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Jil

Introduction

Reduced MHD models

Numerical modeling of the MHD stability of Tokamaks

Op=—=V-(pv) +V - (DLVip)+ S,

po: T = —pv~VT—pV-V+V'(IiLvlT-‘rHHVHT)-FST,
&0 =n(T)V - (Vi) — B Vu,

e - VA(pov=—p(v-VI)v—Vp+IAB+ pAv),

B (pdv=—p(v:-V)v—Vp+IAB+ pAv),

with

F 1
B= ﬁoeg + 5 VirAes and v=v B~ RVyAep.

Note that ep - V A v = w is the poloidal vorticity and ¢ is the poloidal
velocity potential.
Pressure law provided by : p = (v —1)pT.

- Czarny-Huysmans : Bézier surfaces and finite elements for MHD
simulations, JCP 2008.

- Hozl and al, Reduced-MHD Simulations of Toroidally and Poloidally
Localized ELMs, 2012.

- Callen, notion of Extended-MHD, Cemracs 2014.
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JIL

Introduction

ELM’s calculations (courtesy of
Franck-Sonnendrucker IPP)

Control of Edge Localized Modes (ELMs) fundamental for ITER

Reduced MHD models used to compute
the growth rate of unstable modes (and much more things of course)
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-_Illl Growth rate computed mode per mode

Introduction energies
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Mathematical questions addressed in this talk :

- structure of reduced MHD models and

- comparison principle for the linear growth rate of reduced models.
- new models
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Jil

Reduction

Reduction in the language of MHD

Toy model (before reduction) : a resistive MHD non linear system
modeling the interaction of a ionized fluid with a strong magnetic field

Oep +V - (pu) =0,

o0:B —V A(uAB) =-nVA(VAB) +nV AlJs,
2

Oc(pu) +V- (pu2 + %I —-B*+ pl) = vAu.

@ Viscosity is v > 0, resistivity is 7 > 0. The free divergence constraint
must be added : V- B = 0. An additional equation should be added
for the temperature/entropy/pressure/total energy.

@ Source is mandatory to study stationary solutions defined by

32
IBf,

VAB=1Jp, V(Z

—Bz—f—pl):O.

Mathematical structure :
hyperbolic (non linear)-parabolic (linear) with source.
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-_’Ill Slab geometry

Reduction

e Usual potential assumptions : Fy is given and v is unknown such that
B = Foey + VL'l/) A ey = (aqu(t?X? 2)7 FO, 76Xw(t7xv Z))

e "Incompressiblity” V - u = 0 yields :
u=Vo(t,x,z) Ne, = (=0;¢(t, x, z),0, Oxp(t, x, 2)).
e That is we seek the unknowns in a linear space

(B,u) e Ko = U+ K
where x — Uy = (Foey,0) is a given function (can be a constant) and
K =Span{V.ivNe,VipAe,}

is a closed vectorial subspace of infinite dimension.

|
Cemracs 2014 p. 6 /27



Jil

Reduction

Weak formulation (hyp. part)

Assume for simplicity p = 1 : just two equations remain.
Let C = Q X R be the infinite cylinder in the y direction.

J: (8tu+V-u®u+ﬁ(V/\B)/\B) Gdv=0, Vi,

[. (3B —~VA(uAB))-Bdv=0, VB.
The test functions are u = Vgg(x, z) Ne, and B= Vﬁ/p\(x, z)Ney,
that is (ﬁ, §) € K.
The unknowns are

u=V.¢(t,x,z) Ne, and B = Foe, + V1 (t,x,z) Ae,

that is (u, B) € Ko where Ko = (0, Foe,) + K .

After integration by parts (with vanishing Dirichlet boundary data) and

some amount of differential calculus such as VME/\ e, = curl(eyq~$),
the end result is . ..

Cemracs 2014
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-.’Ill Usual model

...the incompressible model in the 2D domain

Reduction orp = [, ¢], B = curl ¢,
81:UJ = [UJ, L,O] + [w7 AL¢]7 .
Alp=w, u = curl .

The Poisson bracket is [a, b] = 8xad, b — 8,adxb : (x,y) € Q.

