Collective Motion in Active Systems

Igor Aronson

Materials Science Division Argonne National Laboratory

Department of Applied Mathematics and Engineering Sciences, Northwestern University

Outline of the course

- Overview of experiments
- Self-organization of active polar rods: application *in vitro* cytoskeletal networks
- Collective motion of interacting self-propelled particles

• **Purpose: to teach a variety of research tools at the interface of mathematics, physics and biology**

Introduction

• patterns in granular systems

• in vitro cytoskeletal networks

• suspensions of swimmers

Where in the World is Argonne?

- World-Class Science
- Unique Scientific Facilities
- Free and Abundant Parking
- 25 min from Downtown Chicago
- White Deer (almost extinct)

Argonne National Laboratory

- Argonne is a multidisciplinary science and engineering research center
- Mission: address vital national challenges in clean energy, environment, technology and national security.
- Total 3,350 employees, 1250 scientists
- Budget: \$800 million
- 15 research division, 6 national user facilities

World-Class User Facilities

advanced photon source

leadership computing facility

center for nanoscale materials

electron microscopy center

Definition of Soft Matter

- Soft Matter a subfield of condensed matter dealing with physical states that are easily deformable by thermal fluctuations and external stresses.
- Examples: complex liquids, colloids, gels, polymers, biological materials
- <u>Simple introduction</u>:

I Aranson, Collective Behavior in Out-of-Equilibrium Colloidal Suspensions, *Comptes Rendus Physique*, v14, 518 (2013)

Maurice Kleman Oleg D. Lavrentovich

Springer

Active Matter

- <u>Active Matter</u> a new field of condensed matter physics focused on the physical and statistical properties of a wide class of systems actively consuming energy from environment, such as assemblages of active self-propelled particles. The particles have a propensity to convert energy stored in the medium to motion.
- <u>Examples:</u> suspensions of swimming bacteria and synthetic microswimmers, cytoskeletal networks, school of fish etc
- <u>Simple introduction</u>:

S. Ramaswamy, The mechanics and statistics of active matter. Ann Rev Condens Matter Phys 1(1):323–345 (2010)
 <u>T. Vicsek, A Zafeiris</u>, Collective Motion, Physics Reports, v517, 71, 2012

Dynamic Self-Assembly

- SA natural tendency of simple building blocks to organize into complex functional architectures, from biomolecules to living cells
- unique opportunity for materials science alternative to lithography
- self-assembled materials are intrinsically complex, with a hierarchical organization over nested length and time scales
- static (equilibrium) vs dynamic (active) self-assembly
- active (out of equilibrium) assembled emerging structures are not accessible under equilibrium conditions

Introduction: G.M. Whitisides, B Grzybowski, Self-Assembly at all scales, *Science*, v295, 2418 (2002)

Collective Behavior in Living and Synthetic Matter

- simple interactions complex emergent behavior
- different mechanisms similar patterns
- no obvious leader

swirling microtubules swirling granular rods swarming hungry locusts

Seemingly Intelligent behavior

- no obvious leader
- only local interactions between the individuals

Myxobacteria

Starlings (birds)

Opposite is also true!

• Highly intelligent beings (humans) - simple behavior

humans in a square room

bottleneck

Karamouzas, Skinner, Guy, Universal Law Governing Pedestrian Interactions, Phys Rev Lett, 2014

Vicsek Model: A Major Theoretical Milestone

•Point particles (*boids - birdoids*) move off-lattice

- Driven overdamped (no inertia effects) dynamics
- •Strictly local interaction range
- •Alignment according to average direction of the neighbors
- Simple update algorithm for the position/orientation of particles
 Not necessarily reproduce observed phenomenology
 Only two parameters radius of interaction and noise magnitude
 - **1. Polar orienting interaction in a noisy environment**

2. Streaming: motion along the polar direction

•More complicated continuum hydrodynamic models (Tu, Toner, Ramaswamy)

