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Aim of study

e Consider a (tractable) microscopic model based on polymer physics

e Make a rigorous derivation of a continuous model (as the typical
size of the polymer chains “vanishes")

e Study the mechanical properties of the continuous model

o Design and analyze a numerical method to compute the
macroscopic energy density

e Compare the results to mechanical and physical experiments

e Find an analytical formula (that can be used in practice) to
approximate this energy density
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Stochastic network of interacting polymer chains
e chain : u; (end-to-end vector), s;
(monomers)

® Hamiltonian: volumetric term +
chains,

e volumetric term stiff (almost
isochoric),

® Free energy explicit for a single
isolated chain (only depends on u;),

e Network: tetrahedral mesh.
Boltzmann free energy:

F(D,A) = —kTIn [/U/Hs,-(u) exp ( HVO;((;_J’S) — Z Hi(l(u_l’_si)> dulj[ds,-:|
Jgf} {Hvol(u) + Z —kTIn [/s,-(u) exp ( — W)d&‘} }

= Jgf}{Fvol(u, D) + Fan(u, D)} .

R
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Rescaled free energy

Typical size of a polymer chain: ¢ <« 1.

Rescaled energy: Assume the typical size of the network is 1, then energy given
for all u e LF,__(D) by

disc

E(u,D) = Y & > f(x_%M)

glx —
x€LN2  yi(x,y) is a chain in 2 | Yl
+/ W\,Ol(vu).
D,

Then need to take the infimum of E.(u, D) on u to retrieve the free energy.

Mathematical insight: let ¢ — 0 and get some energy functional E(u, D) at the
limit.

Important feature of the derivation: the chosen notion of convergence should
be consistent with minimization since this is essential in the microscopic model.
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Assumptions on the energy (relation to polymers)

There exist 1 < p < oo, and positive constants ¢, C, such that
o c|¢P —1 <F(-,6)< C(L+|€P) (coercivity, continuity)
® 0 < Wea(A)< CIAP

) T for oo “W’L / T,ﬁ -k / Example for f and W,:
\ l‘ T amumphen |
\ o £(¢.€) = ICIA(lel),
\i f1(¢,0) =0, i convex and
\\‘\ increasing
‘2\ e Wiai(A) = fo(detA) >0, £
B p I e convex and (1) =0

There is a competition between f; (min for { = A-{ =0) and £ (min for
detA =1).
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Rigorous derivation of a continuous model
Theorem (Alicandro-Cicalese-G.)

Let the polymer-chain network be a regular stochastic lattice. Then the
rescaled free energy functional

E-(-, D) : Lgic(D)

v

- R
— E.(v,D)
almost surely T'(LP)-converges to

E(-,D):LP(D) — R
. fD (Vv(x))dx ifve WHP(D,RY)
otherwise

The energy density W : My4(R) — R* is quasiconvex, satisfies standard
p-growth conditions and is given by

W(A) = Jim % inf {E1(v, Qu), v(x) = A - x for d(x,dQn) < R} .
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Mechanical properties

Hyperelasticity:

The energy density only depends locally on the gradient of the deformation.

Frame-invariance:
The homogenized energy density W is frame-invariant if

* (6.6 =<9
® W, is frame-invariant: Wy 1(AR) = Wyai(A), for all A € M4(R) and
R e SOd

Natural states

Theorem (Alicandro-Cicalese-G.)

If the homogenized energy density W is isotropic, then there is a dilation
A = ald among its natural states. (Based on a result by Mizel.)
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Mechanical properties

Strong ellipticity
Theorem (G.)

In general, W can lose strong ellipticity (cf. continuous homogenization). In
the present case (due to specific properties of the polymer chains energies), W
is strongly elliptic (at least in a perturbation regime).

Isotropy
Theorem (Alicandro-Cicalese-G.)

If the stochastic network is isotropic in the mean, and if
o £(¢,&) = F(¢ D)
® W, is isotropic: Wyoi(RN) = Weai(A), for all A € M4(R) and R € SOy,

then the homogenized energy density W is isotropic.
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Existence and approximation of isotropic stochastic lattices

Simplest isotropic stochastic lattice possible: random parking model
e pick uniformly infinitely many unit rigid balls in Qr = (—R/2, R/2)¢,
® accept a ball if it does not overlap with previously accepted balls,
e continue till Qg is packed,
® let R — oo.

This procedure rigorously defines a stochastic lattice on R? (random parking
measure, cf. Penrose '01).

Theorem (G.-Penrose)

The random parking measure on RY is regular, ergodic, and isotropic. It can be
approximated on bounded domains as above, and this approximation is
consistent with the homogenization procedure.
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Numerical approximation of W

Procedure:
® generate several approximations of the parking measure on Qg,
® construct the associated Delaunay tesselations,

e for any deformation gradient A and each tesselation, minimize the energy
of the network in Qg, the end-to-end points x close to 9Qgr being
deformed as A - x,

® compute the spatial average of the associated stress tensor for each
tesselation.

® the empirical average of the stress tensors is the desired approximation of
Gr ().

Analysis of the influence of randomness in a simpler case in joint works with F.
Otto (MPIMS), J.-C. Mourrat (EPFL), and S. Neukamm (MPIMS).
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Example of random tesselation




Comparison to Treloar’'s experiments

,/Ab

Pure shear, and uniaxial experiments (G., Le Tallec, Vidrascu)
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Comparison to physical experiments

Is the geometry of the model physically realistic ?
No: the connectivity of a Delaunay (around 20 in dimension 3) is too high.
In rubber: connectivity between 3 and 4.

~ modify the network

Numerical difficulties: lose local coercivity.
In progress (G., Le Tallec, Lequeux, Vidrascu)
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Analytical approximation for W 7

Our numerical approximation of the energy density W is not a practical
quantity: for each A, W/(A) is obtained by an expensive numerical computation.
e Idea: find some analytical expression W close to W.

® In which class ?
Use the know how of mechanics | Take for W an Ogden material.

® Properties: hyperelastic, isotropic, polyconvex, strongly elliptic... as
desired.

e Drawback: many parameters to fit.

However, one can generate as many data as we want, in any mechanical
regime (“in silico experiments”).

~ avoid the issue “number of parameters > number of data".

e Numerical parameter-estimation procedure: genetic algorithm.

In progress (de Buhan, G., Le Tallec, Lequeux, Vidrascu)
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Some perspectives

e Compare to physical experiments (cf. talk by Francois Boué),

Model Mullins' effect or fatigue phenomena at the discrete level,

Rigorous derivation of a macroscopic model for Mullins or fatigue ?
e Numerical simulation of the evolution of W 7

Evolution of W ?

Thanks for your attention !
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