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Consider a simple imaging problem: detection and localization of a point reflector.

→ “All” methods work.

Add noise.

→ Which method is best ?
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The array response matrix (in an ideal world)

• Time-harmonic waves emitted by point sources

and recorded by point sensors

• Array of n elements {y1, . . . ,yn}.

• û(yj ,yl) = field recorded by the sensor at yj

when the sensor at yl emits a time-harmonic

signal at frequency ω.
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The array response matrix (in an ideal world)

• Time-harmonic waves emitted by point sources

and recorded by point sensors

• Array of n elements {y1, . . . ,yn}.

• û(yj ,yl) = field recorded by the sensor at yj

when the sensor at yl emits a time-harmonic

signal at frequency ω.

• Response matrix A0 = ((A0)jl)j,l=1,...,n in a known environment:

(A0)jl = û(yj ,yl)− Ĝ0(yj ,yl)

where

- û(yj ,yl) the field recorded by the sensor at yj when the sensor at yl emits.

- Ĝ0(yj ,yl) is the incident field (Green’s function of the background medium).
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A simple model: a point reflector in a constant background (1/2)

Scalar wave equation: ∆xû(x,y) +
ω2

c2(x)
û(x,y) = −δy(x).

In the presence of a localized reflector in the search domain Ω:

1

c2(x)
=

1

c20

(

1 + σrVref(x)
)

- c0 is the known background speed (supposed constant),

- the local variation Vref(x) = 1Ωref
(x− xref) represents the reflector at xref , where

Ωref is a compactly supported domain with volume l3ref .

• Response matrix A0 = ((A0)jl)j,l=1,...,n:

(A0)jl = û(yj ,yl)− Ĝ0(yj ,yl)

- û(yj ,yl) the field recorded by the sensor at yj when the sensor at yl emits:

∆xû(x,yl) +
ω2

c20

(

1 + σrVref(x)
)

û(x,yl) = −δyl(x)

- Ĝ0(yj ,yl) is the incident field:

Ĝ0(yj ,yl) =
e
i ω
c0

|yj−yl|

4π|yj − yl|
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A simple model: a point reflector in a constant background (2/2)

• If the reflector is small, the response matrix has the form (Born approximation):

(A0)jl = Ĝ0(xj ,xref)
ω2

c20
σrl

3
refĜ0(xref ,xl)

or equivalently:

A0 = σrefg(xref)g(xref)
T , with σref =

ω2

c20
σrl

3
ref

(

n
∑

l=1

|Ĝ0(xref ,xl)|2
)

- σr is the scattering amplitude of the reflector,

- l3ref is the volume of the reflector,

- g(x) is the normalized vector of Green’s functions from the array to the point x:

g(x) =
1

(
∑n

l=1 |Ĝ0(x,xl)|2
)1/2

(

Ĝ0(x,xj)
)

j=1,...,n

The matrix A0 has rank 1 and its unique non-zero singular value is σref .

Remark: other possible models: perfectly conducting crack, small inclusion, ...

Question 1: What is the structure of the (SVD of the) measured matrix A in the

presence of noise ? When do we sound the alarm (presence of a reflector) ?
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Imaging functionals (1/3)

Let A be the (symmetrized) measured response matrix. Perform a SVD:

A =

n
∑

l=1

σ(l)
v
(l)(v(l))T

Remember that the unperturbed matrix is A0 = σrefg(xref)g(xref)
T .

• MUSIC functional (P =projection on image space of A=projection on span(v(1))):

IMUSIC(x) =
∥

∥(I−P)g(x)
∥

∥

−1
=
∥

∥g(x)−
(

v(1)
T
g(x)

)

v
(1)
∥

∥

−1

• Reverse-Time migration functional:

IRT(x) = g(x)
T
Ag(x)

• Kirchhoff Migration functional:

IKM(x) = d(x)
T
Ad(x)

where

d(x) =
1√
n

(

exp(i
ω

c0
|x− xj |)

)

j=1,...,n
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Imaging functionals (2/3)

A general imaging functional can be obtained using a weighted-subspace migration:

ISM(x,w) = g(x)
T
[

n
∑

l=1

wl(x)v
(l)(v(l))T

]

g(x)

=
n
∑

l=1

wl(x)
(

g(x)
T
v
(l))2

where w(x) = (wl(x))l=1,...,n are (complex) weights.

