On hybrid method for rarefied gas dynamics : Boltzmann vs. Navier-Stokes models

Francis FILBET, Thomas REY

University of Lyon

CEMRACS 2014, CIRM, Luminy

Boltzmann-like Kinetic Equations

Study of a particle distribution function $f^{\varepsilon}(t, x, v)$, depending on time $t>0$, space $x \in \Omega \subset \mathbb{R}^{d}$ and velocity $v \in \mathbb{R}^{3}$, solution to

$$
\left\{\begin{array}{l}
\frac{\partial f^{\varepsilon}}{\partial t}+v \cdot \nabla_{x} f^{\varepsilon}=\frac{1}{\varepsilon} \mathcal{Q}\left(f^{\varepsilon}\right) \tag{1}\\
f^{\varepsilon}(0, x, v)=f_{0}(x, v) \\
+ \text { boundary conditions }
\end{array}\right.
$$

where ε is usually the Knudsen number, ratio of the mean free path before collision by the typical length scale of the problem.

The Boltzmann operator is

$$
\mathcal{Q}(f)(v)=\int_{\mathbb{R}^{d} \times S^{d-1}}\left[f_{*}^{\prime} f^{\prime}-f_{*} f\right] B\left(\left|v-v_{*}\right|, \cos \theta\right) d \sigma d v_{*},
$$

where B is the collision kernel, $\cos \theta:=\left(v-v_{*}\right) \cdot \sigma$ and

$$
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma, \quad v_{*}^{\prime}=\frac{v+v^{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma .
$$

Fluid limit of the Boltzmann-like Kinetic Equations

First order fluid dynamic limit $\varepsilon \rightarrow 0$ given by the Euler equations

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{x}(\rho \mathbf{u})=\mathbf{0}, \\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}_{\mathbf{x}}(\rho \mathbf{u} \otimes \mathbf{u}+\rho \mathbf{T} \mathbf{I})=\mathbf{0}, \\
\partial_{t} E+\operatorname{div}_{x}(\mathbf{u}(\mathbf{E}+\rho \mathbf{T}))=0, \quad \text { with } \rho T=\frac{1}{3}\left(2 E-\rho|\mathbf{u}|^{2}\right) .
\end{array}\right.
$$

Kinetic $\left(1 d_{x} \times 3 d_{v}\right)$ vs. Euler $1 d_{x}$

Outline of the Talk

(1) Chapman-Enskog expansion for the Boltzmann equation

- A hierarchy of models
- The Moment Realizability Criterion
- From Fluid to Kinetic
- From Kinetic to Fluid (an additional condition) based on the relative entropy
(2) Numerical Scheme
- Hybrid method coupling kinetic and fluid solvers
- Implementation
(3) Treatment of the Boundary Conditions
(4) Numerical Simulations
- Test 1 : the Riemann problem
- Test 2 : Blast wave problem
- Test 3 : Smooth, Far from Equilibrium, Variable Knudsen Number
- Test 4 : Flow generated by gradients of temperature

5 Conclusion and work in progress

A Hybrid Scheme?

- How to identify efficiently these zones?
- To pass from hydrodynamical model to the kinetic one, is the knowledge of the hydrodynamic fields enough to do so?
- Can we design a scheme able to connect different types of spatial mesh cells (hydrodynamic and kinetic)?
- Finally, can we do so dynamically?

State of the Art

Asymptotic-Preserving schemes give uniformly accurate and stable (with respect to the Knudsen number ε) approximate solutions but the kinetic equation is solved everywhere

- huge computational cost (S. Jin and FF \& S. Jin for Boltzmann). Hybrid methods : Two "different" hydrodynamic break-up criteria:
- Based on the value of the local Knudsen number: Boyd, Chen and Chandler, Phys. Fluid (1994); Kolobov, Arslanbekov et al., JCP (2007); Degond and Dimarco, JCP (2012). Problem dependent criterion
- Based on the heat flux: Tiwari, JCP (1998); Tiwari, Klar and Hardt, JCP (2009); Degond, Dimarco and Mieussens, JCP (2010); Alaia and Puppo, JCP (2012). Can miss the variations of the local velocity
- Decomposition of the particle distribution function: Dimarco and Pareschi, MMS (2008). Need to use a Monte-Carlo approach for the tail

A major problem: In all these works, the criteria cannot "see" if the kinetic distribution is far from equilibrium

Hydrodynamic Description of a Rarefied Gas

Let us derive a systematic criteria to choose between fluid and kinetic models.

