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Consider a simple imaging problem: detection and localization of a point reflector.
— “All” methods work.

Add noise.

— Which method is best 7
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The array response matrix (in an ideal world)

e Time-harmonic waves emitted by point sources

and recorded by point sensors Y,

e Array of n elements {y1,...,yn}.

\ $2
/

e Uu(y,,y;) = field recorded by the sensor at y; Yi

when the sensor at y; emits a time-harmonic

array

signal at frequency w.
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The array response matrix (in an ideal world)

e Time-harmonic waves emitted by point sources

and recorded by point sensors Y,

e Array of n elements {y1,...,yn}.

\ $2
/

e Uu(y;,y;) = field recorded by the sensor at y; Yi

when the sensor at y; emits a time-harmonic

array

signal at frequency w.

e Response matrix Ao = ((Ao);i1);,i=1,...» in a known environment:

A

(Ao)ji = uw(yj, i) — Go(y;, yr)

where
- u(y;,y:) the field recorded by the sensor at y; when the sensor at y; emits.
- Go(y;, 1) is the incident field (Green’s function of the background medium).
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A simple model: a point reflector in a constant background (1/2)

2
w

Scalar wave equation: Agu(x,y) + %f&(w, Y) = —0y(x).

In the presence of a localized reflector in the search domain §2:

1 1

2 () = % (1 + UrVref(CU))

- ¢p is the known background speed (supposed constant),

- the local variation Viet(®) = 1o, (& — Trer) represents the reflector at @yor, where

3

(e is a compactly supported domain with volume [;.

e Response matrix Ao = ((Ao);j1)j,1=1,....n:

(Ao)ji = (y;, Y1) — Go(ys, yr)
- u(y;,y:) the field recorded by the sensor at y; when the sensor at y; emits:

2

Awﬁ,(a}, yl) + CCU_Q (]- + O-r‘/ref(w))ﬁ’(wa yl) — _5yl (w)
0

A

- Go(yj,y:) is the incident field:

A ot eo |¥i— il

GO(yj,yl> — 47_‘_|y — yll
J
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A simple model: a point reflector in a constant background (2/2)

e If the reflector is small, the response matrix has the form (Born approximation):

2

~ w A
(Ao)j1 = Go(z;, wref)C_QO'rl?efGO(wref; )
0

or equivalently:

n

2
. w A
AO — O-refg(wref)g(wref)T; with Oref = C_QO-rl?ef( E |G0(wref7 wl)|2)

0 =1
- oy is the scattering amplitude of the reflector,
- [ is the volume of the reflector,
- g(x) is the normalized vector of Green’s functions from the array to the point @:
1 R
g(x) = 1/2 (Go(z, wj))j:l,...,n

(3121 [Go(, 20)[?)

The matrix A has rank 1 and its unique non-zero singular value is oyet.
Remark: other possible models: perfectly conducting crack, small inclusion, ...
Question 1: What is the structure of the (SVD of the) measured matrix A in the

presence of noise 7 When do we sound the alarm (presence of a reflector) ?
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Imaging functionals (1/3)

Let A be the (symmetrized) measured response matrix. Perform a SVD:

A= Zam B (T

Remember that the unperturbed matrix is Ag = arefg(wref)g(wref)T.

e MUSIC functional (P =projection on image space of A=projection on span(v1)):

Tuusic(z) = ||(T - P)g(@)|| " = [|lg(@) — (v g(z))o®|

e Reverse-Time migration functional:
Irr(z) = g(z) Ag(x)

e Kirchhoft Migration functional:
—T —_—

Ixm(x) = d(x) Ad(x)

where

d(x) = % (eXP(Zim N w”’))j:1,...,n
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Imaging functionals (2/3)

A general imaging functional can be obtained using a weighted-subspace migration:

Ism(x,w) = —T[Zwl (l) (l))T}@

= Zwl —T (l))

where w(x) = (w;(x))i=1,... » are (complex) weights.

e Denote wl(l)(a:) = o, Then Zsm(z, w'")) corresponds to Reverse-Time migration:

Tsm(, w') = Tar(x)

e Denote w( )(x) = exp ( i2arg (g(x )T ( ))) 1:(1). Then Zsm(z, w'®) corresponds
to MUSIC:

Tuwsicls) = ote) - (0 g@)o®|” = (1~ [g o)
— (1—ISM(ij(2)))—1/2
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Imaging functionals (3/3)
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Imaging functionals for a point reflector in the absence of noise.
Left: Reverse-Time migration, center: Kirchhoff Migration, right: MUSIC (or more
exactly, 1 — Zmusic (CU)_2).