¥(t, x,y) is the magnetic potential
w(t, x,y) is the fluid vorticity
©(t, x,y) is the fluid potential

- Strauss 76’, 82, ...

Next question : is it possible to generalize to more general sets K needed
for Tokamaks ?
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-'.Ill Answer = YES

Reduction

Magnetic

Rlagia field line

Blanket

Change of coordinates : (R, Z) € Q and 6 € [0, 2x], with
x = Rcosf, x=Rsinf, z=Z.
Local frame is (er,ez,e9) = (VR,VZ,RV0) and

B—FRVO =VyAVE = curl (V) = £V AVey
u =VpAVl = curl (pV0) = VoA Ves.

By construction V~B:O,V-u:O,B~e9:%,u~e9:0.

It defines a linear space Ko such that (B, u) € Ko.
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-.’Ill Reduction in the language of hyper. cons. laws

e Let x € Q C R" is a given open domain, typically a cylinder Q =C or a
torus Q =7.

Reduction . . . . . .
e Start with a system of non linear conservation laws in dimension d > 1

8:U+ V- f(U)=0.

e Assume an additional compatible conservation law
0:S(U) + V - F(U) = 0, where the function U — S(U) € R is strictly
convex : define the adjoint variable

V = VS(U).

- Godunov 60'.

- In practice S is the energy or the entropy.

- 57 (V) = (V. U) = S(U(V)), F*(V) = (V. F(U)) — F(U(V))
-U=VS*(V)
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Jil

Reduction

Let I C R" be a given vectorial subspace
K =Span{z,...,Z,}, p<n.

A reduced model (in dimension p) writes

(U, Z)+ V- (F(U)Z)=0, 1<i<p,
Vek.

More precisely V/(t,x) = Ai(t,x)Zi + - -+ + Ap(t, x) Zp.

Theorem (Boillat-Ruggieri, Chen-Levermore-Liu '94’) :
the reduced model is conservative and hyperbolic.

-1f S=1|U]” and V = U, it is the standard Galerkin projection.

- Algebra is the same in infinite dimension.

Cemracs 2014
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_!Ill Reduction in both languages

e Consider any linear subspace of X" = C*(Q)" defined by
Ko = Wo(x)+ K C X" (1)

Reduction

where x — Vo(x) € X" is a given function and K C X" is a closed vectorial
subspace of infinite dimension.

e Neglect boundary conditions and consider the reduced system
in weak formulation
/ [0:U+V -f(U),Z]dv =0, V test function Z € K,
Q
V e Ko.

We say the model is hyperbolic-compatible.

Notice that
V-Wek

can be thought of as being an "infinite sum” (an integral) of " basis”
(individual) functions in K.
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-.’Ill First property : entropy/energy preservation

Set the relative entropy So(U,x) = S(U) — (Vo(x), U).

Prop. A model with hyperbolic compatibility satisfies

d
dt

Reduction

[ Su.xa = / (VVo(x) : F(U)) dv + b.c. )

where b.c. represents integrals on the boundary 9Q
and : is the contraction of tensors.

Proof : by definition Ky is affine and V — Vg € K. So
/ [(9:U, V — Vo) + (V - £(U), V — Vo)] dv = 0.
Q
It yields

/atson /v FU)dv+/(V F(U), Vo) dv.

Integration by parts yields the result.

|
Cemracs 2014 p. 13 /27



Jil

Reduction

Second property : comparison principle

Assume U is a special rest state f(Up) =0
(and that V4 corresponds to Up).
Add source, dissipation (and simplify)

/ DU+ V- F(U) — vA(U — Us), Z] dv = 0, ¥Z € dK,
Q
VekK.

Notice that Uy is incorporated in the dissipation term to respect the rest
state. For Tokamaks, J. = vA Uy corresponds to the bootstrap current.
Other dissipative terms can be accounted for.

Fundamental question : determine the growth rate of perturbations around
rest states.

