f̂0 [37]:

∂tρ ¼ 1

2
Δρþ 1

2
Reð∇(2QÞ; ð2Þ

∂tQ ¼ ðμðρÞ − ξjQj2ÞQþ 1

4
∇2ρþ 1

2
ΔQ; ð3Þ

where μðρÞ ¼ μ0ðρ − ρtÞ and we have used the complex
operators ∇≡ ∂x þ i∂y, ∇( ≡ ∂x − i∂y, and Δ≡∇∇(.
The transport coefficients μ0, ρt, and ξ are positive constants
depending on the noise strength σ and global density ρ0, the
only two parameters remaining after rescaling [38].
The phase diagram of Eqs. (2) and (3) is given in Fig. 1(a).

The condition ρ ¼ ρt defining the line σt marks the linear
instability of the disordered solution Q ¼ 0 and the emer-
gence of the homogeneous ordered solution jQj ¼

ffiffiffiffiffiffiffiffi
μ=ξ

p

(for μ > 0). But this ordered solution is itself unstable
to long-wavelength perturbations transversal to nematic
order in a region bordering the basic line ρt; σt. Deeper in
the ordered phase, below the line ρs; σs, the homogeneous
ordered solution is linearly stable.
Equations (2) and (3) support an inhomogeneous sol-

ution in the form of a band of the nematic order with
density ρband > ρs surrounded by a disordered gas with
ρgas < ρt [27,34]. Supposing the nematic order is along x,
for this solution we obtain ρ ¼ R0ðyÞ≡Q0ðyÞ þ ρgas and

Q0ðyÞ ¼
3ðρt − ρgasÞ

1þ a cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ0ðρt − ρgasÞ

p
yÞ

ð4Þ

with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ξðρt − ρgasÞ=2μ0

p
, ρgas being a constant

fixed by density conservation [34]. Its existence domain
(σmin; σmax) actually extends beyond the region of linear
instability of the homogeneous ordered solution (σmin < σs
and σmax > σt). Its ordered part occupies a fraction of the
y dimension of the system going continuously from zero
(near σmax) to one (near σmin).
If considered only as a one-dimensional function of y, the

band solution, Eq. (4), is linearly stable.We now show that it
is always unstable with respect to long-wavelength undu-
lations along the x axis. To study the linear stability with
respect to wave number k, we seek the perturbative solution
in the form ðQ; ρÞ ¼ ðQ0ðyÞ; R0ðyÞÞ þ ðqðyÞ; rðyÞÞeλtþikx.
Substituting the growth rate λ into Eqs. (2) and (3), we
obtain a linear system for qðyÞ; rðyÞ. Noting that for
k ¼ 0 the solution to this system is the translational mode
r ¼ q ¼ ∂yQ0, we can further simplify the problem in the
long-wave limit k → 0 by expanding the perturbative
solution in k and employing the following ansatz:
λ ¼ λ1k2, qðyÞ ¼ uðyÞ þ ivðyÞ, and
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FIG. 1 (color online). Hydrodynamic equations: (a) Phase
diagram for active nematics. (b) Global order parameter vs
system size at different noise values in the chaotic regime (the
solid line has slope −1). (c),(d) Snapshots of the density field in
the chaotic regime for L ¼ 1600 and ρ0 ¼ 1, (c) localized chaos
(σ ¼ 0.26), (d) fully developed chaos (σ ¼ 0.28).
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where Vj contains particle j and its neighbors within the
unit distance, the ' sign is chosen randomly with equal
probability, and the random angle ψ t

j ∈ ½−ηπ=2; ηπ=2$
(with η ∈ ½0; 1$) drawn from a uniform distribution. This
model has not been much studied beyond the initial paper
[32] where numerical simulations performed on square
domains of linear size L at global density ρ0 ¼ N=L ¼ 1=2
concluded to an isotropic-to-nematic Berezinskii-
Kosterlitz-Thouless-like transition [36] as η is decreased,
with the quasiordered phase consisting of a single dense
ordered band supporting giant number fluctuations.
As shown in [34], the rather well-known hydrodynamic

equations for dry active nematics [35] can be derived in a
simple and controlled way from this model. Assuming
a dilute limit and molecular chaos allows us to write a
Boltzmann equation for the one-body distribution function
fðx; θ; tÞ. Expanding f in a Fourier series of θ, fðx; θ; tÞ ¼
ð1=πÞ