Question 2: What is the best imaging functional to localize a reflector in the presence
of noise 7
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A point reflector in a noisy environment: the response matrix

e In the presence of a reflector and noise, the response matrix A has the form

A=A+ W

e The matrix Ay is the rank-one matrix that corresponds to the reflector.
e The matrix W models noise.

Assume that:
there is additive measurement noise (and symmetrize the matrix, since the

unperturbed response matrix is symmetric).

Then:

The matrix W is complex symmetric Gaussian, i.e., W,;; = Wi; and Wj;, 7 <[ obey
independent complex Gaussian random variables with mean zero and variance 62 off
the diagonal (j # 1) and 26 on the diagonal (j = 1).
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The response matrix without reflector and with noise

e Denote
- afn’) > agn) > aén) > ... > g™ the singular values of the response matrix A.

- Onoise = /16 where 67 is the variance of the entries of the matrix.

In the regime n > 1 (number of sensors > 1):

#(

a) The singular values (0;");j=1,...,n follow a quarter-circle distribution:

b
%Card(j =1,...,n, a§n) € la, b]) iy L / pqc(L)da

O noise noise

1Vi—-02 f0<o<2,

0 otherwise.

Pac(o) =
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Histogram of the singular values for three realizations of the random matrix
(n — ].OO, Onoise — ].).

Histogram of the singular values for three realizations of the random matrix
(n = 1000, Onoise — 1).
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The response matrix without reflector and with noise

e Denote

- a%n) > aén) > aén) > ... > o™ the singular values of the response matrix A.

- Onoise = /18 where 67 is the variance of the entries of the matrix.
In the regime n > 1 (number of sensors > 1):

b) The largest singular value satisfies
an’) = Onoise [2 1272837237 4 o(n_2/3)]

where Z; follows a type 1 Tracy-Widom distribution (E[Z;] ~ —1.21, Var(Z;) >~ 1.61).
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Histogram of 22/3p2/ 3(0§n) /Onoise — 2) obtained from MC simulations with n = 50 in
the absence of reflector (solid) and compared with the theoretical type 1
Tracy-Widom distribution (dashed).
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The response matrix with a point reflector and with noise

e Denote

- aY") > aén) > aén) > ... > g™ the singular values of the response matrix A.

- Onoise = /18 where 67 is the variance of the entries of the matrix.
In the regime n > 1 (number of sensors > 1):

a) The second singular value satisfies o\ ~ 20 poise[1 + O(n~2/3)],

the singular values (a](.")) j=2,...n follow a quarter-circle distribution.
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The response matrix with a point reflector and with noise

e Denote
- afn’) > aén) > aén) > ... > g™ the singular values of the response matrix A.

- Onoise = /16 where 67 is the variance of the entries of the matrix.
In the regime n > 1 (number of sensors > 1):

a) The second singular value satisfies 03" ~ 20 neise|[1 + O(n~2/3)],

the singular values (a§")) j=2,...n follow a quarter-circle distribution.

b1) If onoise < Oref, then the largest singular value satisfies
_ _ _ _9\1/2
O-](_n) — Jref |:]~ _|_ O-IQIOiSGO-re? _|_ n 1/20-1101860-1‘6% (1 o O-IQIOiSeO-re?) / ZO _|_ 0(n1/2)]

where 7y follows a standard Gaussian distribution.

b2) If onoise > Oref, then the largest singular value satisfies
J%n) = Onoise |2 + 27230287, 4 o(n_2/3)]
where Z; follows a type 1 Tracy-Widom distribution (E[Z;] ~ —1.21, Var(Z;) ~ 1.61).