- write a hierarchy of models using a Chapman Enskog expansion
- derive criteria based on this hierarchy.

By performing the expansion

$$
f^{\varepsilon}=\mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}\left[1+\varepsilon g^{(1)}+\varepsilon^{2} g^{(2)}+\ldots\right]
$$

we find that, without closure,

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{x}(\rho \mathbf{u})=\mathbf{0} \\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}_{\mathbf{x}}(\rho \mathbf{u} \otimes \mathbf{u}+\rho \mathbf{T}(\mathbf{I}+\mathbf{A}))=\mathbf{0} \\
\partial_{t} \mathbf{E}+\operatorname{div}_{x}\left(\frac{1}{2} \rho|\mathbf{u}|^{2} \mathbf{u}+\frac{\mathbf{3}}{\mathbf{2}} \rho \mathbf{T}(\mathbf{I}+\mathbf{A})+\rho \mathbf{T}^{3 / 2} \mathbf{B}\right)=0
\end{array}\right.
$$

where A is the traceless stress tensor and B the dimensionless heat flux:

$$
\begin{aligned}
& \mathbf{A}:=\frac{1}{T} \int_{\mathbb{R}^{3}}\left[(v-\mathbf{u}) \otimes(\mathbf{v}-\mathbf{u})-\frac{|\mathbf{v}-\mathbf{u}|^{2}}{3} \mathbf{I}\right]\left(f^{\varepsilon}-\mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}(v)\right) d v, \\
& \mathbf{B}:=\int_{\mathbb{R}^{3}}\left[\frac{|v-\mathbf{u}|^{2}}{2 T}-\frac{5}{2}\right] \frac{(v-\mathbf{u})}{T^{1 / 2}}\left(f^{\varepsilon}-\mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}(v)\right) d v .
\end{aligned}
$$

Examples

We set $\mathbf{V}=(\mathbf{v}-\mathbf{u}) / \sqrt{\mathrm{T}}$, hence

- The zeroth order: Compressible Euler. Cutting the expansion at ε^{0} yields

$$
\begin{aligned}
& \mathbf{A}_{\text {Euler }}:=\frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{A}(\mathbf{V}) \mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}(\mathbf{v}) \mathbf{d} \mathbf{v}=\mathbf{0}_{\mathbf{M}_{3}}, \\
& \mathbf{B}_{\text {Euler }}:=\frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{B}(\mathbf{V}) \mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}(\mathbf{v}) \mathbf{d} \mathbf{v}=\mathbf{0}_{\mathbf{R}^{3}} .
\end{aligned}
$$

- The first order: Compressible Navier-Stokes. Cutting at ε^{1} yields

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{N S}}^{\varepsilon}:=\frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{A}(\mathbf{V}) \mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}(\mathbf{v})\left[\mathbf{1}+\varepsilon \mathbf{g}^{(1)}(\mathbf{v})\right] \mathbf{d} \mathbf{v}=-\varepsilon \frac{\mu}{\rho \mathbf{T}} \mathbf{D}(\mathbf{u}), \\
& \mathbf{B}_{\text {NS }}^{\varepsilon}:=\frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{B}(\mathbf{V}) \mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}}(\mathbf{v})\left[\mathbf{1}+\varepsilon \mathbf{g}^{(1)}(\mathbf{v})\right] \mathbf{d} \mathbf{v}=-\varepsilon \frac{\kappa}{\rho \mathbf{T}^{3 / 2}} \nabla_{\mathbf{x}} \mathbf{T} .
\end{aligned}
$$

The viscosity μ and the thermal conductivity κ depend on the collision operator. The deformation tensor is given by

$$
\mathbf{D}(\mathbf{u})=\nabla_{\mathbf{x}} \mathbf{u}+\left(\nabla_{\mathbf{x}} \mathbf{u}\right)^{\top}-\frac{2}{3}\left(\operatorname{div}_{\mathbf{x}} \mathbf{u}\right) \mathbf{I} .
$$

