

CONGA-PIC : COnforming/Non-conforming GAlerkin solvers coupled with Particle-In-Cell schemes

Martin Campos-Pinto, Frédérique Charles, Mathieu Lutz, Marie Mounier

CIRM, Luminy, July 28 - August 29 2014

Outline

1 Introduction

- 2 The Maxwell Solvers
- 3 The Vlasov Solver
- 4 Numerical results

Introduction

Introduction : Transverse Electric Maxwell-Vlasov system

Transverse Electric (TE) Maxwell system in 2d

$$\begin{cases} \partial_t E - c^2 \operatorname{curl} B = -\frac{1}{\varepsilon_0} J, \\ \partial_t B + \operatorname{curl} E = 0, \\ \operatorname{div} (E) = \frac{\rho}{\varepsilon_0}, \end{cases}$$

where the source terms

$$\begin{cases} \rho(t,x) := q \int_{\mathbb{R}^2} f(t,x,v) \, \mathrm{d}v, \\ J(t,x) := q \int_{\mathbb{R}^2} v f(t,x,v) \, \mathrm{d}v. \end{cases}$$

are derived from the four dimensional Vlasov equation

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \frac{q}{m} (E + \mathbf{v}^{\perp} B) \cdot \nabla_v f = 0,$$

Introduction : The divergence equation

Taking formally the divergence of the Ampere equation we obtain

$$\partial_t \operatorname{div}(E) = -\frac{1}{\epsilon_0} \operatorname{div}(J).$$

Thus, if the Gauss equation is satisfied at t = 0:

$$\underbrace{\operatorname{div}(\mathbf{E}) = \rho/\varepsilon_0}_{\text{Gauss law}} \Leftrightarrow \underbrace{\frac{\partial_t \rho + \operatorname{div}(\mathbf{J}) = 0}_{\text{Continuity equation}}}_{\text{Continuity equation}} \leftarrow \operatorname{Intrinsic property of Vlasov.}$$

Numerical level :

- $\star\,$ Numerical schemes need to satisfy discrete analogs of the Gauss law and of the continuity equation.
- \longrightarrow Discrete analog of the Gauss law concerns the consistency of the Maxwell solver (that involve only the curl equations).
- \longrightarrow Discrete analog of the continuity equation concerns the consistency of the Vlasov solver (specially the way to compute the current).

Introduction : Outline of the numerical method

The Maxwell Solvers : We will compare two Galerkin solvers :

- A conforming solver (FEM based on conforming discrete spaces of functions).
- A conforming / non-conforming solver (Conga).
- \rightarrow They satisfy a discrete analog of the Gauss equation.
- ---- They preserve a strong Ampere equation at the discrete level.
- \rightarrow As DG, Conga does not require to invert a global mass matrix.

Vlasov Solver : Particle-In-Cell method.

Test cases : Weibel instability, diode, magnetron :

The Maxwell Solvers

Galerkin Solver for Maxwell

• Test cases (Weibel, diode, magnetron) involve Silver-Müller boundary condition

Silver-Müller

Electrons

$$E \times n = \begin{cases} 0 & \text{on } \Gamma_M \\ c(B \times n) \times n = -cB & \text{on } \Gamma_A. \end{cases}$$

 Γ_A : Artificial boundary used to limit the computational domain.

• Integrating by parts the curl term in the Faraday equation

$$\begin{cases} \langle \partial_t E, \varphi^{\varepsilon} \rangle - c^2 \langle \operatorname{curl} B, \varphi^{\varepsilon} \rangle = -\frac{1}{\varepsilon_0} \langle \mathbf{J}, \varphi^{\varepsilon} \rangle, & \forall \varphi^{\varepsilon} \in V^{\varepsilon} = H(\operatorname{div}; \Omega) \\ \langle \partial_t B, \varphi^{\mu} \rangle + \langle E, \operatorname{curl} \varphi^{\mu} \rangle + c \langle B, \varphi^{\mu} \rangle_{\mathsf{\Gamma}_{\mathsf{A}}} = 0, & \forall \varphi^{\mu} \in V^{\mu} = H(\operatorname{curl}; \Omega). \end{cases}$$

From this weak formulation we will deduce two semi-discrete schemes.