Pk¼∞
k¼−∞ f̂kðx; tÞe−i2kθ, the kinetic equation becomes

a hierarchy which is truncated and closed assuming a
diffusive scaling ansatz and the proximity of the onset of
the nematic order. This yields a nonlinear equation for the
nematic field Q≡ f̂1 coupled to the continuity equation
governing the density field ρ≡ f̂0 [37]:
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where μðρÞ ¼ μ0ðρ − ρtÞ and we have used the complex
operators ∇≡ ∂x þ i∂y, ∇( ≡ ∂x − i∂y, and Δ≡∇∇(.
The transport coefficients μ0, ρt, and ξ are positive constants
depending on the noise strength σ and global density ρ0, the
only two parameters remaining after rescaling [38].
The phase diagram of Eqs. (2) and (3) is given in Fig. 1(a).

The condition ρ ¼ ρt defining the line σt marks the linear
instability of the disordered solution Q ¼ 0 and the emer-
gence of the homogeneous ordered solution jQj ¼

ffiffiffiffiffiffiffiffi
μ=ξ

p

(for μ > 0). But this ordered solution is itself unstable
to long-wavelength perturbations transversal to nematic
order in a region bordering the basic line ρt; σt. Deeper in
the ordered phase, below the line ρs; σs, the homogeneous
ordered solution is linearly stable.
Equations (2) and (3) support an inhomogeneous sol-

ution in the form of a band of the nematic order with
density ρband > ρs surrounded by a disordered gas with
ρgas < ρt [27,34]. Supposing the nematic order is along x,
for this solution we obtain ρ ¼ R0ðyÞ≡Q0ðyÞ þ ρgas and
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1 − 9ξðρt − ρgasÞ=2μ0
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, ρgas being a constant

fixed by density conservation [34]. Its existence domain
(σmin; σmax) actually extends beyond the region of linear
instability of the homogeneous ordered solution (σmin < σs
and σmax > σt). Its ordered part occupies a fraction of the
y dimension of the system going continuously from zero
(near σmax) to one (near σmin).
If considered only as a one-dimensional function of y, the

band solution, Eq. (4), is linearly stable.We now show that it
is always unstable with respect to long-wavelength undu-
lations along the x axis. To study the linear stability with
respect to wave number k, we seek the perturbative solution
in the form ðQ; ρÞ ¼ ðQ0ðyÞ; R0ðyÞÞ þ ðqðyÞ; rðyÞÞeλtþikx.
Substituting the growth rate λ into Eqs. (2) and (3), we
obtain a linear system for qðyÞ; rðyÞ. Noting that for
k ¼ 0 the solution to this system is the translational mode
r ¼ q ¼ ∂yQ0, we can further simplify the problem in the
long-wave limit k → 0 by expanding the perturbative
solution in k and employing the following ansatz:
λ ¼ λ1k2, qðyÞ ¼ uðyÞ þ ivðyÞ, and
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FIG. 1 (color online). Hydrodynamic equations: (a) Phase
diagram for active nematics. (b) Global order parameter vs
system size at different noise values in the chaotic regime (the
solid line has slope −1). (c),(d) Snapshots of the density field in
the chaotic regime for L ¼ 1600 and ρ0 ¼ 1, (c) localized chaos
(σ ¼ 0.26), (d) fully developed chaos (σ ¼ 0.28).
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where Vj contains particle j and its neighbors within the
unit distance, the ' sign is chosen randomly with equal
probability, and the random angle ψ t

j ∈ ½−ηπ=2; ηπ=2$
(with η ∈ ½0; 1$) drawn from a uniform distribution. This
model has not been much studied beyond the initial paper
[32] where numerical simulations performed on square
domains of linear size L at global density ρ0 ¼ N=L ¼ 1=2
concluded to an isotropic-to-nematic Berezinskii-
Kosterlitz-Thouless-like transition [36] as η is decreased,
with the quasiordered phase consisting of a single dense
ordered band supporting giant number fluctuations.
As shown in [34], the rather well-known hydrodynamic

equations for dry active nematics [35] can be derived in a
simple and controlled way from this model. Assuming
a dilute limit and molecular chaos allows us to write a
Boltzmann equation for the one-body distribution function
fðx; θ; tÞ. Expanding f in a Fourier series of θ, fðx; θ; tÞ ¼
ð1=πÞ