Examples Continued

The second order: Burnett equations. At order ε^{2}, we have (in the BGK case...)

$$
\begin{aligned}
\mathbf{A}_{\text {Burnett }}^{\varepsilon}:= & \frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{A}(\mathbf{V}) \mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}(\mathbf{v})}\left[\mathbf{1}+\varepsilon \mathbf{g}^{(1)}(\mathbf{v})+\varepsilon^{2} \mathbf{g}^{(2)}(\mathbf{v})\right] \mathbf{d} \mathbf{v} \\
= & -\varepsilon \frac{\mu}{\rho T} \mathbf{D}(\mathbf{u})-\mathbf{2} \varepsilon^{2} \frac{\mu^{2}}{\rho^{2} \mathbf{T}^{2}}\left\{-\frac{\mathbf{T}}{\rho} \operatorname{Hess}_{\mathbf{x}}(\rho)+\frac{\mathbf{T}}{\rho^{2}} \nabla_{\mathbf{x}} \rho \otimes \nabla_{\mathbf{x}} \rho-\frac{1}{\rho} \nabla_{\mathbf{x}} \mathbf{T} \otimes \nabla_{\mathbf{x}} \rho\right. \\
& \left.+\left(\nabla_{x} \mathbf{u}\right)\left(\nabla_{x} \mathbf{u}\right)^{\top}-\frac{1}{3} \mathbf{D}(\mathbf{u}) \operatorname{div}_{\mathbf{x}}(\mathbf{u})+\frac{\mathbf{1}}{\mathbf{T}} \nabla_{\mathbf{x}} \mathbf{T} \otimes \nabla_{\mathbf{x}} \mathbf{T}\right\} ; \\
\mathbf{B}_{\text {Burnett }}^{\varepsilon}:= & \left.\frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{B}(\mathbf{V}) \mathcal{M}_{\rho, \mathbf{u}, \mathbf{T}} \mathbf{T} \mathbf{v}\right)\left[\mathbf{1}+\varepsilon \mathbf{g}^{(1)}(\mathbf{v})+\varepsilon^{2} \mathbf{g}^{(2)}(\mathbf{v})\right] \mathbf{d} \mathbf{v} \\
= & -\varepsilon \frac{\kappa}{\rho T^{3 / 2}} \nabla_{x} T-\varepsilon^{2} \frac{\mu^{2}}{\rho^{2} T^{5 / 2}}\left\{+\frac{25}{6}\left(\operatorname{div}_{x} \mathbf{u}\right) \nabla_{x} T\right. \\
& -\frac{5}{3}\left[T \operatorname{div}_{x}\left(\nabla_{x} \mathbf{u}\right)+\left(\operatorname{div}_{x} \mathbf{u}\right) \nabla_{x} T+6\left(\nabla_{x} \mathbf{u}\right) \nabla_{x} T\right] \\
& +\frac{2}{\rho} \mathbf{D}(\mathbf{u}) \nabla_{\mathbf{x}}(\rho \mathbf{T})+\mathbf{2} \mathbf{T} \operatorname{div}_{\mathbf{x}}(\mathbf{D}(\mathbf{u}))+\mathbf{1 6 \mathbf { D } (\mathbf { u }) \nabla _ { \mathbf { x } } \mathbf { T } \} .}
\end{aligned}
$$

Moment Realizability

- By construction, the following matrix is positive definite:

$$
\mathbf{I}+\mathbf{A}^{\varepsilon}=\frac{1}{\rho} \int_{\mathbb{R}^{3}} \mathbf{V} \otimes \mathbf{V} \boldsymbol{f}^{\varepsilon}(\mathbf{v}) \mathbf{d v}
$$

In particular,
If its eigenvalues are nonpositive, the truncation of the expansion of f^{ε} is wrong \Rightarrow the regime considered is not correct but this criterion does not account for $\nabla_{x} T$.