Galerkin Solver - The conforming scheme

Find $(E_h, B_h) \in C^1([0, T]; V_h^{\varepsilon} \times V_h^{\mu})$ solution to

$$\begin{cases} \langle \partial_t E_h, \varphi^{\varepsilon} \rangle - c^2 \langle \operatorname{curl} B_h, \varphi^{\varepsilon} \rangle = -\frac{1}{\varepsilon_0} \langle \pi_h^{\operatorname{div}} J, \varphi^{\varepsilon} \rangle, \quad \varphi^{\varepsilon} \in V_h^{\varepsilon} \subset H(\operatorname{div}; \Omega) \\ \langle \partial_t B_h, \varphi^{\mu} \rangle + \langle E_h, \operatorname{curl} \varphi^{\mu} \rangle + c \langle B_h, \varphi^{\mu} \rangle_{\Gamma_A} = 0, \quad \varphi^{\mu} \in V_h^{\mu} \subset H(\operatorname{curl}; \Omega) \end{cases}$$

In the code we shall use :

$$V_h^{\mu} = \mathcal{L}_{\rho}(\Omega, \mathcal{T}_h) \xrightarrow{\text{curl}} V_h^{\varepsilon} = \mathcal{RT}_{\rho-1}(\Omega, \mathcal{T}_h) \xrightarrow{\text{div}} V_h^2 = \mathcal{P}_{\rho-1}(\mathcal{T}_h)$$

and π_h^{div} is the Raviart-Thomas finite element interpolation.

- * Traditional FEM use an orthogonal projector P_h instead of π_h^{div} .
 - \longrightarrow The degrees of freedom are integrals on triangles and edges (local).
- \star curl $\left(V_{h}^{\mu}
 ight)\subset V_{h}^{arepsilon}$ leads to strong Ampere (in $V_{h}^{arepsilon}$).
 - \longrightarrow Can use a larger space $\tilde{V}_h^{\varepsilon} = (\mathcal{P}_{p-1}(\mathcal{T}_h))^2$ to compute \mathbf{E}_h .
- * Strong Gauss law : div(\mathbf{E}_h) = $\frac{1}{\varepsilon_0} P_h \rho_h$.

Galerkin Solver – The conforming / non-confirming scheme

Find
$$(E_h, \tilde{B}_h) \in C^1([0, T]; V_h^{\varepsilon} \times \tilde{V}_h^{\mu})$$
, where $\tilde{V}_h^{\mu} = \mathcal{P}_p(\mathcal{T}_h)$, solution to

$$\begin{cases} \langle \partial_t E_h, \varphi^{\varepsilon} \rangle - c^2 \langle \operatorname{curl} P_h^{\mu} \tilde{B}_h, \varphi^{\varepsilon} \rangle = -\frac{1}{\varepsilon_0} \langle \pi_h^{\operatorname{div}} J, \varphi^{\varepsilon} \rangle, & \varphi^{\varepsilon} \in V_h^{\varepsilon} \subset H(\operatorname{div}; \Omega) \\ \\ \langle \partial_t \tilde{B}_h, \tilde{\varphi}^{\mu} \rangle + \langle E_h, \operatorname{curl} P_h^{\mu} \tilde{\varphi}^{\mu} \rangle + c \langle B_h, \tilde{\varphi}^{\mu} \rangle_{\Gamma_A} = 0, & \tilde{\varphi}^{\mu} \in \tilde{V}_h^{\mu} \not\subset H(\operatorname{curl}; \Omega) \end{cases}$$

where

• π_h^{div} is the Raviart-Thomas finite element interpolation,

•
$$P_h^{\mu}$$
 : $\tilde{V}_h^{\mu} \to V_h^{\mu}$ is a projection on V_h^{μ} .

- \longrightarrow Strong Ampere equation.
- \longrightarrow Strong Gauss law.
- \longrightarrow As DG, does not require to invert a global mass matrix.

The Vlasov Solver

PIC for Vlasov

The distribution function is approach by N_p macro-particles with positions x_k^{ε} , velocities v_k^{ε} and weights ω_k :

$$f_{N_{p}}(x, v, t) = \sum_{k=1}^{N_{p}} \omega_{k} \delta(x - x_{k}(t)) \delta(v - v_{k}(t)).$$

The macro-particles are advanced along the characteristics :

$$\begin{cases} \frac{dx_k}{dt} = v_k, \\ \frac{dv_k}{dt} = \frac{q}{m} (E(x_k, t) + v^{\perp} B(x_k, t)), \\ x_k(0) = x_{k,0}, \quad v_k(0) = v_{k,0}, \end{cases}$$

where $(x_{k,0}, v_{k,0})$ realisation of f_0 .

Coupling between Maxwell and Vlasov

- Fully discrete Maxwell solver (obtained with Leap-frog) takes in entries the degrees of freedom of the fields at time t_n and the degrees of freedom of π_h^{div} J at time t_{n+1/2}.
- $\longrightarrow \ \text{We need to compute a numerical approximation of the degrees of freedom of } \pi^{\rm div}_h J \ \text{at time } t_{n+\frac{1}{2}}.$
- \longrightarrow Computed from the Particles' trajectories on $[t_n, t_{n+1}]$. Known since they are piecewise affine and they only depends on **E** and *B* at time t_n (Leap-frog scheme) :

$$\begin{cases} x_{k}(t) = x_{k}^{n} + v_{k}^{n+\frac{1}{2}}(t-t_{n}), \\ v_{k}(t) = v_{k}^{n+\frac{1}{2}} = v_{k}^{n-\frac{1}{2}} + \frac{q\Delta t}{m} \left(E_{k}^{n} + \frac{\left(v_{k}^{n-\frac{1}{2}} + v_{k}^{n+\frac{1}{2}}\right)^{\perp}}{2} B_{k}^{n} \right), \end{cases}$$