Theorem : one can prove

K1 C Ko = A(K1) < A(K>).

|
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-.’Ill Proof

One linearizes : V= Vo +eVi....
Reduction One founds out

/f;( at(Ao(X)V1)+V~(Bo(X)V1) 71/V~(A0(X)VV1) 7Z)C]’V:O

where Ag(x) = VSy, = Aj(x) > 0 and Bo(x) = VFy, = Bj(x).
The symmetry of the tensors is fundamental.

Here S* and F* are the Legendre and polar transforms of S and F.

Next step : take Z = V4 and integrate by parts.

|
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One has

Jil

i\/(\/1,/40\/1)(,7’V:‘/(V'B()Vl,\/l)dv—2l//(A()V\/lZV\/l)dV.
dt Jq Q Q

Define the space : Y(K) = closure of K C H}(Q)".

Reduction Define the real number A(K) € R
)\(]C) —  max fQ ((V . Bo(X)) Vl, V1) dv —2v fQ (Ao(X)V V1 . VV1) dV.
VieY(K) Jo (V1, Ao(x) V1) dv

@ Rest state constant in space = A(K) < 0. This is the usual
hyperbolic criterion.

Concavity V- By(x) <0 = A\(K) <0

Gronwall lemma states that ([, (Vi,AoVi) dv) (t) < ceror

A(K) is an upper bound of the rate of growth of linear perturbations.
By definition K1 C K2 = A(K1) < A(K2).

e 6 o6 o

- Simpler Rayleigh-Ritz quotients exist in ideal MHD, see Schnack.
- Comparison between Schnack approach and new approach to be done.
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-.’Ill Goals

Oep +V - (pu) =0,
0B —V A (unB) =-nVA(VAB) +nV Ay,
Models Ot(pu) +V - (pu2 + %I - B?+ pl> =vAu.

Closure is with the energy pe = pe + pi|u|® + 1|B[?, that is S = pe.

@ Consider the toroidal case,

@ Define set Ko with increasing geometrical structures, and so with
increasing complexity : choosing o means

filtering the dynamics chosing physical glasses

@ Make all calculations for the weak formulation (not shown),

@ Write down the strong formulations of the corresponding
entropy-Petrov-Galerkin. They will be of Navier-Stokes type,

@ Provide additional comments (well posedness, .. .).
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-’.Ill Models in the torus : 7 = Q x [0, 27]

Models

Magnetic
Blanket field line

Plasma

Ry—R_
R:H?_ <land R=1+e¢x.

Remark : small curvature is used in the usual derivation of the model : but
e = 0.3 for ITER.

The curvature is € =

Additional small physical parameter is 5 = ﬁ.
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Jil

Models

Representation formulas in the torus

New coordinates X = Rcos©, Y = Rsin© Z with (R,Z) € Q. The
toroidal variable is © € [0, 27].
The local directions are (er,ez,eeo)

er = VR = (cos®,sin®, 0),
eo = RVO = (—sin®,cosO, 0),
ez=VZ = (0,0, 1).

Consider the Ansatz

B-FRVE =VyAVO = curl (¥VO) =1V A Veo
u =VeAVO = caurl (¢VO) = £VpA Veo.

-ByconstructionV-B:O,V-u:O,B-ee:%’,we@:O.

- Note that representation is more u = —RVp A eg in Jorek models.

Cemracs 2014
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_Ijll 2D model with general density

Let p = po > 0 be a given density (i.e. a given positive function).

B—FRVO =VyAVO = arl (VO) = £ViAVes
pou = +tVpAVO =% curl (¢VO) = £Vp A Vee.

Models
Oet) = pLR[qp, o] + nA*w — Jb, Jb is a source term,
atw - pLR [w#?] - (pR2 [pR SO]LU + pR |:U pRZA U] - VAJ_L‘u
Ay = w.

Density

Strauss

Briguglio

Arbitrary density profile
R

The domain is (R, Z) € Q. The system is supplemented with natural
boundary conditions 1) = ¢ =w =0 on 9N or ¥ = @ = Jnp = 0 on IN.
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Jil

Models

The fundamental energy estimate

Property J. =0, 7> 0and v > 0.
For regular solutions, one has

d [ Ve | |V
dt Jo 2R 2pR

:*ﬂ/wfu/w—2<0 (measure : dQ = dRdZ) .
o R apPR =7

Proof : Multiply the first eq. by — 2% the second eq. by —piR. Then
integrate by parts and use basic identities.

