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Triply nonlinear degenerate parabolic problems...

Applications ??
Mathematical models for fluid dynamics, porous media,
sedimentation, Stefan and Hele-Shaw problems involve PDEs like

u = b(v),w = A(v),
ut + div [~F (v)− ~a0(∇w)] = f in Q = (0,T )×Ω

with b(·),A(·) continuous nonstrictly increasing on R,
with a continuous convection flux ~F (·)
and with ~a0 : RN → R

N of Leray-Lions type : the p-laplacian,
i.e., ~a0(~ξ) = |~ξ|p−2~ξ, is a typical example.
· If b(·) may be constant on intervals: elliptic-parabolic
· If A(·) may be constant on intervals: parabolic-hyperbolic.
We take homogeneous Dirichlet boundary condition on (0,T )× ∂Ω.

Theory:
Alt, Luckhaus ’83; Otto ’96; Bénilan, Wittbold ’96 and ‘96; Carrillo ’99;
Ammar, Wittbold ’03; Andr., Bendahmane, Karlsen, Ouaro ’09
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Convergence of approximations for degenerate parabolic pr oblems...

Theoretical numerical analysis ?? Arguments for convergence of
numerical approximations are the same as used for existence proof !

Namely:

1. Construct a sequence of “approximate solutions” (vh)h:
e.g., finite volume approximation !

2. Create an accumulation point v for the sequence
(compactness arguments)

3. Prove that the accumulation point is a solution of the equation
≡ pass to the limit in nonlinearities: b(vh) → b(v) ?

~F (vh) → ~F (v) ? ~a0(∇A(vh))→ ~a0(∇A(v)) ?

NB: Steps 2 and 3 are separated in “simpler” problems :

– compactness of Step 2 uses functional analysis arguments: bounds
in Sobolev spaces, compactness criteria...
– identification of nonlinear limits may use much of the PDE structure.

In “harder” problems, one has to treat simultaneously Steps 2+3 :
“compensated compactness”, entropy-process solutions...
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Finite volume approximation of nonlinear degenerate parab olic
problems...

Hint on discretization : we often need that the discrete problem inherit
“key features” of the continuous problem. Examples:

coercivity, monotonicity of the nonlinear elliptic operator
Preserved by different “discrete duality” schemes, examples :
Co-Volume schemes Walkington; Afif, Amaziane; Handlovičová,
Mikula et al.; Andreianov, Bendahmane, Karlsen...
DDFV schemes Hermeline; Domelevo, Omnès; Andreianov,
Boyer, Hubert; Pierre, Coudière, Bendahmane, Karlsen, Hubert,
Manzini, Krell... mimetic schemes Brezzi, Lipnikov, Shashkov...
gradient schemes : SUSHI,... Eymard, Gallouët, Herbin...

entropy inequalities – order preservation – L1 contraction for the
convection-diffusion operator.
Preserved by discretization of div ~F (v) with monotone two-point
finite volume schemes (e.g. Eymard, Gallouët, Herbin; Vovelle )
+ DDFV/Co-Volume/... discretization of the nonlinear elliptic

operator −div ~a0(∇A(v)) on orthogonal meshes .
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Mikula et al.; Andreianov, Bendahmane, Karlsen...
DDFV schemes Hermeline; Domelevo, Omnès; Andreianov,
Boyer, Hubert; Pierre, Coudière, Bendahmane, Karlsen, Hubert,
Manzini, Krell... mimetic schemes Brezzi, Lipnikov, Shashkov...
gradient schemes : SUSHI,... Eymard, Gallouët, Herbin...

entropy inequalities – order preservation – L1 contraction for the
convection-diffusion operator.
Preserved by discretization of div ~F (v) with monotone two-point
finite volume schemes (e.g. Eymard, Gallouët, Herbin; Vovelle )
+ DDFV/Co-Volume/... discretization of the nonlinear elliptic

operator −div ~a0(∇A(v)) on orthogonal meshes .



Degenerate Parabolic Problems & FV Discretization Theoretical foundations Meshes, operators and scheme Discrete calculus & Convergence analysis

Finite volume approximation of nonlinear degenerate parab olic
problems...

Hint on discretization : we often need that the discrete problem inherit
“key features” of the continuous problem. Examples:

coercivity, monotonicity of the nonlinear elliptic operator
Preserved by different “discrete duality” schemes, examples :
Co-Volume schemes Walkington; Afif, Amaziane; Handlovičová,
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Finite volume approximation of nonlinear degenerate parab olic
problems...

L1 contractivity of the solution semigroup
Preserved by time-implicit Euler scheme (if previous item is OK).

NB: Structure-preservation: very nice for mathematical analysis.
Efficiency ??? It depends...

When such structure-preserving schemes are used then in order to
study convergence it is enough to produce “discrete” versions of
“continuous” arguments for Steps 1 – 2 – 3 .