Coupling between Maxwell and Vlasov

• From early works of Eastwood : charge conserving currents can be obtained by

$$\mathbf{J}^{n+\frac{1}{2}} := q \sum_{k=0}^{N_p} w_k \int_{t_n}^{t_{n+1}} \mathbf{v}_k^{n+1/2} S\left(x - x_k\left(t\right)\right) \frac{\mathrm{d}t}{\Delta t}$$

- Degrees of freedom of \(\pi_h^{div}(J^{n+\frac{1}{2}})\) are integrals on the triangle \(T\) and on the edge e of the mesh.
- \longrightarrow We will use quadrature formulas
- $\longrightarrow \mathbf{x}_{T,i}^{\text{NI}}$ the quadrature points, we have to compute :

$$C_{T,j}^{\mathrm{NI}}(\kappa,n) := \int_{t_n}^{t_{n+1}} S(\mathbf{x}_{T,j}^{\mathrm{NI}} - \mathbf{x}_{\kappa}(t)) \frac{\mathrm{d}t}{\Delta t}.$$

→ Implementation (during the CEMRACS) of a routine with Jacobs & Hesthaven splines.

Diode Magnetron

Numerical results

Diode Magnetron

Goals

On two test cases, Diode and Magnetron, we :

- compare FEM-PIC solver and Conga-PIC solver with a strong Ampere scheme,
- compare the calculation of current :

$$\mathsf{J}^{n+\frac{1}{2}} := q \sum_{k=0}^{N_p} w_k \int_{t_n}^{t_{n+1}} \mathsf{v}_k^{n+1/2} \mathsf{S}\left(\mathsf{x} - \mathsf{x}_k\left(t\right)\right) \frac{\mathrm{d}t}{\Delta t},$$

with

$$S = \begin{cases} \delta, \\ \text{B-Spline,} \\ \text{Jacobs and Hesthaven Spline.} \end{cases}$$

 \longrightarrow Splines are more regular. Less noise?

 \longrightarrow Jacobs & Hesthaven Splines are simpler. Faster?

Diode Magnetron

$\mathsf{J}^{n+rac{1}{2}}$: Dirac

FEM - PIC

Conga - PIC

Conclusion : Same behavior between FEM-PIC and Conga-PIC.

Diode Magnetron

$J^{n+\frac{1}{2}}$: Jacobs & Hesthaven Spline vs B-Spline

Conga - PIC with Jacobs & Hesthaven Spline

	Jacobs & Hesthaven Spline	B-Spline
CPU time	2052 <i>s</i>	2623 <i>s</i>

Conclusion :

- \longrightarrow less noise with Spline than with Dirac
- \longrightarrow reduction of CPU time with Jacobs & Hesthaven Spline

Diode Magnetron

$J^{n+\frac{1}{2}}$: Dirac vs Jacobs & Hesthaven Spline

Conga - PIC with Dirac vs Jacobs & Hesthaven Spline

Conclusion & Perspectives

Conclusion :

- we have adapted the analysis of the Conforming and Conga schemes (with strong Ampere) for the 2D TE Maxwell,
- we have implemented $\pi_h^{\text{div}}(\mathbf{J}^{n+\frac{1}{2}})$ with Jacobs & Hesthaven Splines,
- we have begun numerical comparisons : conforming scheme vs Conga scheme,
- we have compared different kinds of particles : Dirac, Jacobs & Hesthaven Splines and B-Splines,
- we have compared two schemes on several test cases.

Perspectives :

- we have to improve the analysis of the Conforming and Conga schemes for mixed boundary conditions,
- we have to pursue the numerical comparisons : Conforming and Conga with strong Faraday, and DG
- we have to improve the injection (more physical) for the Magnetron test case

Bibliography

J.-C. Nédélec

Mixed finite elements in \mathbb{R}^3 (Num. Math. '80)

P. Monk

An analysis of Nédélec's method for the spatial discretization of Maxwell's equations (JCAM '93)

C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker and U. Voß,

Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model (JCP '00)

M. Costabel and M. Dauge

Computation of resonance frequencies for Maxwell equations in non-smooth domains (Tcwp '03)

G.B. Jacobs and J.S. Hesthaven

High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids (JCP '06)

M.L. Stowell and D.A. White

Discretizing transient current densities in the Maxwell equations (ICAP '09)

A. Stock, J. Neudorfer, R. Schneider, C. Altmann and C.-D. Munz

Investigation of the Purely Hyperbolic Maxwell System for Divergence Cleaning in Discontinuous Galerkin based Particle-In-Cell Methods (Coupled Problems '11)

M. Campos Pinto and E. Sonnendrücker

Gauss-compatible Galerkin schemes for time-dependent Maxwell equations (submitted, '14)