Proof: random matrix theory.
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Consider
N

(25 S0, (0§)2) 12

In the regime n > 1 (number of sensors > 1)

R =

e In the absence of reflector,

dist. 1

= 2+22/?)”2/?)Z1

where Z; follows a type 1 Tracy-Widom distribution.

e In the presence of a reflector, if oef > Onoise, then

dist. Oref O noise 1 -2
R = + + — \/1 o O-IQIOiSGO-I'ef ZO
Onoise Oref \/ﬁ

where 7y follows a standard Gaussian distribution.

dist. :
If 0rof < Opoise then R "= 2 + le, as in the absence of a reflector !
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e Detection test with level r: If the data gives R, then sound the alarm if R > r.

e The false alarm rate (FAR) is the probability to sound the alarm when there is no

reflector:
FAR = P(R > r| without reflector )

The probability of detection (POD) is the probability to sound the alarm when there
is a reflector:
POD = P(R > r| with reflector )
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e Detection test with level r: If the data gives R, then sound the alarm if R > r.

e The false alarm rate (FAR) is the probability to sound the alarm when there is no
reflector:
FAR = P(R > r| without reflector )

The probability of detection (POD) is the probability to sound the alarm when there
is a reflector:
POD = P(R > r| with reflector )

e Fix a € (0,1). Choose

1 1
Ta = 2 + W@Twl(l — Ck),

where ®1wi is the type 1 Tracy-Widom cumulative distribution function. For
instance, ® v (0.95) ~ 0.98. Main results:

e The FAR of the test R > r, is a.

e The POD of the test R > r, is

O_O'ref _|_ O';loise — Ty
POD max Oé @ noise ref
\/]- Unoise/aref)2

where ® is the standard Gaussian cumulative distribution function.

e By Neyman-Pearson lemma the test R > r, maximizes the POD for a given FAR «a.
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The POD increases with the number n of sensors, with oyef /Onoise, and with the

FAR a.

POD

—a=0.1
---a =0.05
--a=0.01

The SV-based test becomes powerful when o,ef > Onoise.

CEMRACS
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Migration-based detection test

Reverse-Time imaging functional:

T 1 A
Irr(z) = g(x) Ag(z) with g(x) = A 1/2 Go(z, x;) j=1,...,n
7/ 7 7 (>, |Go(z, x1)|?) / ( ) o

e Imaging of a point reflector without noise: Zrt is a peak centered at @, f:

g(@ret))’

h =point spread function; maximal at 0 (Cauchy-Schwartz); h(0) = 1.

—T
IRT (w) — O'refh(a: - wref) — Oref (Q(CU)

e Full aperture:

h(z) = sinc? (71*”0"' )

— the width of the function h(x) is Ao/2 (diffraction limit).
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e Imaging of noise without reflector: Zrt is a speckle pattern, i.e. a stationary

Gaussian random field with mean zero, variance 262, and covariance function:
E[IRT (a:)IRT (y)} = 252h(a3 — y)

The hotspot volume is defined by

73/? 2
Vo= qamre H=(C8h0),,
e Full aperture:
872 332 4
H=_-—-I Ve = A
3N (2m)3/2 7
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e Consider

o 1Tl

I Zrr 172
In the regime n > 1 (number of sensors > 1) and |Q2| > V. (search volume > hotspot

volume):

a) In the absence of a reflector, then

dist. . |9 3 €]
n V. + 5 InIn V.

where Z follows a Gumbel distribution.

—l_Z,

b) In the presence of a reflector, then

it + = ) Inln — £
V.. 2

2
dist. o Oref
S = max{ ref 4 222 70, In

252 T s +Z}

where Zy follows a standard Gaussian distribution and is independent of Z.

Proof: extreme value theory for random fields.
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e Maigration-based detection test: If the data gives S, sound the alarm if S > s.
Fix a € (0,1). Choose

Sa :lnﬂ—|—§lnln |Q’

(1 —
V. 79 7, T % (1—a),

where @ (z) = exp(—e™ ") is the Gumbel cumulative distribution function. For
instance ®;'(0.95) ~ 2.97.

Main results:
e The false alarm rate (FAR) of the test S > s, is a.
e The probability of detection (POD) of the test S > s, is

2
Tref _
POD = max {CD( 26— %o ) , a}
et

where ® is the standard Gaussian cumulative distribution function.

e By Neyman Pearson lemma, the test S > s, maximizes the POD for a given FAR «a.
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—0a=0.1
0.8/| a=0.05
--0a=0.01
A 0.67
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The migration-based test becomes powerful when oyer > /28 In'/2(|Q|/V52).
Remember: onoise = 1/19.
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Comparison between SV-based test and migration-based test

e The migration-based test becomes powerful when orer > /26 In'/2(|Q|/V5).
e The SV-based test becomes powerful when oot > d/n.

e Therefore the migration-based test is more (resp. less) powerful than the SV-based
test when n > (resp. <) 2In(|Q|/VL).

