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Aim of study

• Consider a (tractable) microscopic model based on polymer physics

• Make a rigorous derivation of a continuous model (as the typical
size of the polymer chains “vanishes”)

• Study the mechanical properties of the continuous model

• Design and analyze a numerical method to compute the
macroscopic energy density

• Compare the results to mechanical and physical experiments

• Find an analytical formula (that can be used in practice) to
approximate this energy density
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Stochastic network of interacting polymer chains
• chain : ui (end-to-end vector), si

(monomers)

• Hamiltonian: volumetric term +
chains,

• volumetric term stiff (almost
isochoric),

• Free energy explicit for a single
isolated chain (only depends on ui ),

• Network: tetrahedral mesh.
Boltzmann free energy:

F (D,Λ) = −kT ln

[∫
U

∫
∏

Si (u)

exp

(
−Hvol(u, s)

kT
−
∑

i

Hi (u, si )
kT

)
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i

dsi

]

' inf
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−kT ln
[ ∫

Si (u)

exp
(
− Hi (u, si )

kT

)
dsi
]}

= inf
u∈U
{Fvol(u,D) + Fnn(u,D)} .
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Rescaled free energy

Typical size of a polymer chain: ε� 1.

Rescaled energy: Assume the typical size of the network is 1, then energy given
for all u ∈ Lp

disc(D) by

Eε(u,D) =
∑

x∈L∩D
ε

εd
∑

y :(x,y) is a chain in D
ε

f
(
x − y ,

u(εx)− u(εy)

ε|x − y |

)

+

∫
Dε

Wvol(∇u).

Then need to take the infimum of Eε(u,D) on u to retrieve the free energy.

Mathematical insight: let ε→ 0 and get some energy functional E(u,D) at the
limit.

Important feature of the derivation: the chosen notion of convergence should
be consistent with minimization since this is essential in the microscopic model.
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Assumptions on the energy (relation to polymers)

There exist 1 < p <∞, and positive constants c,C , such that

• c|ξ|p − 1 ≤f (·, ξ)≤ C(1 + |ξ|p) (coercivity, continuity)

• 0 ≤Wvol(Λ)≤ C |Λ|p

Example for f and Wvol:

• f (ζ, ξ) = |ζ|f1(|ξ|),
f1(ζ, 0) = 0, f1 convex and
increasing

• Wvol(Λ) = f2(detΛ) ≥ 0, f2
convex and f2(1) = 0

There is a competition between f1 (min for ξ = Λ · ζ = 0) and f2 (min for
detΛ = 1).
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Rigorous derivation of a continuous model
Theorem (Alicandro-Cicalese-G.)
Let the polymer-chain network be a regular stochastic lattice. Then the
rescaled free energy functional

Eε(·,D) : Lp
disc(D) → R

v 7→ Eε(v ,D)

almost surely Γ(Lp)-converges to

E(·,D) : Lp(D) → R

v 7→
{ ∫

D W (∇v(x))dx if v ∈W 1,p(D,Rd )
+∞ otherwise

.

The energy density W :Md (R)→ R+ is quasiconvex, satisfies standard
p-growth conditions and is given by

W (Λ) = lim
N→∞

1
Nd inf {E1(v ,QN), v(x) = Λ · x for d(x , ∂QN) ≤ R} .
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Mechanical properties

Hyperelasticity:

The energy density only depends locally on the gradient of the deformation.

Frame-invariance:
The homogenized energy density W is frame-invariant if

• f (ζ, ξ) = f̃ (|ζ|, ξ)

• Wvol is frame-invariant: Wvol(ΛR) = Wvol(Λ), for all Λ ∈Md (R) and
R ∈ SOd

Natural states

Theorem (Alicandro-Cicalese-G.)
If the homogenized energy density W is isotropic, then there is a dilation
Λ = αId among its natural states. (Based on a result by Mizel.)
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Mechanical properties

Strong ellipticity

Theorem (G.)
In general, W can lose strong ellipticity (cf. continuous homogenization). In
the present case (due to specific properties of the polymer chains energies), W
is strongly elliptic (at least in a perturbation regime).

Isotropy

Theorem (Alicandro-Cicalese-G.)
If the stochastic network is isotropic in the mean, and if

• f (ζ, ξ) = f̂ (ζ, |ξ|)
• Wvol is isotropic: Wvol(RΛ) = Wvol(Λ), for all Λ ∈Md (R) and R ∈ SOd ,

then the homogenized energy density W is isotropic.
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Existence and approximation of isotropic stochastic lattices

Simplest isotropic stochastic lattice possible: random parking model

• pick uniformly infinitely many unit rigid balls in QR = (−R/2,R/2)d ,

• accept a ball if it does not overlap with previously accepted balls,

• continue till QR is packed,

• let R →∞.

This procedure rigorously defines a stochastic lattice on Rd (random parking
measure, cf. Penrose ’01).

Theorem (G.-Penrose)
The random parking measure on Rd is regular, ergodic, and isotropic. It can be
approximated on bounded domains as above, and this approximation is
consistent with the homogenization procedure.
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Numerical approximation of W

Procedure:

• generate several approximations of the parking measure on QR ,

• construct the associated Delaunay tesselations,

• for any deformation gradient Λ and each tesselation, minimize the energy
of the network in QR , the end-to-end points x close to ∂QR being
deformed as Λ · x ,

• compute the spatial average of the associated stress tensor for each
tesselation.

• the empirical average of the stress tensors is the desired approximation of
∂W
∂Λ

(Λ).

Analysis of the influence of randomness in a simpler case in joint works with F.
Otto (MPIMS), J.-C. Mourrat (EPFL), and S. Neukamm (MPIMS).
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Example of random tesselation
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Comparison to Treloar’s experiments

Pure shear, and uniaxial experiments (G., Le Tallec, Vidrascu)
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Comparison to physical experiments
Is the geometry of the model physically realistic ?
No: the connectivity of a Delaunay (around 20 in dimension 3) is too high.
In rubber: connectivity between 3 and 4.

 modify the network

Numerical difficulties: lose local coercivity.
In progress (G., Le Tallec, Lequeux, Vidrascu)
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Analytical approximation for W ?

Our numerical approximation of the energy density W is not a practical
quantity: for each Λ, W (Λ) is obtained by an expensive numerical computation.

• Idea: find some analytical expression W̃ close to W .

• In which class ?
Use the know how of mechanics ! Take for W̃ an Ogden material.

• Properties: hyperelastic, isotropic, polyconvex, strongly elliptic... as
desired.

• Drawback: many parameters to fit.
However, one can generate as many data as we want, in any mechanical
regime (“in silico experiments”).

 avoid the issue “number of parameters > number of data”.

• Numerical parameter-estimation procedure: genetic algorithm.

In progress (de Buhan, G., Le Tallec, Lequeux, Vidrascu)
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Some perspectives

• Compare to physical experiments (cf. talk by François Boué),

• Model Mullins’ effect or fatigue phenomena at the discrete level,

• Rigorous derivation of a macroscopic model for Mullins or fatigue ?

• Numerical simulation of the evolution of W ?

• Evolution of W̃ ?

Thanks for your attention !
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