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Introduction

Introduction : Transverse Electric Maxwell-Vlasov system

Transverse Electric (TE) Maxwell system in 2d

OE—cculB=—21,
0¢B + curl E =0,

div(E) = 2,
€0

where the source terms
oex)=a [ Fexv)av
RrR2
J(t,x) = q/ vi(t,x,v)dv.
R2
are derived from the four dimensional Vlasov equation

Bef +v-Vuf + L(E+vEiB) -V, f =0,
m
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Introduction

Introduction : The divergence equation

Taking formally the divergence of the Ampere equation we obtain

Dediv (E) = —Ldiv (J).
€0

Thus, if the Gauss equation is satisfied at t =0 :

div(E) = p/eo Orp+div(d)=0
—_— & —— " ¢+ Intrinsic property of Vlasov.
Gauss law Continuity equation

Numerical level :

+ Numerical schemes need to satisfy discrete analogs of the Gauss law and of the
continuity equation.

— Discrete analog of the Gauss law concerns the consistency of the Maxwell solver
(that involve only the curl equations).

—— Discrete analog of the continuity equation concerns the consistency of the
Vlasov solver (specially the way to compute the current).
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Introduction

Introduction : Outline of the numerical method

The Maxwell Solvers : We will compare two Galerkin solvers :

@ A conforming solver (FEM based on conforming discrete spaces of functions).
@ A conforming / non-conforming solver (Conga).

— They satisfy a discrete analog of the Gauss equation.

—— They preserve a strong Ampere equation at the discrete level.

— As DG, Conga does not require to invert a global mass matrix.

Vlasov Solver : Particle-In-Cell method.

Test cases : Weibel instability, diode, magnetron :

contered-DG2_mesh2

phion time step nt =

“det_filesiviz_run=60_magnetrond_phi_0.c;

00005

0001

00015
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The Maxwell Solvers
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The Maxwell Solvers

Galerkin Solver for Maxwell

8/21

@ Test cases (Weibel, diode, magnetron) involve Silver-Miiller boundary condition

Electrons Silver-Miiller

champ électrique
E X n= 0 on rM extérieur : Eopy
c(Bxn)xn=—-cB on I, S

cathode

["4 : Artificial boundary used to limit the computational domain.
@ Integrating by parts the curl term in the Faraday equation

(0cE, %) — *(curl B, %) = ——(J,¢%), Vg° € VS = H(div; Q)

L
€0
(0:B, ") + (E,curl o) + c(B,¢p*)r, =0, Vet € V¥ = H(curl; Q).

From this weak formulation we will deduce two semi-discrete schemes.
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The Maxwell Solvers

Galerkin Solver — The conforming scheme

Find (Ep, By) € CI([0, T]; V£ x V}') solution to
(0:Ep, %) — 2 (curl By, ¢°) = —ém}w, P%), ° €V C H(div;Q)
(0:Bh, o) + (Ep,curl o) + c(Bh, o*)r, =0, " € V' C H(curl; Q)
In the code we shall use :

Vit = Lo(QTy) = Vi = RTpa(QTs) & Vi = Ppea(Th)
and W(h“\' is the Raviart-Thomas finite element interpolation.
* Traditional FEM use an orthogonal projector P, instead of 7;7”".
— The degrees of freedom are integrals on triangles and edges (local).
* curl (V}') C V£ leads to strong Ampere (in V).
— Can use a larger space V& = (Pp_1(T5))? to compute Ej,.

* Strong Gauss law : div(Ep) = éPhph.
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The Maxwell Solvers

Galerkin Solver — The conforming / non-confirming scheme

Find (Ep, Bs) € CY([0, T]; Vi x V}), where V}' = P,(Tp), solution to

LV %), @f € VE C H(div; Q)

€0

<a(’Eh7"pE> - C2<CUI’| P//71 éhv (PE> =

(0eB, ) + (En, curl PL3) + c(Bp, @)1, =0, @ € V} ¢ Hcurk; Q)

where
) ﬂ‘h“‘ is the Raviart-Thomas finite element interpolation,
o P \7,;* — V/}* is a projection on V/'.