• Denote w
(1)
l (x) = σ(l). Then ISM(x,w(1)) corresponds to Reverse-Time migration:

ISM(x,w(1)) = IRT(x)

• Denote w
(2)
l (x) = exp

(

−i2 arg
(

g(x)
T
v(1)

)

)

11(l). Then ISM(x,w(2)) corresponds

to MUSIC:

IMUSIC(x) =
∥

∥g(x)−
(

v(1)
T
g(x)

)

v
(1)
∥

∥

−1
=
(

1−
∣

∣g(x)
T
v
(1)
∣

∣

2)−1/2

=
(

1− ISM(x,w(2))
)−1/2
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Imaging functionals (3/3)

Imaging functionals for a point reflector in the absence of noise.

Left: Reverse-Time migration, center: Kirchhoff Migration, right: MUSIC (or more

exactly, 1− IMUSIC(x)
−2).

Question 2: What is the best imaging functional to localize a reflector in the presence

of noise ?
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A point reflector in a noisy environment: the response matrix

• In the presence of a reflector and noise, the response matrix A has the form

A = A0 +W

• The matrix A0 is the rank-one matrix that corresponds to the reflector.

• The matrix W models noise.

Assume that:

there is additive measurement noise (and symmetrize the matrix, since the

unperturbed response matrix is symmetric).

Then:

The matrix W is complex symmetric Gaussian, i.e., Wjl = Wlj and Wjl, j ≤ l obey

independent complex Gaussian random variables with mean zero and variance δ2 off

the diagonal (j 6= l) and 2δ2 on the diagonal (j = l).
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The response matrix without reflector and with noise

• Denote

- σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of the response matrix A.

- σnoise =
√
nδ where δ2 is the variance of the entries of the matrix.

In the regime n ≫ 1 (number of sensors ≫ 1):

a) The singular values (σ
(n)
j )j=1,...,n follow a quarter-circle distribution:

1

n
Card

(

j = 1, . . . , n , σ
(n)
j ∈ [a, b]

) n→∞−→ 1

σnoise

∫ b

a

ρqc
( σ

σnoise

)

dσ

ρqc(σ) =







1
π

√
4− σ2 if 0 < σ ≤ 2,

0 otherwise.
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Histogram of the singular values for three realizations of the random matrix

(n = 100, σnoise = 1).
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Histogram of the singular values for three realizations of the random matrix

(n = 1000, σnoise = 1).
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The response matrix without reflector and with noise

• Denote

- σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of the response matrix A.

- σnoise =
√
nδ where δ2 is the variance of the entries of the matrix.

In the regime n ≫ 1 (number of sensors ≫ 1):

b) The largest singular value satisfies

σ
(n)
1 = σnoise

[

2 + 2−2/3n−2/3Z1 + o(n−2/3)
]

where Z1 follows a type 1 Tracy-Widom distribution (E[Z1] ≃ −1.21, Var(Z1) ≃ 1.61).
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Histogram of 22/3n2/3(σ
(n)
1 /σnoise − 2) obtained from MC simulations with n = 50 in

the absence of reflector (solid) and compared with the theoretical type 1

Tracy-Widom distribution (dashed).
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The response matrix with a point reflector and with noise

• Denote

- σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of the response matrix A.

- σnoise =
√
nδ where δ2 is the variance of the entries of the matrix.

In the regime n ≫ 1 (number of sensors ≫ 1):

a) The second singular value satisfies σ
(n)
2 ≃ 2σnoise[1 +O(n−2/3)],

the singular values (σ
(n)
j )j=2,...,n follow a quarter-circle distribution.
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The response matrix with a point reflector and with noise

• Denote

- σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of the response matrix A.

