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with Rémy Sart (PLDV)

Sponsors: ANR Chrome, FRFCM, CEACemracs 2014 p. 1 / 27



Introduction

Reduction

Models

Conclusion

Section 1

Introduction

Cemracs 2014 p. 2 / 27



Introduction

Reduction

Models

Conclusion

Reduced MHD models

Numerical modeling of the MHD stability of Tokamaks


∂tρ = −∇ · (ρv) +∇ · (D⊥∇⊥ρ) + Sρ,
ρ∂tT = −ρv · ∇T − p∇ · v +∇ · (κ⊥∇⊥T + κ‖∇‖T ) + ST ,

1
R2 ∂tψ = η(T )∇ ·

(
1
R2∇⊥ψ

)
− B · ∇u,

eθ · ∇ ∧ (ρ∂tv = −ρ(v · ∇)v −∇p + J ∧ B + µ∆v) ,
B · (ρ∂tv = −ρ(v · ∇)v −∇p + J ∧ B + µ∆v) ,

with

B =
F0

R
eθ +

1

R
∇ψ ∧ eθ and v = v‖B− R∇ϕ ∧ eθ.

Note that eθ · ∇ ∧ v = ω is the poloidal vorticity and ϕ is the poloidal
velocity potential.
Pressure law provided by : p = (γ − 1)ρT .

- Czarny-Huysmans : Bézier surfaces and finite elements for MHD
simulations, JCP 2008.
- Hözl and al, Reduced-MHD Simulations of Toroidally and Poloidally
Localized ELMs, 2012.
- Callen, notion of Extended-MHD, Cemracs 2014.
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ELM’s calculations (courtesy of
Franck-Sonnendrucker IPP)

Control of Edge Localized Modes (ELMs) fundamental for ITER

Reduced MHD models used to compute
the growth rate of unstable modes (and much more things of course)
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Growth rate computed mode per mode

Mathematical questions addressed in this talk :
- structure of reduced MHD models and
- comparison principle for the linear growth rate of reduced models.
- new models
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Reduction in the language of MHD

Toy model (before reduction) : a resistive MHD non linear system
modeling the interaction of a ionized fluid with a strong magnetic field

∂tρ +∇ · (ρu) = 0,
∂tB −∇ ∧ (u ∧ B) = −η∇∧ (∇∧ B) +η∇∧ Jb,

∂t(ρu) +∇ ·
(
ρu2 + |B|2

2
I− B2 + pI

)
= ν∆u.

Viscosity is ν > 0, resistivity is η > 0. The free divergence constraint
must be added : ∇ · B = 0. An additional equation should be added
for the temperature/entropy/pressure/total energy.

Source is mandatory to study stationary solutions defined by

∇∧ B = Jb, ∇ ·
(
|B|2

2
I− B2 + pI

)
= 0.

Mathematical structure :
hyperbolic (non linear)-parabolic (linear) with source.
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Slab geometry

x

z

• Usual potential assumptions : F0 is given and ψ is unknown such that

B = F0ey +∇⊥ψ ∧ ey = (∂zψ(t, x , z),F0,−∂xψ(t, x , z))

• ”Incompressiblity” ∇ · u = 0 yields :
u = ∇φ(t, x , z) ∧ ey = (−∂zφ(t, x , z), 0, ∂xφ(t, x , z)).
• That is we seek the unknowns in a linear space

(B, u) ∈ K0 = U0 +K

where x 7→ U0 = (F0ey , 0) is a given function (can be a constant) and

K = Span {∇⊥ψ ∧ ey ,∇⊥ϕ ∧ ey}

is a closed vectorial subspace of infinite dimension.
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Weak formulation (hyp. part)

Assume for simplicity ρ ≡ 1 : just two equations remain.

Let C = Ω× R be the infinite cylinder in the y direction.{ ∫
C

(
∂tu +∇ · u⊗ u + 1

µ0
(∇∧ B) ∧ B

)
· û dv = 0, ∀û,∫

C (∂tB−∇ ∧ (u ∧ B)) · B̂ dv = 0, ∀B̂.

