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Boltzmann-like Kinetic Equations

Study of a particle distribution function f ε(t , x , v), depending on time t > 0,
space x ∈ Ω ⊂ Rd and velocity v ∈ R3, solution to

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂f ε

∂t
+ v ⋅ ∇x f ε =

1
ε
Q(f ε),

f ε(0, x , v) = f0(x , v),
+ boundary conditions .

(1)

where ε is usually the Knudsen number, ratio of the mean free path before
collision by the typical length scale of the problem.

The Boltzmann operator is

Q(f )(v) = ∫
Rd×Sd−1

[f ′∗f ′ − f∗f ] B(∣v − v∗∣, cos θ)dσ dv∗,

where B is the collision kernel, cos θ ∶= (v − v∗) ⋅ σ and

v ′ =
v + v∗

2
+

∣v − v∗∣
2

σ, v ′∗ =
v + v∗

2
−

∣v − v∗∣
2

σ.



Fluid limit of the Boltzmann-like Kinetic Equations

First order fluid dynamic limit ε→ 0 given by the Euler equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u + ρT I) = 0,

∂tE + divx (u (E + ρT)) = 0, with ρT = 1
3 (2E − ρ∣u∣2) .

Kinetic (1dx × 3dv ) vs. Euler 1dx
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A Hybrid Scheme?

How to identify efficiently these zones?

To pass from hydrodynamical model to the kinetic one, is the knowledge
of the hydrodynamic fields enough to do so?

Can we design a scheme able to connect different types of spatial mesh
cells (hydrodynamic and kinetic)?

Finally, can we do so dynamically?



State of the Art

Asymptotic-Preserving schemes give uniformly accurate and stable (with
respect to the Knudsen number ε) approximate solutions but the kinetic
equation is solved everywhere

huge computational cost (S. Jin and FF & S. Jin for Boltzmann).

Hybrid methods : Two “different” hydrodynamic break-up criteria:

Based on the value of the local Knudsen number: Boyd, Chen and
Chandler, Phys. Fluid (1994); Kolobov, Arslanbekov et al., JCP (2007);
Degond and Dimarco, JCP (2012). Problem dependent criterion

Based on the heat flux: Tiwari, JCP (1998); Tiwari, Klar and Hardt, JCP
(2009); Degond, Dimarco and Mieussens, JCP (2010); Alaia and Puppo,
JCP (2012). Can miss the variations of the local velocity

Decomposition of the particle distribution function: Dimarco and
Pareschi, MMS (2008). Need to use a Monte-Carlo approach for the tail

A major problem: In all these works, the criteria cannot “see” if the kinetic
distribution is far from equilibrium



Hydrodynamic Description of a Rarefied Gas

Let us derive a systematic criteria to choose between fluid and kinetic
models.

write a hierarchy of models using a Chapman Enskog expansion

derive criteria based on this hierarchy.

By performing the expansion

f ε =Mρ,u,T [1 + εg(1) + ε2 g(2) + . . .] ,

we find that, without closure,
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂tρ + divx(ρu) = 0,
∂t(ρu) + divx (ρu⊗ u + ρT (I +A)) = 0,

∂tE + divx (
1
2
ρ∣u∣2u +

3
2
ρT (I +A) + ρT3/2B) = 0,

where A is the traceless stress tensor and B the dimensionless heat flux:

A ∶=
1
T ∫R3

[(v − u)⊗ (v − u) −
∣v − u∣2

3
I] (f ε −Mρ,u,T(v)) dv ,

B ∶= ∫
R3

[
∣v − u∣2

2T
−

5
2
]
(v − u)

T 1/2 (f ε −Mρ,u,T(v)) dv .



Examples

We set V = (v − u)/
√

T, hence

The zeroth order: Compressible Euler. Cutting the expansion at ε0 yields

AEuler ∶=
1
ρ ∫R3

A(V)Mρ,u,T(v)dv = 0M3 ,

BEuler ∶=
1
ρ ∫R3

B(V)Mρ,u,T(v)dv = 0R3 .

The first order: Compressible Navier-Stokes. Cutting at ε1 yields

AεNS ∶=
1
ρ ∫R3

A(V)Mρ,u,T(v) [1 + εg(1)(v)]dv = −ε
µ

ρT
D(u),

BεNS ∶=
1
ρ ∫R3

B(V)Mρ,u,T(v) [1 + εg(1)(v)]dv = −ε
κ

ρT3/2∇xT.