- σnoise =
√
nδ where δ2 is the variance of the entries of the matrix.

In the regime n ≫ 1 (number of sensors ≫ 1):

a) The second singular value satisfies σ
(n)
2 ≃ 2σnoise[1 +O(n−2/3)],

the singular values (σ
(n)
j )j=2,...,n follow a quarter-circle distribution.

b1) If σnoise < σref , then the largest singular value satisfies

σ
(n)
1 = σref

[

1 + σ2
noiseσ

−2
ref + n−1/2σnoiseσ

−1
ref

(

1− σ2
noiseσ

−2
ref

)1/2
Z0 + o(n1/2)

]

where Z0 follows a standard Gaussian distribution.

b2) If σnoise > σref , then the largest singular value satisfies

σ
(n)
1 = σnoise

[

2 + 2−2/3n−2/3Z1 + o(n−2/3)
]

where Z1 follows a type 1 Tracy-Widom distribution (E[Z1] ≃ −1.21, Var(Z1) ≃ 1.61).

Proof: random matrix theory.
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Consider

R :=
σ
(n)
1

(

1
n−2

∑n
j=2(σ

(n)
j )2

)1/2

In the regime n ≫ 1 (number of sensors ≫ 1)

• In the absence of reflector,

R
dist.
= 2 +

1

22/3n2/3
Z1

where Z1 follows a type 1 Tracy-Widom distribution.

• In the presence of a reflector, if σref > σnoise, then

R
dist.
=

σref

σnoise
+

σnoise

σref
+

1√
n

√

1− σ2
noiseσ

−2
refZ0

where Z0 follows a standard Gaussian distribution.

If σref < σnoise then R
dist.
= 2 + 1

22/3n2/3Z1, as in the absence of a reflector !
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• Detection test with level r: If the data gives R, then sound the alarm if R > r.

• The false alarm rate (FAR) is the probability to sound the alarm when there is no

reflector:

FAR = P(R > r| without reflector )
The probability of detection (POD) is the probability to sound the alarm when there

is a reflector:

POD = P(R > r| with reflector )
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• Detection test with level r: If the data gives R, then sound the alarm if R > r.

• The false alarm rate (FAR) is the probability to sound the alarm when there is no

reflector:

FAR = P(R > r| without reflector )
The probability of detection (POD) is the probability to sound the alarm when there

is a reflector:

POD = P(R > r| with reflector )

• Fix α ∈ (0, 1). Choose

rα = 2 +
1

22/3n2/3
Φ−1

TW1(1− α),

where ΦTW1 is the type 1 Tracy-Widom cumulative distribution function. For

instance, Φ−1
TW1(0.95) ≃ 0.98. Main results:

• The FAR of the test R > rα is α.

• The POD of the test R > rα is

POD = max

{

α,Φ

(

√
n

σref

σnoise
+ σnoise

σref
− rα

√

1− (σnoise/σref)2

)}

where Φ is the standard Gaussian cumulative distribution function.

• By Neyman-Pearson lemma the test R > rα maximizes the POD for a given FAR α.
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The POD increases with the number n of sensors, with σref/σnoise, and with the

FAR α.
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The SV-based test becomes powerful when σref > σnoise.
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Migration-based detection test

Reverse-Time imaging functional:

IRT(x) = g(x)
T
Ag(x) with g(x) =

1
(
∑n

l=1 |Ĝ0(x,xl)|2
)1/2

(

Ĝ0(x,xj)
)

j=1,...,n

• Imaging of a point reflector without noise: IRT is a peak centered at xref :

IRT(x) = σrefh(x− xref) = σref

(

g(x)
T
g(xref)

)2

h =point spread function; maximal at 0 (Cauchy-Schwartz); h(0) = 1.