- D.-Sart : Reduced resistive MHD in Tokamaks with general density,
M2AN 2012. Assume n,v > 0 : Existence of weak solutions based on
energy estimates plus compactness in convenient spaces H* N {b.c.}.

- Same structure as potential formulations of Navier-Stokes equation :

Chorin, Temam, ...

Cemracs 2014
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-_Illl Numerical example (data from Fujita).

Computations performed in a 2D simple FreeFem++ code initiated at
Cemracs ...

Dirichlet conditions for all variables n = 107*, v =1075, p = given,
Models €= 0.3, Jboot = —Orp.

p

-

- Unconditionally stable numerical simulations of a new generalized reduced
resistive magnetohydrodynamics model, Malapaka-D.-Sart, IJNMF, 2014.
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Jil

Models

2D with non constant F and p =1

Start from B = F(R,Z)V0 + V¢(R,Z) A V6 and u = £V¢(R,Z) A VO.
One gets

1 .
Op = R [, @] + nALY,
1

oL el R Fl . ,
Orw = pr [(pR)2w’¢] pR L}RZ,F} pR [pR2 AJ_";ZJ,w] + A" w,
w=A"¢.

Prop : Consider a solution of the Grad-Shafranov equation

_ —2
AV = _grdp _L1dF
dy 2 dy
Setting p = p(p) and (¥, w) = (¥, 0), it yields a stationary solution of the
dynamical model.
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Jil

Models

3D with constant Fy but 9y # 0

Q={(x,z) € D and § € [0, 2]}
Start from B = FoVO + V(R,Z,0) AV and u = £Vo(R, Z,0) A VO.

One gets

O = %[d’:fﬂ + LAY +m|8g7,/)+ R2 Fodeg + Q,
Gtw:r{ wd)]—}—R{t/}, A'l/J:|+VLAw+VH6ew+
w = A%0.

R2 F()A***ae’l/],

- The coupling of different toroidal modes is with 9y derivative.

- The source term Q is defined by the weak form

/ + (95 Q0T + 0, Q0RT) = 2F; / 230000RT, Y € HY(D).
D D
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. Energy identity is

0
%%/ (|VR 29 + |Vr 20| )

|ty /|A*¢|2
+v = 71
[ B [ 182

Models

|96V R, 29| /|39VRZ¢|2
+7 / Sty | =0
)R I -
Theor. :

: Assume 7. ,v1, ), v > 0.

There exists a weak solution (v, ¢) € L*([0, T] : H*(Q)?) with initial data
(%o, $o) € H*(Q)? N {b.c.}. Regularity can be precized.

Proof : use the energy identity as an a priori identity, and follow
Temam, Navier-Stokes Equations : Theory and Numerical Analysis,
AMS(2001)
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N

-.Illl Bounded number of Fourier modes : = 2D

- One can plug
Models ¢N = Z ¢n(R7 Z)emg

—N<n<N

in the weak formulation.
- All terms can be computed explicitly in a code, as in Jorek code.

- Denote Ay the maximal growth rate of eigenmodes.
One has the inequality

AV S A £ € Ao
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-.’Ill Conclusion

@ Physical basis : reduced MHD models obtained by filtering out the
non essential part helps to get understanding of the physics

@ Hierarchy of Navier-Stokes models for the modeling of reduced MHD
in Tokamaks. Mathematical basis is Weak formulation.

Conclusion @ The geometry of the torus is taken into account by construction.

@ Two mathematical results are

e Comparison principle for the growth rate of instability (inherited
from the Hyperbolic theory)

o Well-posedness (existence) of viscous formulations in Sobolev
spaces (inherited from the Navier-Stokes theory)

@ Use of these structure and results for precontionning of "real”
calculations still to be done.

Weak formulation also appealing for numerical purposes (Nkonga).

- Navier-Stokes hierarchies of reduced MHD models in Tokamak geometry,
HAL preprint server, D.-Sart.
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