The viscosity µ and the thermal conductivity κ depend on the collision
operator. The deformation tensor is given by

D(u) = ∇xu + (∇xu)⊺ −
2
3
(divx u) I.



Examples Continued

The second order: Burnett equations. At order ε2, we have (in the BGK
case...)

AεBurnett ∶=
1
ρ ∫R3

A(V)Mρ,u,T(v) [1 + εg(1)(v) + ε2g(2)(v)]dv

= −ε
µ

ρT
D(u) − 2ε2 µ2

ρ2T2 { −
T
ρ

Hessx(ρ) +
T
ρ2∇xρ⊗∇xρ −

1
ρ
∇xT⊗∇xρ

+ (∇x u) (∇x u)⊺ −
1
3

D(u)divx(u) +
1
T
∇xT⊗∇xT};

BεBurnett ∶=
1
ρ ∫R3

B(V)Mρ,u,T(v) [1 + εg(1)(v) + ε2g(2)(v)]dv

= −ε
κ

ρT 3/2∇x T − ε2 µ2

ρ2T 5/2 { +
25
6

(divx u)∇x T

−
5
3
[T divx (∇x u) + (divx u)∇x T + 6 (∇x u)∇x T ]

+
2
ρ

D(u)∇x (ρT) + 2 T divx (D(u)) + 16D(u)∇xT}.



Moment Realizability

By construction, the following matrix is positive definite:

I +Aε =
1
ρ ∫R3

V⊗ V fε(v)dv.

In particular,

If its eigenvalues are nonpositive, the truncation of the expansion of f ε is
wrong⇒ the regime considered is not correct but this criterion does not
account for ∇x T .

Following the work of Levermore et al.1 we define the moment

realizability matrix M for m ∶= (1,V, ( 2
3)

1/2
(
∣V∣2

2 − 5
2)) by

M ∶= ∫
R3

m⊗m fε(v)dv =

⎛
⎜
⎜
⎝

1 0⊺R3 0
0R3 I +Aε ( 2

3)
1/2

Bε

0 ( 2
3)

1/2
(Bε)⊺ Cε

⎞
⎟
⎟
⎠

∼

⎛
⎜
⎜
⎜
⎝

1 0⊺R3 0

0R3 I +Aε −
2

3 Cε
Bε ⊗Bε 0

0 0⊺R3 Cε

⎞
⎟
⎟
⎟
⎠

, Cε
> 0.

1Levermore, Morokoff, Nadiga, Phys. Fluid (1998)



A Hierarchy of Criteria

Since by construction, M is positive definite, the following 3 × 3 matrix is
positive definite too:

V ∶= I +Aε −
2

3 Cε
Bε ⊗Bε.

Example
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

V1 = VEuler = I;
Vε = VNS = VEuler − ε

µ
ρT D (u) − ε2 2

3
κ2

ρ2T 3∇x T ⊗∇x T ;

Vε2 = VBurnett = VNS − . . .

A fluid breakdown criterion (k th order cloture)
If the deviation of f ε from the thermodynamic equilibrium is too large, then the
hydrodynamic description has broken down,

the eigenvalues of Vεk are nonpositive

if
∣λεk − λεk+1 ∣ > ε

k+1, ∀λεk ∈ Sp(Vεk ),

the fluid regime considered is wrong



From Kinetic to Fluid (an additional condition) based on the relative
entropy

Let us consider f ε the solution to the Boltzmann equation and the truncation

f εk =Mρ,u,T [1 + εg(1) + ε2 g(2) + . . . + εk g(k)] .

Then, we have:

A fluid breakdown criterion (k th order closure)
The kinetic description corresponds to an hydrodynamic closure of order k if

∥f ε − f εk ∥L1 ≤ δ0.

For numerical purposes, it can be interesting to take an additional criteria on

∆t
ε

≫ 1,

where ∆t is the time step. Indeed, the relaxation time towards the
Maxwellian distribution is of order ε/∆t . Hence for small ε or large time step
∆t the solution is at thermodynamical equilibrium.