- Following the work of Levermore et al. ${ }^{1}$ we define the moment realizability matrix \mathbf{M} for $\mathrm{m}:=\left(1, \mathrm{~V},\left(\frac{2}{3}\right)^{1 / 2}\left(\frac{|\mathrm{~V}|^{2}}{2}-\frac{5}{2}\right)\right)$ by

$$
\begin{aligned}
\mathbf{M}:=\int_{\mathbb{R}^{3}} \mathbf{m} \otimes \mathbf{m} \boldsymbol{f}^{\varepsilon}(\mathbf{v}) \mathbf{d} \mathbf{v} & =\left(\begin{array}{ccc}
1 & \mathbf{0}_{\mathbb{R}^{3}}^{\top} & 0 \\
\mathbf{0}_{\mathbb{R}^{3}} & 1+\mathbf{A}^{\varepsilon} & \left(\frac{2}{3}\right)^{1 / 2} \mathbf{B}^{\varepsilon} \\
0 & \left(\frac{2}{3}\right)^{1 / 2}\left(\mathbf{B}^{\varepsilon}\right)^{\top} & \mathbf{C}^{\varepsilon}
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & \mathbf{0}_{\mathbb{R}^{\top}}^{\top} & 0 \\
\mathbf{0}_{\mathbb{R}^{3}} & \mathbf{I}+\mathbf{A}^{\varepsilon}-\frac{2}{3 \mathbf{C}^{\varepsilon}} \mathbf{B}^{\varepsilon} \otimes \mathbf{B}^{\varepsilon} & 0 \\
0 & \mathbf{0}_{\mathbb{R}^{3}}^{\top} & C^{\varepsilon}
\end{array}\right), \quad C^{\varepsilon}>0 .
\end{aligned}
$$

[^0]
A Hierarchy of Criteria

Since by construction, M is positive definite, the following 3×3 matrix is positive definite too:

$$
\mathcal{V}:=\boldsymbol{I}+\mathbf{A}^{\varepsilon}-\frac{2}{3 \mathbf{C}^{\varepsilon}} \mathbf{B}^{\varepsilon} \otimes \mathbf{B}^{\varepsilon}
$$

Example

$$
\left\{\begin{array}{l}
\mathcal{V}_{1}=\mathcal{V}_{\text {Euler }}=\mathbf{I} ; \\
\mathcal{V}_{\varepsilon}=\mathcal{V}_{N S}=\mathcal{V}_{\text {Euler }}-\varepsilon \frac{\mu}{\rho T} \mathbf{D}(\mathbf{u})-\varepsilon^{2} \frac{2}{3} \frac{\kappa^{2}}{\rho^{2} T^{3}} \nabla \times T \otimes \nabla_{x} T ; \\
\mathcal{V}_{\varepsilon^{2}}=\mathcal{V}_{\text {Burnett }}=\mathcal{V}_{N S}-\ldots
\end{array}\right.
$$

A fluid breakdown criterion ($k^{\text {th }}$ order cloture)
If the deviation of f^{ε} from the thermodynamic equilibrium is too large, then the hydrodynamic description has broken down,

- the eigenvalues of $\mathcal{V}_{\varepsilon^{k}}$ are nonpositive
- if

$$
\left|\lambda_{\varepsilon^{k}}-\lambda_{\varepsilon^{k+1}}\right|>\varepsilon^{k+1}, \quad \forall \lambda_{\varepsilon^{k}} \in \operatorname{Sp}\left(\mathcal{V}_{\varepsilon^{k}}\right),
$$

the fluid regime considered is wrong

From Kinetic to Fluid (an additional condition) based on the relative entropy

Let us consider f^{ε} the solution to the Boltzmann equation and the truncation

$$
f_{k}^{\varepsilon}=\mathcal{M}_{\rho, \mathbf{u}, \mathrm{T}}\left[1+\varepsilon g^{(1)}+\varepsilon^{2} g^{(2)}+\ldots+\varepsilon^{k} g^{(k)}\right] .
$$

Then, we have:
A fluid breakdown criterion ($k^{\text {th }}$ order closure)
The kinetic description corresponds to an hydrodynamic closure of order k if

$$
\left\|f^{\varepsilon}-f_{k}^{\varepsilon}\right\|_{L^{1}} \leq \delta_{0}
$$

For numerical purposes, it can be interesting to take an additional criteria on

$$
\frac{\Delta t}{\varepsilon} \gg 1,
$$

where Δt is the time step. Indeed, the relaxation time towards the Maxwellian distribution is of order $\varepsilon / \Delta t$. Hence for small ε or large time step Δt the solution is at thermodynamical equilibrium.