Pk¼∞
k¼−∞ f̂kðx; tÞe−i2kθ, the kinetic equation becomes

a hierarchy which is truncated and closed assuming a
diffusive scaling ansatz and the proximity of the onset of
the nematic order. This yields a nonlinear equation for the
nematic field Q≡ f̂1 coupled to the continuity equation
governing the density field ρ≡ f̂0 [37]:
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where μðρÞ ¼ μ0ðρ − ρtÞ and we have used the complex
operators ∇≡ ∂x þ i∂y, ∇( ≡ ∂x − i∂y, and Δ≡∇∇(.
The transport coefficients μ0, ρt, and ξ are positive constants
depending on the noise strength σ and global density ρ0, the
only two parameters remaining after rescaling [38].
The phase diagram of Eqs. (2) and (3) is given in Fig. 1(a).
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(for μ > 0). But this ordered solution is itself unstable
to long-wavelength perturbations transversal to nematic
order in a region bordering the basic line ρt; σt. Deeper in
the ordered phase, below the line ρs; σs, the homogeneous
ordered solution is linearly stable.
Equations (2) and (3) support an inhomogeneous sol-

ution in the form of a band of the nematic order with
density ρband > ρs surrounded by a disordered gas with
ρgas < ρt [27,34]. Supposing the nematic order is along x,
for this solution we obtain ρ ¼ R0ðyÞ≡Q0ðyÞ þ ρgas and
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instability of the homogeneous ordered solution (σmin < σs
and σmax > σt). Its ordered part occupies a fraction of the
y dimension of the system going continuously from zero
(near σmax) to one (near σmin).
If considered only as a one-dimensional function of y, the

band solution, Eq. (4), is linearly stable.We now show that it
is always unstable with respect to long-wavelength undu-
lations along the x axis. To study the linear stability with
respect to wave number k, we seek the perturbative solution
in the form ðQ; ρÞ ¼ ðQ0ðyÞ; R0ðyÞÞ þ ðqðyÞ; rðyÞÞeλtþikx.
Substituting the growth rate λ into Eqs. (2) and (3), we
obtain a linear system for qðyÞ; rðyÞ. Noting that for
k ¼ 0 the solution to this system is the translational mode
r ¼ q ¼ ∂yQ0, we can further simplify the problem in the
long-wave limit k → 0 by expanding the perturbative
solution in k and employing the following ansatz:
λ ¼ λ1k2, qðyÞ ¼ uðyÞ þ ivðyÞ, and

0

B@
rðyÞ
uðyÞ
vðyÞ

1

CA ¼

0

B@
∂yQ0ðyÞ
∂yQ0ðyÞ

0

1

CAþ

0

B@
k2r1ðyÞ
k2u1ðyÞ
ikv1ðyÞ

1

CA: ð5Þ

1.8

1.5

1.2

0.9

0.6

0

σmax
σt
σs
σmin

10.5 1.5 2

0.1

0.08

0.06

0.04

0.02 ρ

σ2

2

4

6

2

4

6

4 6 8
10

3 2 4 6 8
10

4
L

σ=0.275
σ=0.2775
σ=0.28

10
-2

S

(a) (b)

(c) (d)

FIG. 1 (color online). Hydrodynamic equations: (a) Phase
diagram for active nematics. (b) Global order parameter vs
system size at different noise values in the chaotic regime (the
solid line has slope −1). (c),(d) Snapshots of the density field in
the chaotic regime for L ¼ 1600 and ρ0 ¼ 1, (c) localized chaos
(σ ¼ 0.26), (d) fully developed chaos (σ ¼ 0.28).
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!tþ1
j ¼ arg

!X

k#j

sign½cosð!tk & !tjÞ(ei!
t
k

"
þ "t

j; (1)

r tþ1
j ¼ rtj þ v0eð!tþ1

j Þ; (2)

where eð!Þ is the unit vector along !, the sum is taken over
particles k within distance d0 of particle j (including j
itself), and " is a white noise with zero average and
variance#2. Like all Vicsek-style models, it shows orienta-
tional order at large-enough global density $0 and/or
small-enough noise strength #. It was shown in Ref. [16]
that the order is nematic and that both the ordered and
disordered phases are subdivided in two: The homogene-
ous nematic phase observed at low noise is replaced at
larger # values by a segregated phase where a dense,
ordered band occupying a fraction of space coexists with
a disordered, dilute, gas. The transition to disorder is given
by the onset of a long-wavelength instability of this band
leading to a chaotic regime where bands constantly form,
elongate, meander, and disappear over very long time
scales. At still larger # values, a ‘‘microscopically disor-
dered’’ phase is observed.