— Strong Ampere equation.

— Strong Gauss law.

— As DG, does not require to invert a global mass matrix.
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The Vlasov Solver

The Vlasov Solver
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The Vlasov Solver

PIC for Vlasov

The distribution function is approach by Nj, macro-particles with positions x,
velocities v§ and weights wy :

NP
vy (v, 1) = D wied (x — xi (£)) 8 (v — v (1)) -

k=1

The macro-particles are advanced along the characteristics :

ka

LIS

dt k

dv

Lk — 3 (E(xh, t) + v B(xk, 1)),
dt m

xk (0) = X0, Vi (0) = vk,

where (x,0, vk,0) realisation of f.
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The Vlasov Solver

Coupling between Maxwell and Vlasov

@ Fully discrete Maxwell solver (obtained with Leap-frog) takes in entries the
degrees of freedom of the fields at time t, and the degrees of freedom of F;T“"J

at time to 1
— We need to compute a numerical approximation of the degrees of freedom of
—div :
m 'V J at time tn+%.
— Computed from the Particles’ trajectories on [tp, th+1]. Known since they are
piecewise affine and they only depends on E and B at time t, (Leap-frog
scheme) :

+l
xi (t) =X} + v, 2 (t—ta),

()_Vk+2_vk +— | Ex+

. Campos Pinto, F. Charles, M. Lutz & M. Mounier CONGA-PIC project @ Cemracs '14



The Vlasov Solver

Coupling between Maxwell and Vlasov

14/21

Ll

From early works of Eastwood : charge conserving currents can be obtained by

Np th+a dt
o quk/ V28 ( — s (1)) S
2 J At

. 1
Degrees of freedom of 71'2"’(J"+§) are integrals on the triangle T and on the
edge e of the mesh.

We will use quadrature formulas

xI-\rI’Ij the quadrature points, we have to compute :

th41 dt
Nl (s, n) := / SO = xa(8)) 5.
th

Implementation (during the CEMRACS) of a routine with Jacobs & Hesthaven
splines.
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Diode

Magnetron

Numerical results

Numerical results
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Diode
Magnetron

Numerical results

On two test cases, Diode and Magnetron, we :
@ compare FEM-PIC solver and Conga-PIC solver with a strong Ampere scheme,

@ compare the calculation of current :

No tnt1
n dt
mE = qZWk/ v:+1/25(x—xk (1)) —,
k=0 tn At
with
0

S= B-Spline,
Jacobs and Hesthaven Spline.

— Splines are more regular. Less noise ?

— Jacobs & Hesthaven Splines are simpler. Faster?
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Diode
Magnetron

Numerical results

@ FEM - PIC

@ Conga - PIC

Conclusion : Same behavior between FEM-PIC and Conga-PIC.
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Diode
Magnetron

Numerical results

J7%2 : Jacobs & Hesthaven Spline vs B-Spline

Conga - PIC with Jacobs & Hesthaven Spline

Jacobs & Hesthaven Spline | B-Spline
CPU time 2052s 2623s

Conclusion :

— less noise with Spline than with Dirac

— reduction of CPU time with Jacobs & Hesthaven Spline
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Diode
Magnetron

Numerical results

J7*2 : Dirac vs Jacobs & Hesthaven Spline

Conga - PIC with Dirac vs Jacobs & Hesthaven Spline
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Conclusion & Perspectives

Conclusion & Perspectives

Conclusion :

we have adapted the analysis of the Conforming and Conga schemes (with
strong Ampere) for the 2D TE Maxwell,
. 1
we have implemented 7V(J"*2) with Jacobs & Hesthaven Splines,
we have begun numerical comparisons : conforming scheme vs Conga scheme,

we have compared different kinds of particles : Dirac, Jacobs & Hesthaven
Splines and B-Splines,

we have compared two schemes on several test cases.

Perspectives :

we have to improve the analysis of the Conforming and Conga schemes for
mixed boundary conditions,

we have to pursue the numerical comparisons : Conforming and Conga with
strong Faraday, and DG

we have to improve the injection (more physical) for the Magnetron test case
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Conclusion & Perspectives
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