The Hybrid Scheme

At time t^{n}, the space domain $\Omega=\Omega_{f} \sqcup \Omega_{h}$ is decomposed as

- Fluid cells $x_{i} \in \Omega_{f}$, described by the hydrodynamic fields

$$
U_{i}^{n}:=\left(\rho_{i}^{n}, \mathbf{u}_{\mathbf{i}}^{\mathbf{n}}, \mathbf{T}_{\mathbf{i}}^{\mathbf{n}}\right) \simeq\left(\rho\left(t^{n}, x_{i}\right), \mathbf{u}\left(\mathbf{t}^{\mathbf{n}}, \mathbf{x}_{\mathbf{i}}\right),\left(\mathbf{t}^{\mathrm{n}}, \mathbf{x}_{\mathbf{i}}\right)\right) ;
$$

- Kinetic cells $x_{j} \in \Omega_{h}$, described by the particle distribution function

$$
f_{j}^{n}(v) \simeq f\left(t^{n}, x_{j}, v\right), \quad \forall v \in \mathbb{R} .
$$

Before evolving the equation:

- In a fluid cell $x_{i} \in \Omega_{f}$, compute the eigenvalues of \mathbf{M} corresponding to the model of order k and $k+1$:
- If they are positive and close enough, solve the fluid equation to obtain U_{i}^{n+1};
- In the other case, set $f_{i}^{n}(v):=f_{k, i}^{n}$.
- In a kinetic cell $x_{j} \in \Omega_{h}$, compute $\mathcal{H}\left[f_{j}^{\eta} \mid \mathcal{M}_{\rho\left(f_{j}^{\eta}\right), \mathbf{u}\left(f_{j}^{n}\right), \boldsymbol{T}\left(f_{j}^{\eta}\right)}\right]$ and the eigenvalues of \mathbf{M} at order k and $k+1$:
- If it is "big", solve the kinetic equation to obtain f_{j}^{n+1};
- In the other case, set for $\varphi(v)=\left(1, v,|v-\mathbf{u}|^{2}\right)$,

$$
U_{j}^{n}:=\int_{\mathbb{R}^{d}} f_{j}^{n} \varphi(v) d v
$$

Numerical schemes

- Kinetic part:

$$
\frac{\partial f}{\partial t}+\operatorname{div}_{x}(v f)=\frac{1}{\varepsilon} \mathcal{Q}(f)
$$

\rightarrow Collision term $\mathcal{Q}_{\mathcal{B}}$: spectral scheme ${ }^{2}$ or simple relaxation for ES-BGK;
\rightarrow Free transport term div $_{x}(v f)$: finite volume Lax-Friedrichs method with Van Leer's flux limiter ${ }^{3}$;

- Macroscopic part:

$$
\frac{\partial U}{\partial t}+\nabla_{x} \cdot F(U)=G(U), U \in \mathbb{R}^{5}
$$

\rightarrow Reconstruction of the fluxes either with a WENO-5 procedure or with Lax-Friedrichs method;

- Projection of kinetic to fluid and lifting of fluid to kinetic: discrete velocity Maxwellian distribution ${ }^{4}$;
- IMEX time stepping.

[^1]
Maxwell Boundary Conditions

Let $x \in \partial \Omega, \mathbf{n}_{\mathbf{x}}$ the outer normal to Ω and $\alpha \in[0,1]$

Specular reflection

Diffuse reflection

For an outgoing velocity $v \in \mathbb{R}^{3}\left(v \cdot \mathbf{n}_{x} \geq 0\right)$, we set

$$
f(t, x, v)=\alpha \mathcal{R} f(t, x, v)+(1-\alpha) \mathcal{M} f(t, x, v), \forall x \in \partial \Omega, v \cdot \mathbf{n}_{x} \geq 0,
$$

where \mathcal{R} stands for specular reflections and \mathcal{M} for diffusive reflections.