• Full aperture:

h(x) = sinc2
(π|x|

λ0

)

→֒ the width of the function h(x) is λ0/2 (diffraction limit).
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• Imaging of noise without reflector: IRT is a speckle pattern, i.e. a stationary

Gaussian random field with mean zero, variance 2δ2, and covariance function:

E
[

IRT(x)IRT(y)
]

= 2δ2h(x− y)

The hotspot volume is defined by

Vc =
π3/2

(detH)1/2
, H =

(

− ∂2
xjxl

h(0)
)

j,l=1,...,3
.

• Full aperture:

H =
8π2

3λ2
0

I, Vc =
33/2

(2π)3/2
λ3
0
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With reflector, without noise Without reflector, with noise

Point spread function Speckle pattern

With reflector, with noise
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• Consider

S :=
‖IRT‖2L∞(Ω)|Ω|
‖IRT‖2L2(Ω)

.

In the regime n ≫ 1 (number of sensors ≫ 1) and |Ω| ≫ Vc (search volume ≫ hotspot

volume):

a) In the absence of a reflector, then

S
dist.
= ln

|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

+ Z,

where Z follows a Gumbel distribution.

b) In the presence of a reflector, then

S
dist.
= max

{σ2
ref

2δ2
+

σref

δ
Z0 , ln

|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

+ Z
}

,

where Z0 follows a standard Gaussian distribution and is independent of Z.

Proof: extreme value theory for random fields.
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• Migration-based detection test: If the data gives S, sound the alarm if S > s.

Fix α ∈ (0, 1). Choose

sα = ln
|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

+ Φ−1
G (1− α),

where ΦG(x) = exp(−e−x) is the Gumbel cumulative distribution function. For

instance Φ−1
G (0.95) ≃ 2.97.

Main results:

• The false alarm rate (FAR) of the test S > sα is α.

• The probability of detection (POD) of the test S > sα is

POD = max

{

Φ

( σ2

ref

2δ2
− sα

σref

δ

)

, α

}

where Φ is the standard Gaussian cumulative distribution function.

• By Neyman Pearson lemma, the test S > sα maximizes the POD for a given FAR α.
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The migration-based test becomes powerful when σref >
√
2δ ln1/2(|Ω|/Vc).

Remember: σnoise =
√
nδ.
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Comparison between SV-based test and migration-based test

• The migration-based test becomes powerful when σref >
√
2δ ln1/2(|Ω|/Vc).

• The SV-based test becomes powerful when σref > δ
√
n.

• Therefore the migration-based test is more (resp. less) powerful than the SV-based

test when n > (resp. <) 2 ln(|Ω|/Vc).

• In practice, we usually have n > 2 ln(|Ω|/Vc), and therefore the migration-based test

is more efficient than the SV-based test.

• The SV-based test is simpler to implement than the migration-based test.
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Optimal migration for localization

• Given the parameters x (the reflector location), σ (the reflector singular value), and

δ2 (the noise variance), the likelihood of the observations A is proportional to

l0
(

A | x, σ, δ2
)

=
1

δn2+n
exp

(

−
∥

∥A− σg(x)g(x)T
∥

∥

2

F

2δ2

)

• Prior information on (x, σ, δ2): nothing (Jeffrey prior).

• Bayes theorem: Given the observations A, the likelihood function of the parameters

x (the reflector location), σ (the reflector singular value), and δ2 (the noise variance)

is proportional to

l0
(

x, σ, δ2 | A
)

=
1

δn2+n+1
exp

(

−
∥

∥A− σg(x)g(x)T
∥

∥

2

F

2δ2

)

• The maximum likelihood estimate x̂ of x (and the nuisance parameters δ2 and σ) is

found by maximizing the likelihood function. Main result:

x̂ = argmax
x

|IRT(x)|2

→֒ Reverse-Time migration is the best method in the presence of additive noise.
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Proof. Given the observations A, the likelihood function of the parameters x (the

reflector location), σ (the reflector singular value), and δ2 (the noise variance) is

proportional to

l0
(

x, σ, δ2 | A
)

=
1

δn2+n+1
exp

(

−
∥

∥A− σg(x)g(x)T
∥

∥

2

F

2δ2

)

The maximum likelihood estimate x̂ of x (and the nuisance parameters δ2 and σ) is

found by maximizing the likelihood function:

(

x̂, σ̂, δ̂2
)

= argmax
x,σ,δ2

l0
(

x, σ, δ2 | A
)

.