The test functions are û = ∇⊥φ̂(x , z) ∧ ey and B̂ = ∇⊥ψ̂(x , z) ∧ ey ,

that is
(

û, B̂
)
∈ K.

The unknowns are

u = ∇⊥φ(t, x , z) ∧ ey and B = F0ey +∇⊥ψ(t, x , z) ∧ ey

that is (u,B) ∈ K0 where K0 = (0,F0ey ) +K .

After integration by parts (with vanishing Dirichlet boundary data) and

some amount of differential calculus such as ∇⊥φ̃ ∧ ey = curl(ey φ̃),
the end result is . . .
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Usual model

. . .the incompressible model in the 2D domain
∂tψ = [ψ,ϕ], B = ~curl ψ,
∂tω = [ω, ϕ] + [ψ,∆⊥ψ],

∆⊥ϕ = ω, u = ~curl ϕ.

The Poisson bracket is [a, b] = ∂xa∂yb − ∂ya∂xb : (x , y) ∈ Ω.

ψ(t, x , y) is the magnetic potential
ω(t, x , y) is the fluid vorticity
ϕ(t, x , y) is the fluid potential

- Strauss 76’, 82’, . . .

Next question : is it possible to generalize to more general sets K needed
for Tokamaks ?
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Answer = YES

Change of coordinates : (R,Z) ∈ Ω and θ ∈ [0, 2π], with
x = R cos θ, x = R sin θ, z = Z .

Local frame is (eR , eZ , eθ) = (∇R,∇Z ,R∇θ) and

B− F0∇θ = ∇ψ ∧∇θ = curl (ψ∇θ) = 1
R
∇ψ ∧∇eθ

u = ∇ϕ ∧∇θ = curl (ϕ∇θ) = 1
R
∇ϕ ∧∇eθ.

By construction ∇ · B = 0, ∇ · u = 0, B · eθ = F0
R

, u · eθ = 0.

It defines a linear space K0 such that (B, u) ∈ K0.
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Reduction in the language of hyper. cons. laws

• Let x ∈ Ω ⊂ Rn is a given open domain, typically a cylinder Ω = C or a
torus Ω = T .

• Start with a system of non linear conservation laws in dimension d ≥ 1

∂tU +∇ · f (U) = 0.

• Assume an additional compatible conservation law
∂tS(U) +∇ · F (U) = 0, where the function U 7→ S(U) ∈ R is strictly
convex : define the adjoint variable

V = ∇S(U).

- Godunov 60’.
- In practice S is the energy or the entropy.
- S∗(V ) = (V ,U)− S(U(V )), F ∗(V ) = (V , f (U))− F (U(V ))
- U = ∇S∗(V )
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Let K ⊂ Rn be a given vectorial subspace

K = Span {Z1, . . . ,Zp} , p < n.

A reduced model (in dimension p) writes{
∂t(U,Zi ) +∇ · (f (U)Zi ) = 0, 1 ≤ i ≤ p,
V ∈ K.

More precisely V (t, x) = λ1(t, x)Zi + · · ·+ λp(t, x)Zp.

Theorem (Boillat-Ruggieri, Chen-Levermore-Liu ’94’) :
the reduced model is conservative and hyperbolic.

- If S = 1
2
|U|2 and V ≡ U, it is the standard Galerkin projection.

- Algebra is the same in infinite dimension.
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Reduction in both languages

• Consider any linear subspace of X n = C1(Ω)n defined by

K0 = V0(x) +K ⊂ X n (1)

where x 7→ V0(x) ∈ X n is a given function and K ⊂ X n is a closed vectorial
subspace of infinite dimension.

• Neglect boundary conditions and consider the reduced system
in weak formulation

∫
Ω

[∂tU +∇ · f (U),Z ] dv = 0, ∀ test function Z ∈ K,

V ∈ K0.

We say the model is hyperbolic-compatible.