The Hybrid Scheme

At time tn, the space domain Ω = Ωf ⊔Ωh is decomposed as
Fluid cells xi ∈ Ωf , described by the hydrodynamic fields

Un
i ∶= (ρn

i ,u
n
i ,T

n
i ) ≃ (ρ(tn, xi),u(tn,xi), (tn,xi)) ;

Kinetic cells xj ∈ Ωh, described by the particle distribution function

f n
j (v) ≃ f (tn, xj , v), ∀v ∈ R.

Before evolving the equation:
In a fluid cell xi ∈ Ωf , compute the eigenvalues of M corresponding to the
model of order k and k + 1:

If they are positive and close enough, solve the fluid equation to obtain Un+1
i ;

In the other case, set f n
i (v) ∶= f n

k,i .

In a kinetic cell xj ∈ Ωh, compute H [f n
j ∣Mρ(f n

j ),u(f
n
j ),T(f

n
j )
] and the

eigenvalues of M at order k and k + 1 :
If it is “big”, solve the kinetic equation to obtain f n+1

j ;

In the other case, set for ϕ(v) = (1, v , ∣v − u∣2),

Un
j ∶= ∫Rd

f n
j ϕ(v)dv .



Numerical schemes

Kinetic part:
∂f
∂t

+ divx(v f ) =
1
ε
Q(f )

→ Collision term QB: spectral scheme2 or simple relaxation for ES-BGK;
→ Free transport term divx(v f): finite volume Lax-Friedrichs method with Van

Leer’s flux limiter3;

Macroscopic part:

∂U
∂t

+∇x ⋅ F(U) = G(U), U ∈ R5

→ Reconstruction of the fluxes either with a WENO-5 procedure or with
Lax-Friedrichs method;

Projection of kinetic to fluid and lifting of fluid to kinetic: discrete velocity
Maxwellian distribution4;

IMEX time stepping.

2Pareschi - Perthame, Transport Theory Statist. Phys. (1996)
3Van Leer, JCP (1977)
4Berthelin, Tzavaras, Vasseur, JSP (2009)



Maxwell Boundary Conditions

Let x ∈ ∂Ω, nx the outer normal to Ω and α ∈ [0,1]

For an outgoing velocity v ∈ R3 (v ⋅ nx ≥ 0), we set

f (t , x , v) = αRf (t , x , v) + (1 − α)Mf (t , x , v), ∀x ∈ ∂Ω, v ⋅ nx ≥ 0,

where R stands for specular reflections andM for diffusive reflections.



Maxwell Boundary Conditions

Let x ∈ ∂Ω and nx the outer normal to Ω.

→ The specular boundary operator is given by

Rf (t , x , v) = f (t , x , v − 2(nx ⋅ v)nx), v ⋅ nx ≥ 0.

Its macroscopic counterpart corresponds to the so called no-slip
condition

u ⋅ nx = 0;

→ The diffusive boundary operator is given by

Mf (t , x , v) = µ(t , x)M1,uw,Tw , v ⋅ nx ≥ 0

whereM1,uw,Tw is the wall Maxwellian and µ insures global mass
conservation.
Its macroscopic counterpart corresponds to

u ⋅ nx = 0, E(x) =
d
2
ρ(x)Tw + ρ ∣uw∣

2.



Test 1 : the Riemann problem

Initial condition:

f in
(x , v) =Mρ(x),u(x),T(x)(v), ∀x ∈ [−0.5,0.5], v ∈ [−8,8]2,

with

(ρ(x),u(x),T(x)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1,0,0,1) if x < 0,

(0.125,0,0,0.25) if x ≥ 0.
;

Q = QBGK;

Zero flux at the boundary in space;

Various ε;

Kinetic mesh: Nx = 200, Nv = 322;

Fluid (Euler) mesh: Nx = 200.



Test 1 : Riemann problem (macroscopic quantities), ε = 10−2

Figure : Test 1 - Riemann problem with ε = 10−2 : Order 0 (Euler); Density, mean
velocity, temperature and heat flux at time t = 0.20.



Test 1 : Riemann problem (macroscopic quantities), ε = 10−2

Figure : Test 1 - Riemann problem with ε = 10−2 : Order 1 (CNS); Density, mean
velocity, temperature and heat flux at time t = 0.20.