We first eliminate δ2 by requiring

∂l0
(

x, σ, δ2 | A
)

∂δ
= 0.

This gives

δ̂2 =
‖A− σg(x)g(x)T ‖2F

n2 + n+ 1
,

and the likelihood ratio is then proportional to

l0
(

x, σ, δ̂2 | A
)

≃
∥

∥A− σg(x)g(x)T
∥

∥

−(n2+n+1)/2

F
.
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Since A is complex symmetric it admits a symmetric SVD: there exist unitary vectors

v(l) and nonnegative numbers σ(l) (the singular values) such that

A =

n
∑

l=1

σ(l)
v
(l)
v
(l)T

We can write
∥

∥A− σg(x)g(x)T
∥

∥

2

F
=
∥

∥ṽ − σg̃(x)
∥

∥

2

2

for ṽ =
∑n

l=1 σ
(l)v(l) ⊗ v(l) and g̃(x) = g(x)⊗ g(x). Using ‖g̃(x)‖2 = ‖g(x)‖2 = 1,

σ̂ = argmin
σ

‖ṽ − σg̃(x)‖22 = g̃(x)
T
ṽ

Therefore the estimate x̂ derives from maximizing the MUSIC-type function

x̂ = argmin
x

∥

∥

∥
ṽ −

(

g̃(x)
T
ṽ
)

g̃(x)
∥

∥

∥

2

2

Note however that x̂ is not the maximizer of the MUSIC functional since all singular

vectors (weighted by the singular values) contribute to ṽ. We have in fact

∥

∥ṽ −
(

g̃(x)
T
ṽ
)

g̃(x)
∥

∥

2

2
= ‖ṽ‖22 −

∣

∣

∣
g̃(x)

T
ṽ

∣

∣

∣

2

= ‖ṽ‖22 −
∣

∣

∣

n
∑

l=1

σ(l)(
g(x)

T
v
(l))2

∣

∣

∣

2

= ‖A‖2F − |IRT(x)|2

This gives x̂ = argmin
x

(

‖A‖2F − |IRT(x)|2
)

.
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Optimal migration for localization

Important remark:

The Bayesian localization scheme can be used once the detection test has passed.

Bayesian analysis is powerful but depends on the prior.

Here the prior is: there exists a reflector.
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Statistical analysis of localization error

Optimal estimator:

x̂ = argmax
x

∣

∣IRT(x)
∣

∣

2

To leading order in δ/σref , the estimator x̂ is unbiased and its covariance matrix is

E
[

(x̂− xref)(x̂− xref)
T ] =

δ2

σ2
ref

H
−1.

Full aperture: E
[

(x̂j − xref,j)
2
]

= δ2

σ2

ref

3
2π2 λ

2
0, j = 1, . . . , 3.
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Imaging functionals in the absence of noise.

Left: reverse-time migration, center: Kirchhoff migration, right: MUSIC.

Imaging functionals in the presence of noise.
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Standard deviation of the estimated reflector location obtained with three different

imaging methods (here λ0 = 1, n = 100).
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Conclusions

• Statistical and stochastic tools:

- Random matrix theory: description of the distribution of the singular values of the

array response matrix in a noisy environment.

- Extreme value theory: description of the speckle pattern obtained by migration

(backpropagation) of the array data.

- Bayesian analysis: optimal localization of a target.

• Optimal tests involve non-Gaussian distributions (Gumbel, Tracy-Widom).

• What is important is the structure of the response matrix (symmetric, Hermitian,

Hankel, Toeplitz, ...), not much the marginal distribution of the entries.

• It is possible to extend the results to

- several reflectors, cracks, or inclusions,

- other noisy environments (random medium in the single-scattering regime for

instance).

The main hypothesis is that the information is low-rank while the noise is high-rank.

CEMRACS August 3, 2011