Following Ref. [12], we write, in a dilute limit where
only binary interactions are considered and assuming that
orientations are decorrelated between them (‘‘molecular
chaos hypothesis’’), a Boltzmann equation governing the
evolution of the one-particle distribution fðr; !; tÞ:

@tfðr; !; tÞ þ v0eð!Þ )rfðr; !; tÞ ¼ Idif½f( þ Icol½f(; (3)

with the angular diffusion and collision integrals

Idif½f( ¼ &%fð!Þ þ %
Z &

&&
d!0fð!0Þ

*
Z 1

&1
d"P#ð"Þ'2&ð!0 & !þ "Þ;

Icol½f( ¼ &fð!Þ
Z &

&&
d!0Kð!0; !Þfð!0Þ

þ
Z &

&&
d!1fð!1Þ

Z &

&&
d!2Kð!1;!2Þfð!2Þ

*
Z 1

&1
d"P#ð"Þ'2&ð!ð!1; !2Þ & !þ "Þ; (4)

where P#ð"Þ is the microscopic noise distribution, '2&

is a generalized Dirac delta imposing that the argument
is equal to zero modulo 2&, Kð!1;!2Þ ¼ 2d0v0jeð!1Þ &
eð!2Þj is the collision kernel for dilute gases [12],
and !ð!1; !2Þ ¼ 1

2 ð!1 þ !2Þ þ &
2 ½H½cosð!1 & !2Þ( & 1$

for & &
2 < !2 & !1 <

3&
2 [with HðxÞ the Heaviside step

function] codes for the nematic alignment. Rescaling of
time, space, and density allows us to set the ‘‘collision
surface’’ S + 2d0v0=% ¼ 1 and v0 ¼ 1 below, without
loss of generality.

Next, the distribution function is expanded in the Fourier
series of the angle: fðr;!; tÞ ¼ 1

2&

P1
k¼&1 fkðr; tÞe&ik!,

with fk ¼ f,&k and jfkj - f0. The zero mode is nothing

but the local density, while f1 and f2 give access to the
polar and nematic order parameter fields P and Q:

$ ¼ f0; $P ¼
Ref1

Imf1

 !
;

$Q ¼ 1

2

Ref2 Imf2

Imf2 &Ref2

 !
: (5)

As amatter of fact, it is convenient to use f1 and f2, together
with the ‘‘complex’’ operators r + @x þ i@y and r, +
@x & i@y. The continuity equation governing $ is given by
integrating the Boltzmann equation over angles:

@t$þ Reðr,f1Þ ¼ 0: (6)

In Fourier space, the Boltzmann equation (3) yields an
infinite hierarchy of equations:

@tfk þ
1

2
ðrfk&1 þr,fkþ1Þ

¼ ðP̂k & 1Þfk þ
2

&

X1

q¼&1

!
P̂kJkq &

4

1& 4q2

"
fqfk&q;

(7)

where P̂k ¼
R1
&1 d"P#ð"Þeik" and

Jkq ¼
Z &=2

&&=2
d(

########sin
(

2

########e
iððk=2Þ&qÞ( þ cos

k&

2

*
Z 3&=2

&=2
d(

########sin
(

2

########e
iððk=2Þ&qÞ(: (8)

To truncate and close this hierarchy, we adopt the fol-
lowing scaling structure, valid near onset of nematic order,
assuming, in a Ginzburg-Landau-like approach [18], small
and slow variations of the density and of the polar and
nematic fields:

$& $0 # ); ff2k&1; f2kgk.1 # )k; r# ); @t # ):

(9)

Note that the scaling of space and time is in line with the
propagative structure of our system, as seen in the con-
tinuity equation (6), which contains no diffusion term.
The first nontrivial order yielding well-behaved equa-

tions is )3: keeping only terms up to this order, equations
for fk>4 identically vanish, while those for f3 and f4
provide expressions of these quantities in terms of $, f1,
and f2, which allows us to write the closed equations:

@tf1 ¼ & 1

2
ðr$þr,f2Þ þ

*

2
f,2rf2

& ð+& ,jf2j2Þf1 þ -f,1f2; (10)

@tf2 ¼ & 1

2
rf1 þ

.