Test 1 : Riemann problem (Temperature), ε = 10−3

Hybrid 3 times faster than full kinetic



Test 1 : Riemann problem (macroscopic quantities), ε = 10−3

Figure : Test 1 - Riemann problem with ε = 10−3 : Order 0 (Euler); Density, mean
velocity, temperature and heat flux at time t = 0.20.



Test 1 : Riemann problem (macroscopic quantities), ε = 10−3

Figure : Test 1 - Riemann problem with ε = 10−3 : Order 1 (CNS); Density, mean
velocity, temperature and heat flux at time t = 0.20.



Test 1 : Riemann problem (Temperature), ε = 10−4

Hybrid 9 times faster than full kinetic



Test 2 : Blast wave problem

Initial condition:

f in
(x , v) =Mρ(x),u(x),T(x)(v), ∀x ∈ [−0.5,0.5], v ∈ [−7.5,7.5]2,

with

(ρ(x),u(x),T(x)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1,1,0,2) if x < −0.3,

(1,0,0,0.25) if − 0.3 ≤ x ≤ 0.3,

(1,−1,0,2) if x ≥ 0.3.
;

Q = QBGK;

Specular boundary conditions (α = 1 in the Maxwell boundary
conditions);

ε = 10−2 and 0.005;

Kinetic mesh: Nx = 200, Nv = 322;

Fluid (Euler) mesh: Nx = 200.



Test 2 : Blast wave problem (Density)

Figure : Test 2 - Blast wave with ε = 10−2 : Order 0 (Euler); Density, mean velocity,
temperature and heat flux at time t = 0.20.



Test 2 : Blast wave problem (Density)

Figure : Test 2 - Blast wave with ε = 10−2 : Order 1 (CNS); Density, mean velocity,
temperature and heat flux at time t = 0.20.



Test 2 : Blast wave problem (Density)

Hybrid 2 times faster than full kinetic

Test 2 - Blast wave with ε = 5.10−3 : Order 0 (Euler); Density.



Test 3 : Smooth, Far from Equilibrium, Variable Knudsen Number

Initial condition:

f in
(x , v) =

1
2
(Mρ(x),u(x),T(x)(v) +Mρ(x),−u(x),T(x)(v)) ,

for x ∈ [−0.5,0.5], v ∈ [−7.5,7.5]2, with

(ρ(x),u(x),T(x)) = (1 +
1
2

sin(πx),0.75,0, (5 + 2 cos(2πx))/20) ;

Q = QB;

Periodic boundary conditions;

ε(x) = 10−4
+ 1

2 (arctan(1 + 30x) + arctan(1 − 30x));

Kinetic mesh: Nx = 100, Nv = 322;

Fluid (Euler) mesh: Nx = 100.



Test 3 : Smooth, Far from Equilibrium, Variable Knudsen Number

Hybrid 1.7 times faster than full kinetic



Test 4 : gradient of temperature

We consider the Boltzmann equation

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂f
∂t

+ vx
∂f
∂x

=
1
ε

Q(f , f ), x ∈ (−1/2,1/2), v ∈ R2,

f (t = 0, x , v) =
1

2π kB T0(x)
exp(−

∣v ∣2

2kB T0(x)
) ,

with kB = 1, T0(x) = 1 + 0.44 (x − 1/2) and we assume purely diffusive
boundary conditions [3,4].

[3] K. Aoki and N. Masukawa, Gas flows caused by evaporation and condensation on
two parallel condensed phases and the negative temperature gradient: Numerical
analysis by using a nonlinear kinetic equation. Phys. Fluids, 6 1379-1395, (1994).

[4] D.J. Rader, M.A. Gallis, J.R. Torczynski and W. Wagner, Direct simulation Monte
Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier
heat flow. Phys. Fluids 18, 077102 (2006)



Test 4 : gradient of temperature
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Figure : steady state of Density, Temperature and Pressure.



Work in Progress

Solve the time evolution Boltzmann equation (x , v) ∈ Ω ×R3
v , with Ω ⊂ R2.

∂f
∂t

+ v ⋅ ∇x f =
1

Kn
Q(f ).

We consider a Mach number Ma = 0.3 and a Reynolds number Re = 3000.
The Mach, Reynolds and Knudsen numbers relation is given by:

Kn =
Ma
Re

√
γπ

2
, γ = 1.4
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Figure : Flow around an object. Domain including an airfoil.



Flow around an airfoil in 2D
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