Maxwell Boundary Conditions

Let $x \in \partial \Omega$ and $\mathbf{n}_{\mathbf{x}}$ the outer normal to Ω.
\rightarrow The specular boundary operator is given by

$$
\mathcal{R} f(t, x, v)=f\left(t, x, v-2\left(\mathbf{n}_{\mathbf{x}} \cdot \mathbf{v}\right) \mathbf{n}_{\mathbf{x}}\right), \mathbf{v} \cdot \mathbf{n}_{\mathbf{x}} \geq \mathbf{0}
$$

Its macroscopic counterpart corresponds to the so called no-slip condition

$$
\mathbf{u} \cdot \mathbf{n}_{\mathbf{x}}=\mathbf{0}
$$

\rightarrow The diffusive boundary operator is given by

$$
\mathcal{M} f(t, x, v)=\mu(t, x) \mathcal{M}_{1, \mathbf{u}_{\mathbf{w}}, \mathbf{T}_{\mathbf{w}}}, v \cdot \mathbf{n}_{\mathbf{x}} \geq \mathbf{0}
$$

where $\mathcal{M}_{1, \mathrm{u}_{\mathbf{w}}, \mathrm{T}_{\mathbf{w}}}$ is the wall Maxwellian and μ insures global mass conservation.
Its macroscopic counterpart corresponds to

$$
\mathbf{u} \cdot \mathbf{n}_{\mathbf{x}}=\mathbf{0}, \quad \mathbf{E}(\mathbf{x})=\frac{\mathbf{d}}{\mathbf{2}} \rho(\mathbf{x}) \mathbf{T}_{\mathbf{w}}+\rho\left|\mathbf{u}_{\mathbf{w}}\right|^{\mathbf{2}}
$$

Test 1 : the Riemann problem

- Initial condition:

$$
f^{i n}(x, v)=\mathcal{M}_{\rho(x), \mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x})}(v), \quad \forall x \in[-0.5,0.5], v \in[-8,8]^{2}
$$

with

$$
(\rho(x), \mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x}))= \begin{cases}(1,0,0,1) & \text { if } x<0 \\ (0.125,0,0,0.25) & \text { if } x \geq 0\end{cases}
$$

- $\mathcal{Q}=\mathcal{Q}_{\mathcal{B G K}}$;
- Zero flux at the boundary in space;
- Various ε;
- Kinetic mesh: $N_{x}=200, N_{v}=32^{2}$;
- Fluid (Euler) mesh: $N_{x}=200$.

Test 1 : Riemann problem (macroscopic quantities), $\varepsilon=10^{-2}$

Figure : Test 1 - Riemann problem with $\varepsilon=10^{-2}$: Order 0 (Euler); Density, mean velocity, temperature and heat flux at time $t=0.20$.

Test 1 : Riemann problem (macroscopic quantities), $\varepsilon=10^{-2}$

Figure : Test 1 - Riemann problem with $\varepsilon=10^{-2}$: Order 1 (CNS); Density, mean velocity, temperature and heat flux at time $t=0.20$.

Test 1 : Riemann problem (Temperature), $\varepsilon=10^{-3}$

Hybrid 3 times faster than full kinetic

Test 1 : Riemann problem (macroscopic quantities), $\varepsilon=10^{-3}$

Figure : Test 1 - Riemann problem with $\varepsilon=10^{-3}$: Order 0 (Euler); Density, mean velocity, temperature and heat flux at time $t=0.20$.

Test 1 : Riemann problem (macroscopic quantities), $\varepsilon=10^{-3}$

Figure : Test 1 - Riemann problem with $\varepsilon=10^{-3}$: Order 1 (CNS); Density, mean velocity, temperature and heat flux at time $t=0.20$.

Test 1 : Riemann problem (Temperature), $\varepsilon=10^{-4}$

Hybrid 9 times faster than full kinetic

Test 2 : Blast wave problem

- Initial condition:

$$
f^{i n}(x, v)=\mathcal{M}_{\rho(x), \mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x})}(v), \quad \forall x \in[-0.5,0.5], v \in[-7.5,7.5]^{2}
$$

with

$$
(\rho(x), \mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x}))= \begin{cases}(1,1,0,2) & \text { if } x<-0.3 \\ (1,0,0,0.25) & \text { if }-0.3 \leq x \leq 0.3 \\ (1,-1,0,2) & \text { if } x \geq 0.3\end{cases}
$$

- $\mathcal{Q}=\mathcal{Q}_{\mathcal{B G K}}$;
- Specular boundary conditions ($\alpha=1$ in the Maxwell boundary conditions);
- $\varepsilon=10^{-2}$ and 0.005 ;
- Kinetic mesh: $N_{x}=200, N_{v}=32^{2}$;
- Fluid (Euler) mesh: $N_{x}=200$.

