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Outline of the course  
 
•  Overview of experiments  
•  Self-organization of active polar rods: application  in vitro 

cytoskeletal networks  
•  Collective motion of interacting self-propelled particles  

 
•  Purpose: to teach a variety of research tools  at the interface 

of mathematics, physics and biology 



 
  
 
 
 

 
•  Introduction  

•  patterns in granular systems  

•  in vitro cytoskeletal networks 
  
•  suspensions of swimmers  

  
 



Where in the World is  Argonne? 

•  World-Class Science   
•  Unique Scientific Facilities  
•  Free and Abundant Parking 
•  25 min from Downtown Chicago 
•  White Deer (almost extinct)   



Argonne National Laboratory 

•  Argonne is a multidisciplinary science and engineering 
research center 

•  Mission: address vital national challenges in clean 
energy, environment, technology and national security.  

•  Total 3,350 employees, 1250 scientists  
•  Budget: $800 million  
•  15 research division, 6 national user facilities  
 



World-Class User Facilities 
advanced photon source  center for nanoscale materials  

leadership computing facility  electron microscopy center 



Definition of Soft Matter  
•  Soft Matter - a subfield of condensed matter 

dealing with physical states that are easily 
deformable by thermal fluctuations and 
external stresses.  

•  Examples: complex liquids, colloids, gels, 
polymers, biological materials 

•  Simple introduction:  
I Aranson, Collective Behavior in Out-of-Equilibrium 
Colloidal Suspensions, Comptes Rendus Physique, v14, 
518 (2013)     



Active  Matter  
•  Active Matter - a new field of condensed matter physics focused on  

the physical and statistical properties of a wide class of systems 
actively consuming energy from environment, such as assemblages 
of active self-propelled particles. The particles have a propensity to 
convert energy stored in the medium to motion. 

•  Examples: suspensions of swimming bacteria and synthetic 
microswimmers, cytoskeletal networks, school of fish etc 

  
•  Simple introduction:  
S. Ramaswamy, The mechanics and statistics of active matter. Ann Rev Condens 
Matter Phys 1(1):323–345 (2010) 
T. Vicsek, A Zafeiris, Collective Motion, Physics Reports, v517, 71, 2012  
  
 
 
 



Dynamic Self-Assembly   
•  SA#$#natural#tendency#of#simple#building#blocks#to#organize#

into#complex#func:onal#architectures,#from#biomolecules#to#
living#cells##

•  unique#opportunity#for#materials#science#–#alterna:ve#to#
lithography###

•  self$assembled#materials##are#intrinsically#complex,#with#a#
hierarchical#organiza:on#over#nested#length#and#:me#scales#

•  sta:c#(equilibrium)##vs##dynamic#(ac:ve)#self$assembly##
•  ac:ve#(out#of#equilibrium)#assembled##emerging##structures#

are#not#accessible#under#equilibrium#condi:ons#

Introduc*on:,,G.M.,Whi*sides,,B,Grzybowski,,Self?Assembly,at,all,
scales,,,Science,,v295,,2418,(2002),,



Collective Behavior in Living and Synthetic Matter 

swarming hungry locusts   

Sumino et al, Nature 2012 
I. Cousin et al, Science, 2005   

•  simple interactions  – complex emergent behavior 
•  different mechanisms – similar patterns 
•  no obvious leader 

swirling microtubules    

Blair, Kudrolli, 2003   

swirling granular rods     



Seemingly Intelligent behavior 
•  no obvious leader 
•  only local interactions between the individuals   

Myxobacteria         Starlings (birds)         



Opposite is also true!  
•  Highly intelligent beings (humans)  - simple behavior  

humans in a square room          bottleneck          

Karamouzas, Skinner, Guy, Universal Law Governing Pedestrian Interactions, 
 Phys Rev Lett, 2014 



1. Polar orienting interaction in a noisy environment 

2. Streaming: motion along  the polar direction 

 

• More complicated continuum hydrodynamic models (Tu, Toner, Ramaswamy)  

Vicsek Model: A Major Theoretical Milestone   
• Point particles (boids - birdoids)  move off-lattice 

•  Driven overdamped (no inertia effects) dynamics 

• Strictly local interaction range  

• Alignment according to average direction of the neighbors 

• Simple update algorithm for the position/orientation of particles 
• Not necessarily reproduce observed phenomenology 
• Only two parameters – radius of interaction and noise magnitude   



Simulations of Vicsek model  

Chate and Gregoire,PRL 2004 

1,000,000 boids 
Fish school  



Simulations of Vicsek model: Phase transition  

at large size,  
discontinuous transition  

Order parameter: 
Magnitude of average velocity 
(similar to magnetization)  
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Fundamental issues we will investigate  