Notice that
V − V0 ∈ K

can be thought of as being an ”infinite sum” (an integral) of ”basis”
(individual) functions in K.
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First property : entropy/energy preservation

Set the relative entropy Ŝ0(U, x) = S(U)− (V0(x),U).

Prop. A model with hyperbolic compatibility satisfies

d

dt

∫
Ω

Ŝ0(U, x)dv =

∫
Ω

(∇V0(x) : f (U)) dv + b.c. (2)

where b.c. represents integrals on the boundary ∂Ω
and : is the contraction of tensors.

Proof : by definition K0 is affine and V − V0 ∈ K. So∫
Ω

[(∂tU,V − V0) + (∇ · f (U),V − V0)] dv = 0.

It yields∫
Ω

∂t Ŝ0(U, x)dv = −
∫

Ω

∇ · F (U)dv +

∫
Ω

(∇ · f (U),V0) dv .

Integration by parts yields the result.
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Second property : comparison principle

Assume U0 is a special rest state f (U0) = 0
(and that V0 corresponds to U0).
Add source, dissipation (and simplify)

∫
Ω

[∂tU +∇ · f (U)− ν∆(U − U0),Z ] dv = 0, ∀Z ∈ dK,

V ∈ K.

Notice that U0 is incorporated in the dissipation term to respect the rest
state. For Tokamaks, Jc = ν∆U0 corresponds to the bootstrap current.
Other dissipative terms can be accounted for.

Fundamental question : determine the growth rate of perturbations around
rest states.

Theorem : one can prove

K1 ⊂ K2 =⇒ λ(K1) ≤ λ(K2).
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Proof

One linearizes : V = V0 + εV1 . . . .
One founds out∫

Ω

( ∂t (A0(x)V1) +∇ · (B0(x)V1) −ν∇ · (A0(x)∇V1) ,Z) dv = 0

where A0(x) = ∇S∗V0
= At

0(x) > 0 and B0(x) = ∇F ∗V0
= B t

0(x).
The symmetry of the tensors is fundamental.

Here S∗ and F ∗ are the Legendre and polar transforms of S and F .

Next step : take Z = V1 and integrate by parts.
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One has

d

dt

∫
Ω

(V1,A0V1) dv =

∫
Ω

(∇ · B0V1,V1) dv − 2ν

∫
Ω

(A0∇V1 : ∇V1) dv .

Define the space : Y (K) = closure of K ⊂ H1
0 (Ω)n.

Define the real number λ(K) ∈ R

λ(K) = max
V1∈Y (K)

∫
Ω

((∇ · B0(x))V1,V1) dv − 2ν
∫

Ω
(A0(x)∇V1 : ∇V1) dv∫

Ω
(V1,A0(x)V1) dv

.

Rest state constant in space =⇒ λ(K) ≤ 0. This is the usual
hyperbolic criterion.

Concavity ∇ · B0(x) ≤ 0 =⇒ λ(K) ≤ 0

Gronwall lemma states that
(∫

Ω
(V1,A0V1) dv

)
(t) ≤ Ceλ(K)t

λ(K) is an upper bound of the rate of growth of linear perturbations.

By definition K1 ⊂ K2 =⇒ λ(K1) ≤ λ(K2).

- Simpler Rayleigh-Ritz quotients exist in ideal MHD, see Schnack.
- Comparison between Schnack approach and new approach to be done.
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Goals


∂tρ +∇ · (ρu) = 0,
∂tB −∇ ∧ (u ∧ B) = −η∇∧ (∇∧ B) +η∇∧ Jb,

∂t(ρu) +∇ ·
(
ρu2 + |B|2

2
I− B2 + pI

)
= ν∆u.

Closure is with the energy ρe = ρε+ ρ 1
2
|u|2 + 1

2
|B|2, that is S = ρe.