4
r2f2 &

/

2
f,1rf2 &

0

2
r,ðf1f2Þ

þ ð1& 2jf2j2Þf2 þ!f21 þ 3jf1j2f2; (11)

where all coefficients depend only on the noise strength #
(via the P̂k coefficients) and the local density $:
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positions xt
j and directors nt

j ≡ ðcos θtj; sin θtjÞT with θtj ∈
½−π=2; π=2$ of particles j ¼ 1;…; N are updated synchro-
nously at discrete time steps according to

θtþ1
j ¼ 1

2
Arg

!X

k∈Vj

ei2θ
t
k

"
þ ψ t

j; xtþ1
j ¼ xt

j ' v0n̂t
j; ð1Þ

where Vj contains particle j and its neighbors within the
unit distance, the ' sign is chosen randomly with equal
probability, and the random angle ψ t

j ∈ ½−ηπ=2; ηπ=2$
(with η ∈ ½0; 1$) drawn from a uniform distribution. This
model has not been much studied beyond the initial paper
[32] where numerical simulations performed on square
domains of linear size L at global density ρ0 ¼ N=L ¼ 1=2
concluded to an isotropic-to-nematic Berezinskii-
Kosterlitz-Thouless-like transition [36] as η is decreased,
with the quasiordered phase consisting of a single dense
ordered band supporting giant number fluctuations.
As shown in [34], the rather well-known hydrodynamic

equations for dry active nematics [35] can be derived in a
simple and controlled way from this model. Assuming
a dilute limit and molecular chaos allows us to write a
Boltzmann equation for the one-body distribution function
fðx; θ; tÞ. Expanding f in a Fourier series of θ, fðx; θ; tÞ ¼
ð1=πÞ

Pk¼∞
k¼−∞ f̂kðx; tÞe−i2kθ, the kinetic equation becomes

a hierarchy which is truncated and closed assuming a
diffusive scaling ansatz and the proximity of the onset of
the nematic order. This yields a nonlinear equation for the
nematic field Q≡ f̂1 coupled to the continuity equation
governing the density field ρ≡ f̂0 [37]:

∂tρ ¼ 1

2
Δρþ 1

2
Reð∇(2QÞ; ð2Þ

∂tQ ¼ ðμðρÞ − ξjQj2ÞQþ 1

4
∇2ρþ 1

2
ΔQ; ð3Þ

where μðρÞ ¼ μ0ðρ − ρtÞ and we have used the complex
operators ∇≡ ∂x þ i∂y, ∇( ≡ ∂x − i∂y, and Δ≡∇∇(.
The transport coefficients μ0, ρt, and ξ are positive constants
depending on the noise strength σ and global density ρ0, the
only two parameters remaining after rescaling [38].
The phase diagram of Eqs. (2) and (3) is given in Fig. 1(a).

The condition ρ ¼ ρt defining the line σt marks the linear
instability of the disordered solution Q ¼ 0 and the emer-
gence of the homogeneous ordered solution jQj ¼

ffiffiffiffiffiffiffiffi
μ=ξ

p

(for μ > 0). But this ordered solution is itself unstable
to long-wavelength perturbations transversal to nematic
order in a region bordering the basic line ρt; σt. Deeper in
the ordered phase, below the line ρs; σs, the homogeneous
ordered solution is linearly stable.
Equations (2) and (3) support an inhomogeneous sol-

ution in the form of a band of the nematic order with
density ρband > ρs surrounded by a disordered gas with
ρgas < ρt [27,34]. Supposing the nematic order is along x,
for this solution we obtain ρ ¼ R0ðyÞ≡Q0ðyÞ þ ρgas and