•  Similarity between collective behaviors in living and 
inanimate systems 

 
•  Role of long-range interactions  vs short-range collisions 
 
•  Derivation of mathematical models from simple interaction 

rules 
 



Active Systems are Complex   

•  Focus on simple yet non-trivial systems such as in vitro 
cytoskeletal networks, bacterial suspensions, swimmers  

•  Fundamental interactions are simple and well-
characterized  

 
•  Interactions are mostly of  the “physical nature”: inelastic 

collisions, self-propulsion, hydrodynamic entrainment, vs 
chemotaxis, visual signaling, intelligence,  etc 

 
•  Derive continuum description from elementary 

interaction roles and connect observed patterns with 
experiment  



Multi-Scale Approach   
•  Microscopic discrete models (self-propelled particles – 

Vicsek model) 

•  Mesoscale probabilistic Boltzmann/Fokker-Plank 
equations 

 
 
•  Continuum microscopic models (phenomenological 

theory by Toner and Tu, Ramaswamy) or derived from 
the Boltzmann equation (Boltzmann-Ginzburg-Landau 
Approach)  

•  Purpose: bridge 3 levels of description 



Understanding, controlling, and building complex 
hierarchical structures by  
 
•  mimicking nature’s self- and directed-assembly 

approaches 

•  design and synthesis of environmentally adaptive, 
self-healing materials and systems 

http://science.energy.gov/bes/mse/research-areas/biomolecular-
materials/ 

Active Matter and grand challenges in 
materials science  



Active Self-Assembled Systems –  
A Unique Opportunity for Materials Science    

•  Design of active self-assembled structures with 
functionality not available under equilibrium 
conditions  

 
self-assembled colloidal robot                       neutrophil chasing a bacterium  
Snezhko & I Aranson,  Nature  Materials, 2011  



Survey of experimental systems  

•  Granular materials: vibration, friction, 
collisions  

•  Cytoskeletal networks: molecular motors, 
collisions, chemical interactions  

•  Suspensions of swimmers such as bacteria: 
rotation of flagella, hydrodynamic 
interactions, collisions  
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Blair-Neicu-Kudrolli experiment 

0 sin( )tωΓ = Γ

long Cu cylinders 
# of particles 104 6.2 mm 

0.5 mm 

vibration of long rods 
top view 
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Phase transitions and vortices 

• Weakly vibrated layer of rods 

•  Phase transition 

•  Coarsening 

•  Vortex motion 
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Long-Term Evolution 
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Origin of Motion 
Experiment Simulations 

D Volfson, L Tsimring, A. Kudrolli , Phys Rev E (2004)  
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Swarming in Quasi-2D Experiments  
Experiment, 500 asymmetric rods  Simulations, 500 rods 

Lumay, D Volfson, L Tsimring, A. Kudrolli PRL 2008  
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Vibrated Polar Disks   
Experiment, 1000 asymmetric disks  

re-injecting boundary conditions (multi-petal dish)    

Deseigne, Dauchot, Chate, PRL 2010  



nanofabrication: micron-size AuPt rods 
swim in H2O2  

AuPt & AuRu microrods are provided by  
Ayusman Sen and Tom Mallouk, PSU 

Movie: Argonne 



Cytoskeleton - components 

•  Actin (red) 

•  Microtubules (MTs, green) 
• (1-20 mm, d=24 nm, rigid) 

•  Motors 
  (       polarity) 

•  Crosslinks 

(1-20 µm, d=8 nm, semiflexible) 



Molecular Motors  
Kinesin motor converts ATP to ADP  

and perform mechanical work  

Functions: muscle contraction, cargo transport,  
cytoskeleton organization, cell division 

microtubules 



In vitro: Actin-Myosin Motility Assay  

V Schaller et al. Nature 467, 73-77 (2010)  

Crowd surfing  



Moving Clusters and Swirls   

V Schaller et al. Nature 467, 73-77 (2010)  

moderate density                   higher density   



35 

!  Simplified system with only few purified components  
!  Experiments performed in 2D glass container: diameter 

100 µm, height 5µm  
!  Controlled tubulin/motor concentrations and fixed 

temperature 
!  MT have fixed length 5µm due to fixation  by taxol  

 
 
 
 
 
F. Nedelec, T. Surrey, A. Maggs, S. Leibler,  
Self-Organization of Microtubules and Motors, Nature, 389 (1997)  
T. Surray, F. Nedelec, S. Leibler & E. Karsenti,  
Physical Properties Determining Self-Organization of Motors & Microtubules, 

Science, 292 (2001) 
 

in-vitro Self-Assembly of MT and MM 

Cell with MT & MM 

CCD camera 
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Patterns in MM-MT mixtures  
Formation of asters, large kinesin concentration (scale 100 m)  