Consider the toroidal case,

Define set K0 with increasing geometrical structures, and so with
increasing complexity : choosing K0 means

filtering the dynamics chosing physical glasses

Make all calculations for the weak formulation (not shown),

Write down the strong formulations of the corresponding
entropy-Petrov-Galerkin. They will be of Navier-Stokes type,

Provide additional comments (well posedness, . . .).
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Models in the torus : T = Ω× [0, 2π]

The curvature is ε =
R+−R−
R++R−

< 1 and R = 1 + εx .

Remark : small curvature is used in the usual derivation of the model : but
ε = 0.3 for ITER.

Additional small physical parameter is β = p
|B| .
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Representation formulas in the torus

New coordinates X = R cos Θ, Y = R sin Θ Z with (R,Z) ∈ Ω. The
toroidal variable is Θ ∈ [0, 2π].
The local directions are (eR , eZ , eΘ)

eR = ∇R = (cos Θ, sin Θ, 0),
eΘ = R∇Θ = (− sin Θ, cos Θ, 0),
eZ = ∇Z = (0, 0, 1).

Consider the Ansatz

B− F0∇Θ = ∇ψ ∧∇Θ = curl (ψ∇Θ) = 1
R
∇ψ ∧∇eΘ

u = ∇ϕ ∧∇Θ = curl (ϕ∇Θ) = 1
R
∇ϕ ∧∇eΘ.

- By construction ∇ · B = 0, ∇ · u = 0, B · eΘ = F0
R

, u · eΘ = 0.

- Note that representation is more u = −R∇ϕ ∧ eθ in Jorek models.
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2D model with general density

Let ρ = ρ0 > 0 be a given density (i.e. a given positive function).

B− F0∇Θ = ∇ψ ∧∇Θ = curl (ψ∇Θ) = 1
R
∇ψ ∧∇eΘ

ρ0u = 1
R
∇ϕ ∧∇Θ = 1

R
curl (ϕ∇Θ) = 1

R
∇ϕ ∧∇eΘ.


∂tψ = 1

ρR
[ψ,ϕ] + η∆?ψ − Jb, Jb is a source term,

∂tω = 1
ρR

[ω, ϕ]− 2 1
(ρR)2 [ρR, ϕ]ω + ρR

[
ψ, 1

ρR2 ∆?ψ
]
− ν∆ρ

⊥ω,

∆ρϕ = ω.

The domain is (R,Z) ∈ Ω. The system is supplemented with natural
boundary conditions ψ = ϕ = ω = 0 on ∂Ω or ψ = ϕ = ∂nϕ = 0 on ∂Ω.
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The fundamental energy estimate

Property Jc = 0, η > 0 and ν > 0.
For regular solutions, one has

d

dt

∫
Ω

|∇ψ|2

2R
+
|∇ϕ|2

2ρR

= −η
∫

Ω

(∆?
⊥ψ)2

R
− ν

∫
Ω

ω2

ρR
≤ 0, (measure : dΩ = dRdZ) .

Proof : Multiply the first eq. by −∆?ψ
R

, the second eq. by − ϕ
ρR

. Then
integrate by parts and use basic identities.

- D.-Sart : Reduced resistive MHD in Tokamaks with general density,
M2AN 2012. Assume η, ν > 0 : Existence of weak solutions based on
energy estimates plus compactness in convenient spaces H2 ∩ {b.c.}.
- Same structure as potential formulations of Navier-Stokes equation :
Chorin, Temam, . . .
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Numerical example (data from Fujita).

Computations performed in a 2D simple FreeFem++ code initiated at
Cemracs . . .

Dirichlet conditions for all variables η = 10−4, ν = 10−5, ρ = given,
ε = 0.3, Jboot = −∂rρ.

ρ Fujita Jh

q(x)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

- Unconditionally stable numerical simulations of a new generalized reduced
resistive magnetohydrodynamics model, Malapaka-D.-Sart, IJNMF, 2014.
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2D with non constant F and ρ = 1

Start from B = F (R,Z)∇θ +∇ψ(R,Z) ∧∇θ and u = 1
R
∇ϕ(R,Z) ∧∇Θ.