Simulations of Vicsek model

Chate and Gregoire, PRL 2004

1,000,000 boids

Fish school

Simulations of Vicsek model: Phase transition

Order parameter: Magnitude of average velocity (similar to magnetization)

$$\varphi(t) = \frac{1}{N} \left| \sum_{i=1}^{N} v_i(t) \right|$$

at large size, discontinuous transition

Fundamental issues we will investigate

- Similarity between collective behaviors in living and inanimate systems
- Role of long-range interactions vs short-range collisions
- Derivation of mathematical models from simple interaction rules

Active Systems are <u>Complex</u>

- Focus on simple yet non-trivial systems such as *in vitro* cytoskeletal networks, bacterial suspensions, swimmers
- Fundamental interactions are simple and wellcharacterized
- Interactions are mostly of the "physical nature": inelastic collisions, self-propulsion, hydrodynamic entrainment, vs chemotaxis, visual signaling, intelligence, etc
- Derive continuum description from elementary interaction roles and connect observed patterns with experiment

Multi-Scale Approach

 Microscopic discrete models (self-propelled particles – Vicsek model)

 Mesoscale probabilistic Boltzmann/Fokker-Plank equations

- Continuum microscopic models (phenomenological theory by Toner and Tu, Ramaswamy) or derived from the Boltzmann equation (Boltzmann-Ginzburg-Landau Approach)
- Purpose: bridge 3 levels of description

Active Matter and grand challenges in materials science

Understanding, controlling, and building complex hierarchical structures by

- <u>mimicking nature's self- and directed-assembly</u> <u>approaches</u>
- <u>design and synthesis of environmentally adaptive</u>, <u>self-healing materials and systems</u>

http://science.energy.gov/bes/mse/research-areas/biomolecularmaterials/ Active Self-Assembled Systems – A Unique Opportunity for Materials Science • <u>Design of active self-assembled structures with</u> <u>functionality not available under equilibrium</u> <u>conditions</u>

self-assembled colloidal robot Snezhko & I Aranson, Nature Materials, 2011

neutrophil chasing a bacterium

Survey of experimental systems

- Granular materials: vibration, friction, collisions
- Cytoskeletal networks: molecular motors, collisions, chemical interactions
- Suspensions of swimmers such as bacteria: rotation of flagella, hydrodynamic interactions, collisions

Blair-Neicu-Kudrolli experiment

top view

long Cu cylinders # of particles 10⁴

Phase transitions and vortices

•Weakly vibrated layer of rods

• Phase transition

• Coarsening

• Vortex motion

Long-Term Evolution

Origin of Motion

Experiment

Simulations

D Volfson, L Tsimring, A. Kudrolli, Phys Rev E (2004)

Swarming in Quasi-2D Experiments

Experiment, 500 asymmetric rods

Simulations, 500 rods

Lumay, D Volfson, L Tsimring, A. Kudrolli PRL 2008

Vibrated Polar Disks

Experiment, 1000 asymmetric disks

re-injecting boundary conditions (multi-petal dish)

Deseigne, Dauchot, Chate, PRL 2010

nanofabrication: micron-size AuPt rods swim in H_2O_2

AuPt & AuRu microrods are provided by Ayusman Sen and Tom Mallouk, PSU Movie: Argonne

Cytoskeleton - components

Molecular Motors

Kinesin motor converts ATP to ADP and perform mechanical work

Functions: muscle contraction, cargo transport, cytoskeleton organization, cell division

microtubules

In vitro: Actin-Myosin Motility Assay

Crowd surfing

b

V Schaller et al. Nature 467, 73-77 (2010)

Moving Clusters and Swirls

moderate density

higher density

cluster movement

video1 - supplement to Fig. 2A

filament density: $\rho = 5.5 \,\mu m^{-2}$ labeling ratio: R = 1:200

swirling motion II

video4 - supplement to Fig. 3D

filament density: $\rho = 20 \ \mu m^{-2}$ labeling ratio: R = 1:320

V Schaller et al. Nature 467, 73-77 (2010)

in-vitro Self-Assembly of MT and MM

- Simplified system with only few purified components
- Experiments performed in 2D glass container: diameter 100 μm, height 5μm
- Controlled tubulin/motor concentrations and fixed temperature
- MT have fixed length 5μm due to fixation by taxol