e In practice, we usually have n > 21In(|Q2|/V.), and therefore the migration-based test
is more efficient than the SV-based test.

e The SV-based test is simpler to implement than the migration-based test.
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Optimal migration for localization

e Given the parameters « (the reflector location), o (the reflector singular value), and

6 (the noise variance), the likelihood of the observations A is proportional to

1
lo (A | x, o, 52) = S exp (

A~ ag(m)g(w)TH?)
202

e Prior information on (x, o, 5°): nothing (Jeffrey prior).

e Bayes theorem: Given the observations A, the likelihood function of the parameters
x (the reflector location), o (the reflector singular value), and 6* (the noise variance)

is proportional to

1 |A —og(z)g(x)T]|;
l0<w70752|A):meXp(— 552 F)

e The maximum likelihood estimate @& of  (and the nuisance parameters 6° and o) is

found by maximizing the likelihood function. Main result:

& = argmax [Igr ()|’
€T

— Reverse-Time migration is the best method in the presence of additive noise.

CEMRACS August 3, 2011



Proof. Given the observations A, the likelihood function of the parameters x (the
reflector location), o (the reflector singular value), and 6 (the noise variance) is

proportional to

lo(z,0,6° | A) =

1 |A — og(z)g(x)T||;
gn2+n+1 CXp ( o 252 F)

The maximum likelihood estimate @& of & (and the nuisance parameters 6% and o) is

found by maximizing the likelihood function:

(’.i:,&, 52) — argmax g (a:,a, 5% | A).

x,0,62

We first eliminate 6° by requiring

8l0 (a:, g, 52 ’ A)

Bh) =0

This gives

o A og(@a@) [}
n?24+n-+1

and the likelihood ratio is then proportional to

Y

lo (:B o, 52 | A) ~ HA —og(x H_(n Tntl)/2
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Since A is complex symmetric it admits a symmetric SVD: there exist unitary vectors

v and nonnegative numbers o) (the singular values) such that
- T
A — Z OMOMO,
=1

We can write
2 - - 2
|A —og(z)g(2)" ||}, = [|o — og(=)]],
for 9 =) 1, oWv @ 0" and g(z) = g(z) ® g(x). Using ||g(z)|2 = [|lg(z)|” = 1,

T

& = argmin||o — og(x)||5 = g(x)

Therefore the estimate @ derives from maximizing the MUSIC-type function
T 2
& = argminHﬁ — (§(=) f))g(w)H
x 2

Note however that & is not the maximizer of the MUSIC functional since all singular
vectors (weighted by the singular values) contribute to ©. We have in fact

2 ik 2
|6 - @@ ®)g@|; =83 -|g@ 8 = II8I3—|> 0" (g@) »")’
=1

= ||AllF — |Zrr(2)]”

This gives & = argmin(||A |7 — |Zrr(x)|?).

963
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Optimal migration for localization

Important remark:
The Bayesian localization scheme can be used once the detection test has passed.
Bayesian analysis is powerful but depends on the prior.

Here the prior is: there exists a reflector.
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Statistical analysis of localization error

Optimal estimator:

T = argmax }IRT(:U)‘Q
xr

To leading order in §/oyer, the estimator & is unbiased and its covariance matrix is

. . 6%
O ref
Full aperture: E[(£; — @ret,j)?] = 0572%)\(2)7 j=1,...,3
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Imaging functionals in the absence of noise.

Left: reverse-time migration, center: Kirchhoff migration, right: MUSIC.
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Imaging functionals in the presence of noise.
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Standard deviation of the estimated reflector location obtained with three different

imaging methods (here Ao = 1, n = 100).
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Conclusions

e Statistical and stochastic tools:

- Random matrix theory: description of the distribution of the singular values of the
array response matrix in a noisy environment.

- Extreme value theory: description of the speckle pattern obtained by migration
(backpropagation) of the array data.

- Bayesian analysis: optimal localization of a target.

e Optimal tests involve non-Gaussian distributions (Gumbel, Tracy-Widom).

e What is important is the structure of the response matrix (symmetric, Hermitian,

Hankel, Toeplitz, ...), not much the marginal distribution of the entries.

e It is possible to extend the results to

- several reflectors, cracks, or inclusions,

- other noisy environments (random medium in the single-scattering regime for
instance).

The main hypothesis is that the information is low-rank while the noise is high-rank.
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