One gets
∂tψ =

1

ρR
[ψ, φ] + η∆?

⊥ψ,

∂tω = ρr

[
1

(ρR)2
ω, φ

]
− ρR

[
F

ρR2
,F

]
− ρR

[
1

ρR2
∆?
⊥ψ,ψ

]
+ ν∆ρ

⊥ω,

ω = ∆ρ
⊥φ.

Prop : Consider a solution of the Grad-Shafranov equation

∆?
⊥ψ = −R2 dp

dψ
− 1

2

dF
2

dψ
.

Setting ρ = ρ(p) and (ψ, ω) = (ψ, 0), it yields a stationary solution of the
dynamical model.
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3D with constant F0 but ∂θ 6= 0

Ω = {(x , z) ∈ D and θ ∈ [0, 2π]}.
Start from B = F0∇θ +∇ψ(R,Z , θ) ∧∇θ and u = 1

R
∇ϕ(R,Z , θ) ∧∇Θ.

One gets
∂tψ =

1

R
[ψ, φ] + η⊥∆?ψ + η‖∂

2
θψ +

1

R2
F0∂θφ+ Q,

∂tω = r

[
1

R2
ω, φ

]
+ R

[
ψ,

1

R2
∆?ψ

]
+ ν⊥∆?ω + ν‖∂

2
θω +

1

R2
F0∆???∂θψ,

ω = ∆?φ.

- The coupling of different toroidal modes is with ∂θ derivative.

- The source term Q is defined by the weak form∫
D

1

R

(
∂RQ∂R ψ̃ + ∂ZQ∂R ψ̃

)
= 2F0

∫
D

1

R4
∂θφ∂R ψ̃, ∀ψ̃ ∈ H1

0 (D).

Cemracs 2014 p. 24 / 27



Introduction

Reduction

Models

Conclusion

B.C. are : ψ = φ = ∂φ
∂n

= 0. Energy identity is

1

2

d

dt

∫
Ω

1

R

(
|∇R,Zψ|2 + |∇R,Zφ|2

)
+η⊥

∫
Ω

|∆?ψ|2

R
+ ν⊥

∫
Ω

|∆?φ|2

R

+η‖

∫
Ω

|∂θ∇R,Zψ|2

R
+ ν‖

∫
Ω

|∂θ∇R,Zφ|2

R
= 0

Theor. : Assume η⊥, ν⊥, η‖, ν‖ > 0.
There exists a weak solution (ψ, φ) ∈ L2([0,T ] : H2(Ω)2) with initial data
(ψ0, φ0) ∈ H2(Ω)2 ∩ {b.c.}. Regularity can be precized.

Proof : use the energy identity as an a priori identity, and follow
Temam, Navier-Stokes Equations : Theory and Numerical Analysis,
AMS(2001)
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Bounded number of Fourier modes : = 2D
1
2

- One can plug

ψN =
∑

−N≤n≤N

ψn(R,Z)e inθ

in the weak formulation.

- All terms can be computed explicitly in a code, as in Jorek code.

- Denote λN the maximal growth rate of eigenmodes.
One has the inequality

λN ≤ λN+1 ≤ · · · ≤ λ∞.
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Physical basis : reduced MHD models obtained by filtering out the
non essential part helps to get understanding of the physics

Hierarchy of Navier-Stokes models for the modeling of reduced MHD
in Tokamaks. Mathematical basis is Weak formulation.

The geometry of the torus is taken into account by construction.

Two mathematical results are

Comparison principle for the growth rate of instability (inherited
from the Hyperbolic theory)
Well-posedness (existence) of viscous formulations in Sobolev
spaces (inherited from the Navier-Stokes theory)

Use of these structure and results for precontionning of ”real”
calculations still to be done.

Weak formulation also appealing for numerical purposes (Nkonga).

- Navier-Stokes hierarchies of reduced MHD models in Tokamak geometry,
HAL preprint server, D.-Sart.
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