Cell with MT & MM

CCD camera

35

F. Nedelec, T. Surrey, A. Maggs, S. Leibler, Self-Organization of Microtubules and Motors, Nature, 389 (1997)
T. Surray, F. Nedelec, S. Leibler & E. Karsenti, Physical Properties Determining Self-Organization of Motors & Microtubules, Science, 292 (2001)

Patterns in MM-MT mixtures

Formation of asters, large kinesin concentration (scale 100 m)

Vortex – Aster Transitions

Ncd – gluththione-S-transferase-nonclaret disjunctional fusion protein Ncd walks in opposite direction to kinesin³⁷

Dynamics of Aster/Vortex Formation

Kinesin

Ncd

Rotating Vortex

Kinesin

Summary of Experimental Results

- 2D mixture of MM & MT exhibits pattern formation
- Kinesin: vortices for low density of MM and asters for higher density
- Ncd: only asters are observed for all MM densities
- For very high MM density asters disappear and bundles are formed

New experiments: onset of spontaneous motion

- Short microtubules
- Crowding agents
- High concentration
- Nematic ordering
- Topologic defects

Active 2D nematic Low curvature interface 60X mag 15µm bar

Self-Propelled BioParticles

- swimming aerobic bacteria *Bacillus Subtilis*
- length 5 μ m, speed 20 μ m/sec, Re=10⁻⁴
- collective flows up to $100 \ \mu m/sec$
- need Oxygen (oxygentaxis)

Turner, Ryu, and Berg (E. coli) 42

Bacillus subtilis primary behaviors

•Excellent swimmers •No tumbling

Concentration of bacteria near the surface due to gradient of dissolved Oxygen

Bacterial (or active) Turbulence Reynolds number 10⁻⁴

Dombrowski, Goldstein, Kessler, et al PRL 2004

Schematics of Experimental Setup

Thin free-standing film conceptAdjustable thickness45Adjustable concentration of bacteria

pH-Taxis & concentration of cells

pH indicator (bromothynol blue) was added

field of view

concentration vs. time

Bacterial Turbulence

Sokolov, Goldstein, Kessler, I.A PRL (2007)

7-fold reduction of viscosity

vortex probe micro-rheometer

viscosity vs concentration

rotational micro-rheometer

- viscosity is extracted from the vortex decay time
 - viscosity is extracted from the magnetic torque
- viscosity vs concentration and swimming speed of bacteria

Novel Material Properties: Reduction of Viscosity

live bacteria

dead

rotational rheology

Machines Powered by Bacteria: Rectification of Chaotic Motion Sokolov, Apodaca, Grzybowski, I.A, <u>PNAS, December 2009</u>

Lithographic Mask

Size of gears: 350 µm, SU-8 photoresist Photolithography technique

Mass of Gear $\sim 10^6$ mass of bacteria

Collaboration with Bartosz Grzybowski, Northwestern University

Featured in NY Times, Forbes, Wired, WDR, Sci American

Gears Turned by Bacteria

1 mm

•1-2 rotations per minute
•Power about 1 femtowatt=10⁻¹⁵ Watt
•About 300 bacteria power the gear

Control of Rotation

Rotation rate vs concentration

Rotation rate controlled by Oxygen/Nitrogen
Rotation rate depends on concentration
Rotation enhanced by collective swimming

53

Ratchet Mechanism of Rotation

Trajectory of fluorescent tracers

Bacteria slide along slanted edges
Trapped in junctions formed by the teeth
Simulations of Kaiser et al, PRL 2014

Bacteria follow director of the chromonic LC in a cell with strong planar anchoring

flat glass cell

Thickness h = *5-10 mm*

Zhou, Sokolov, Lavrentovich, IA, PNAS 2014

Zoom on individual bacterium

direct optical visualization of the 24 nm flagella!

Tracer-bacterium interaction: cargo transport

Evidence for the long-range interaction

Sokolov, Zhou, Lavrentovich, IA PRE 2015

Living LC in the biphasic domain

higher temperature – nematic/isotropic phases co-exist

bacteria melt LC and nucleate tactoids – cloud chamber

Collective Effects: Formation of Stripes *scale depends on concentration, amount of oxygen*

Active Turbulence in LC