Q0ðyÞ ¼
3ðρt − ρgasÞ

1þ a cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ0ðρt − ρgasÞ

p
yÞ

ð4Þ

with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ξðρt − ρgasÞ=2μ0

p
, ρgas being a constant

fixed by density conservation [34]. Its existence domain
(σmin; σmax) actually extends beyond the region of linear
instability of the homogeneous ordered solution (σmin < σs
and σmax > σt). Its ordered part occupies a fraction of the
y dimension of the system going continuously from zero
(near σmax) to one (near σmin).
If considered only as a one-dimensional function of y, the

band solution, Eq. (4), is linearly stable.We now show that it
is always unstable with respect to long-wavelength undu-
lations along the x axis. To study the linear stability with
respect to wave number k, we seek the perturbative solution
in the form ðQ; ρÞ ¼ ðQ0ðyÞ; R0ðyÞÞ þ ðqðyÞ; rðyÞÞeλtþikx.
Substituting the growth rate λ into Eqs. (2) and (3), we
obtain a linear system for qðyÞ; rðyÞ. Noting that for
k ¼ 0 the solution to this system is the translational mode
r ¼ q ¼ ∂yQ0, we can further simplify the problem in the
long-wave limit k → 0 by expanding the perturbative
solution in k and employing the following ansatz:
λ ¼ λ1k2, qðyÞ ¼ uðyÞ þ ivðyÞ, and
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FIG. 1 (color online). Hydrodynamic equations: (a) Phase
diagram for active nematics. (b) Global order parameter vs
system size at different noise values in the chaotic regime (the
solid line has slope −1). (c),(d) Snapshots of the density field in
the chaotic regime for L ¼ 1600 and ρ0 ¼ 1, (c) localized chaos
(σ ¼ 0.26), (d) fully developed chaos (σ ¼ 0.28).
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FIG. 1 (color online). Hydrodynamic equations: (a) Phase
diagram for active nematics. (b) Global order parameter vs
system size at different noise values in the chaotic regime (the
solid line has slope −1). (c),(d) Snapshots of the density field in
the chaotic regime for L ¼ 1600 and ρ0 ¼ 1, (c) localized chaos
(σ ¼ 0.26), (d) fully developed chaos (σ ¼ 0.28).
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3SUPA, Physics Department, IPAM and Institute for Complex Systems and Mathematical Biology,
King’s College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
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TRANSVERSE INSTABILITY OF THE BAND

To examine stability of the band solution with respect to transversal undulations, we rewrite Eqs. (1), (2) (main
text) for real and imaginary parts, f1 = U + iV , yielding
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Here we define µ0 = �⇢
t

µ0. Band solution (Eq. (4), main text) assumes the form U = U0(y), V = 0, ⇢ = U0(y)+⇢gas ⌘
R0(y). We seek perturbative solution to Eqs. (1)-(3) in the form U = U0+u(y) exp[ikx+�t], V = v(y) exp[ikx+�t], ⇢ =
R0(y) + r(y) exp[ikx+ �t], which results in the following linearized system
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Due to translational symmetry, for k = 0 there exists a stationary solution (� = 0) to the linearized system Eqs. (4)-
(6) in the form v = 0, u = @

y

U0(y), r = @
y

U0(y). Therefore, for k ! 0 we can seek perturbative solution as follows
(we define � = �1k
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As we will show later, this specific form of the expansion with respect to small parameter k yields nontrivial result
for the eigenvalue �. After substitution of (7) into Eqs. (4)-(6) we obtain in the first non-trivial order
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1Service de Physique de l’Etat Condensé, CNRS URA 2464, CEA-Saclay, 91191 Gif-sur-Yvette, France
2Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
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One can check that exact solution to Eq. (10) is v1 = �2U0. So, the remaining equations can be written as

(�1 � 1)@
y

U0 =
1

2
@2
y

r1 �
1

2
@2
y

u1 (11)
✓
�1 +

3

4

◆
@
y

U0 = (µ0 � 3⇠U2
0 )u1 + µ0R0u1 + µ0U0r1 �

1

4
@2
y

r1 +
1

2
@2
y

u1 (12)

It is convenient to introduce a new variable w = r1 � u1. Then Eqs. (11),(12) assume the form

(�1 � 1)@
y

U0 =
1

2
@2
y

w (13)
✓
�1 +

3

4

◆
@
y

U0 = (µ0 � 3⇠U2
0 )u1 + µ0R0u1 + µ0U0(w + u1)�

1

4
@2
y

w +
1

4
@2
y

u1 (14)