Test 2 : Blast wave problem (Density)

Figure : Test 2 - Blast wave with $\varepsilon=10^{-2}$: Order 0 (Euler); Density, mean velocity, temperature and heat flux at time $t=0.20$.

Test 2 : Blast wave problem (Density)

Figure : Test 2 - Blast wave with $\varepsilon=10^{-2}$: Order 1 (CNS); Density, mean velocity, temperature and heat flux at time $t=0.20$.

Test 2 : Blast wave problem (Density)

Hybrid 2 times faster than full kinetic

Test 2 - Blast wave with $\varepsilon=5.10^{-3}$: Order 0 (Euler); Density.

- Initial condition:

$$
f^{\text {in }}(x, v)=\frac{1}{2}\left(\mathcal{M}_{\rho(x), \mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x})}(v)+\mathcal{M}_{\rho(x),-\mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x})}(v)\right)
$$

for $x \in[-0.5,0.5], v \in[-7.5,7.5]^{2}$, with

$$
(\rho(x), \mathbf{u}(\mathbf{x}), \mathbf{T}(\mathbf{x}))=\left(1+\frac{1}{2} \sin (\pi x), 0.75,0,(5+2 \cos (2 \pi x)) / 20\right)
$$

- $\mathcal{Q}=\mathcal{Q}_{\mathcal{B}}$;
- Periodic boundary conditions;
- $\varepsilon(x)=10^{-4}+\frac{1}{2}(\arctan (1+30 x)+\arctan (1-30 x))$;
- Kinetic mesh: $N_{x}=100, N_{v}=32^{2}$;
- Fluid (Euler) mesh: $N_{x}=100$.

Test 3 : Smooth, Far from Equilibrium, Variable Knudsen Number

Hybrid 1.7 times faster than full kinetic

Test 4 : gradient of temperature

We consider the Boltzmann equation

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}=\frac{1}{\varepsilon} Q(f, f), x \in(-1 / 2,1 / 2), v \in \mathbb{R}^{2}, \\
f(t=0, x, v)=\frac{1}{2 \pi k_{B} T_{0}(x)} \exp \left(-\frac{|v|^{2}}{2 k_{B} T_{0}(x)}\right),
\end{array}\right.
$$

with $k_{B}=1, T_{0}(x)=1+0.44(x-1 / 2)$ and we assume purely diffusive boundary conditions [3,4].
[3] K. Aoki and N. Masukawa, Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation. Phys. Fluids, 6 1379-1395, (1994).
[4] D.J. Rader, M.A. Gallis, J.R. Torczynski and W. Wagner, Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow. Phys. Fluids 18, 077102 (2006)

Test 4 : gradient of temperature

Figure : steady state of Density, Temperature and Pressure.

Work in Progress

Solve the time evolution Boltzmann equation $(x, v) \in \Omega \times \mathbb{R}_{v}^{3}$, with $\Omega \subset \mathbb{R}^{2}$.

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f=\frac{1}{K n} \mathcal{Q}(f) .
$$

We consider a Mach number $\mathrm{Ma}=0.3$ and a Reynolds number $\mathrm{Re}=3000$. The Mach, Reynolds and Knudsen numbers relation is given by:

$$
K n=\frac{M a}{R e} \sqrt{\frac{\gamma \pi}{2}}, \quad \gamma=1.4
$$

Figure : Flow around an object. Domain including an airfoil.

Flow around an airfoil in 2D

[^0]: ${ }^{1}$ Levermore, Morokoff, Nadiga, Phys. Fluid (1998)

[^1]: ${ }^{2}$ Pareschi - Perthame, Transport Theory Statist. Phys. (1996)
 ${ }^{3}$ Van Leer, JCP (1977)
 ${ }^{4}$ Berthelin, Tzavaras, Vasseur, JSP (2009)