100 µ
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Vortex – Aster Transitions  

Ncd – gluththione-S-transferase-nonclaret disjunctional fusion protein  
Ncd walks in opposite direction to kinesin  
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Dynamics of Aster/Vortex Formation  

Kinesin Ncd 
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Rotating Vortex  
Kinesin  
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Summary of Experimental Results  

•  2D mixture of MM & MT exhibits pattern formation  
•  Kinesin: vortices  for low density of MM and asters for 

higher density  
•  Ncd: only asters are observed for all MM densities  
•  For very high MM density asters disappear and bundles are 

formed  
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New experiments: 
onset of spontaneous motion   

•  Short microtubules 
•  Crowding agents 
•  High concentration 
•  Nematic ordering  
•  Topologic defects     

Sanchez et al, Nature, 2012  
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Self-Propelled BioParticles 
•  swimming aerobic bacteria Bacillus Subtilis 
•  length 5 µm, speed 20 µm/sec, Re=10-4 
•  collective flows up to 100 µm/sec 
•  need Oxygen (oxygentaxis) 

5 µm 

Turner, Ryu, and Berg  (E. coli) 
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Bacillus subtilis primary behaviors  
Collision of two bacteria in thin 

films 

Confining wall  

Liquid 

Concentration of bacteria near the surface 
due to gradient of dissolved Oxygen 
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• Excellent swimmers  
• No tumbling  
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Bacterial (or active) Turbulence 
Reynolds number 10-4 

Dombrowski, Goldstein, Kessler, et al PRL 2004 



45 

Schematics of Experimental Setup 

Thin free-standing film concept 
Adjustable thickness 

Adjustable concentration of bacteria 
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pH-Taxis  & concentration of cells 

1sec 20sec 80sec 

concentration vs. time Bacteria crowd control 

pH indicator (bromothynol blue) was added field of view 
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Bacterial Turbulence  

Sokolov, Goldstein, Kessler, I.A PRL (2007)  
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7-fold reduction of viscosity 

•  viscosity is extracted from the vortex decay 
time 

•   viscosity is extracted from the magnetic torque 
•  viscosity vs concentration and swimming speed 

of bacteria 

vortex probe  micro-rheometer 
Liquid film with 

bacteria 

Supporting 
frame 

Magnetic deflecting 
system 

Movable 
probe 

Probe induced 
vortex 

rotational  micro-rheometer 

Collective behavior 

Magnetic coils 

Nickel  
particle 

Liquid film 
with bacteria 

viscosity vs concentration  

Sokolov & I.A, PRL 2009  



Novel Material Properties: Reduction of Viscosity 

live bacteria dead 
bacteria 

rotational rheology 
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 Machines Powered by Bacteria: 
Rectification of Chaotic Motion  

Sokolov, Apodaca, Grzybowski, I.A, PNAS, December  2009 

Size of gears: 350 µm, SU-8 photoresist 
Photolithography technique 

 
Mass of Gear ~106 mass of bacteria  

 
Collaboration with Bartosz Grzybowski, 

Northwestern University  

0.5 mm 

Lithographic  Mask 

Featured in NY Times, 
Forbes, Wired, WDR, Sci American 
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 Gears  Turned by Bacteria  

1 mm 

• 1-2 rotations per minute  
• Power about 1 femtowatt=10-15 Watt 
• About 300 bacteria power the gear   
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 Control of Rotation  

• Rotation rate controlled by Oxygen/Nitrogen  
• Rotation rate depends on concentration 

• Rotation enhanced by collective swimming    

Rotation rate vs concentration  
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 Ratchet Mechanism of Rotation  

• Bacteria slide along slanted edges  
• Trapped in junctions formed by the teeth  
• Simulations of  Kaiser et al, PRL 2014   

Trajectory of fluorescent tracers   
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Bacteria follow director of the chromonic LC in a 
cell with strong planar anchoring 

director  

flat glass cell 

Thickness    h 
= 5-10 mm 

Zhou, Sokolov, Lavrentovich, IA, PNAS 2014  
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Zoom on individual  bacterium 

direct optical visualization 
 of the 24 nm flagella!  



Tracer-bacterium interaction:  
cargo transport   

Evidence for the long-range interaction      

Sokolov, Zhou, Lavrentovich, IA PRE 2015  



Living LC in the biphasic domain 
higher temperature – nematic/isotropic phases co-exist 

bacteria melt LC and nucleate tactoids  – cloud chamber    
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Collective Effects: Formation of Stripes 
 scale  depends on concentration, amount of oxygen 
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Active Turbulence in LC    