Substituting @2
y

w from Eq. (13) into Eq. (14) results in

(�1 � 1)@
y

U0 =
1

2
@2
y

w (15)
✓
3

2
�1 +

1

4

◆
@
y

U0 = (µ0 � 3⇠U2
0 )u1 + µ0R0u1 + µ0U0(w + u1) +

1

4
@2
y

u1 (16)

Integration of Eq. (15) gives rise to an explicit expression for w:

w = 2(�1 � 1)

Z
dy U0(y) (17)

Using Eq. (17), we derive from Eq. (16) an inhomogeneous second-order di↵erential equation for the function u1:
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It is convenient to rewrite formally the above equation as B(y) = Lu1(y), where B(y) is the l.h.s. of Eq. (18) and L
is the di↵erential operator defined as
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The operator L is self-adjoint with respect to the scalar product of functions defined as h 1, 2i =
R1
�1 dy  1(y) 2(y),

meaning that for any functions  1 and  2, hL 1, 2i = h 1,L 2i. It is easy to check that L possesses a localized zero
eigenmode  0(y) = @

y

U0(y). Therefore, taking the scalar product of Eq. (18) by  0(y), one finds

h 0, Bi = h 0,Lu1i (20)

Thanks to the self-adjoint property, one has h 0,Lu1i = hL 0, u1i = 0, eventually yielding h 0, Bi = 0, a condition
called solvability condition. In more explicit terms, this condition reads
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It can be simplified by integrating by parts the second term in the above integral, leading to
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The solvability condition (22) can be written as �1g + d = 0. One immediately sees that
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Therefore, the band solution is unstable (�1 > 0) if the following condition is fulfilled
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Now we evaluate Eq. (23) by substituting the band solution (Eq. (4), main text) in the form

U0(y) =
c

1 + a cosh(by)
(25)

where positive parameters a, b, c are of the form

c = 3(⇢
t

� ⇢gas), a =
q

1� 9⇠(⇢
t

� ⇢gas)/2µ0, b = 2
q

µ0(⇢
t

� ⇢gas) (26)

Evaluation of Eq. (24) using the band solution Eq. (24) gives rise to a relatively simple analytical expression for d,
using the relation µ0c = 3b2/4,
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1

4
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where the function f(a) is given by
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. The integral in Eq. (28) can be computed analytically, leading to
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FIG. 1: Plot of function f vs a for 0 < a < 1. f(a) is negative over the entire range of a.

Since c, b are positive, one needs to examine the function f(a) in the interval 0 < a < 1. One obtains that f(a), and,
correspondingly, d, are always negative for all values of a, see Fig. 1. Therefore, the band solution is always unstable
with respect to long-wavelength transverse undulations. However, the solution can be stabilized in a relatively small
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Giant number fluctuations   

80 

•  Density is well-defined quantity a thermal 
equilibrium 

•  For macroscopic system of volume  V the 
containing  number of particles N the 
standard deviation ΔN is  

ΔN ∼ N
ΔN
N

→ 0



 fluctuations in active systems   

81 

•  Density fluctuations can be anomalously 
large (giant fluctuations)  

•  Density is not well-defined  
•  Activity is the main reason for giant number 

(or density) fluctuations   

ΔN ∼ N α

α >1/ 2



How to calculate fluctuations    
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•  Divide system in M boxes  
•  Calculate number of particles in each box  
•  Calculate average and variance  

 
•  Increase box size  
•  Average over time 
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Simulations of Vicsek Model    
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Experimental Verification   

84  

•  However, experimental evidence is 
inconclusive  

•  Apparent large fluctuation of density often 
emerge due to spatial inhomogeneity and  

   and formation of large-scale structures     



Shaken granular particles  

85 Narayan, Ramaswamy, Menon, Science, 2007 



Apparent large fluctuations   

86 

Aranson et al, Science, 2008  

Density gradient  Shaken spherical grains   



Novel material properties 

•  Reduction of viscosity  
•  Extraction useful energy from chaotic 

motion of particles  
•  Giant number fluctuations  

87 



Viscosity of suspensions 
Einstein Formula  

•   η0 viscosity of the suspending liquid  
•   φ volume fraction of solid spherical 

inclusions 
•  Viscosity always increases    

88 
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Viscosity of active suspensions  
•   Dramatic decrease of the viscosity with the   
increase of φ volume fraction active particles  

89 

Collective behavior 



Extraction of useful energy from 
chaotic movement   

90 