Then, the steps for construction of a convergent scheme are :
understand the key structure properties of the continuous equn

cook up meshes, discrete operators and discrete calculus tools
that are “compatible” with the above structure

Let us concentrate on the following issues :
The ideas of the arguments, at the continuous level
A glimpse on how the ideas work, also at the discrete level
Focus on difficulties that are proper to the discrete framework.
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THEORETICAL FOUNDATIONS
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Theoretical framework for elliptic-parabolic-hyperboli c problems...
Theoretical setting : entropy solutions + Leray-Lions framework. Key ideas:
Leray & Lions ’65 – Alt & Luckhaus ’83 ; Kruzhkov ’69 – Carrillo ’99

NB: Parallel theories and generalizations, not discussed here :

– semigroup solutions : Crandall, Bénilan, Carrillo & Wittbold
– kinetic solutions (quasilinear diffusion !) : Perthame, Chen & Perthame
– renormalized solutions : Murat & Lions, Carrillo & Wittbold, Ammar &
Wittbold, Blanchard & Porretta, Bendahmane & Karlsen
– entropy (Bénilan et al.) solutions : Bénilan & Boccardo & Gallouët &
Gariepy & Pierre & Vázquez, Andreu-Vaillo & Igbida & Mazón & Toledo .

Nice features of the solution theory:

well-posedness for L∞ data u0

order-preservation : u0 6 û0 and f 6 f̂ implies u(t , ·) 6 û(t , ·)

consequently, maximum principle : sup u(t , ·)6sup u+
0 +

∫ t
0 sup f+(τ, ·)dτ

L1-contraction : ‖u − û‖L1(t) 6 ‖u0 − û0‖L1 +
∫ t

0 ‖f (t , ·)− f̂ (t , ·)‖L1 dτ .

energy control : an a priori estimate on
∫ T

0

∫
Ω
|∇w |p .

There is more: stability wrt perturbations of nonlinearities (Karlsen & Risebro;
Chen & Karlsen ; Andr. & Bendahmane & Karlsen & Ouaro ); some
“regularity” such as existence of strong boundary traces of v (Panov ),...
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consequently, maximum principle : sup u(t , ·)6sup u+
0 +

∫ t
0 sup f+(τ, ·)dτ

L1-contraction : ‖u − û‖L1(t) 6 ‖u0 − û0‖L1 +
∫ t

0 ‖f (t , ·)− f̂ (t , ·)‖L1 dτ .

energy control : an a priori estimate on
∫ T

0

∫
Ω
|∇w |p .

There is more: stability wrt perturbations of nonlinearities (Karlsen & Risebro;
Chen & Karlsen ; Andr. & Bendahmane & Karlsen & Ouaro ); some
“regularity” such as existence of strong boundary traces of v (Panov ),...
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Theoretical framework for parabolic-hyperbolic problems ...

Estimates easy to get (at least, formally) for approximate solutions:

(existence) a priori bound on wh = A(vh) in Lp(0,T ;W 1,p
0 (Ω)) (energy

estimate) and weak compactness in Lp for ∇wh = ∇A(vh)

(existence) consequently, “strong compactness in space” for wh = A(vh)
(Fréchet-Kolmogorov theorem)

(existence) with the help of the evolution equation, “strong compactness
in time” for uh = b(vh) (Fréchet-Kolmogorov)

(uniqueness) very formally, given two solutions v , v̂ ,
multiply Eq(v)− Eq(v̂) by sign+(v−v̂); get

∫
Ω
(b(v)− b(v̂))+(t) 6 0.

(existence) Consequently, a priori L∞ bound on uh = b(vh)
(by comparison with constant solutions)

Difficulties and hints to resolve them :

(existence ?) No classical solutions =⇒ weak formulation

(uniqueness ?) Non-uniqueness of weak solutions =⇒ selection by
entropy inequalities (thus, entropy weak formulation )

(uniqueness ?) Justify the formal calculation with “sign+(v−v̂)” test
function =⇒ doubling of variables following Kruzhkov (div ~F (v)) and
Carrillo (div~a0(∇w))
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Theoretical framework for parabolic-hyperbolic problems ...

Difficulties and hints to resolve them (contd):
(boundary conditions ?) Many delicate issues =⇒
Bardos-LeRoux-Nédélec condition, Otto boundary entropies, weak or
strong boundary traces, Carrillo’s tricks (skipped in this talk)

(existence ?) “Problem of time compactness” due to elliptic degeneracy
=⇒ “structure conditions”, monotone sequences of approx. solutions
(skipped): Bénilan & Wittbold, Ammar & Wittbold, Andr. & Wittbold

(existence ?) “Problem of space compactness” due to:
non-linearity of the diffusion operator (strong compactness of
∇wh = ∇A(vh) needed) =⇒ Minty-Browder “compactification”
trick (use of the monotonicity of the Leray-Lions operator)

hyperbolic degeneracy (compactness for wh = A(vh) does not
preclude oscillations “in the flat regions of A(·)”) =⇒
measure-valued or entropy-process solutions + compactification
arguments (Tartar ; DiPerna ; Panov ; Gallouët et al. )
interactions ???: do Minty-Browder and entropy-process live well
together ? =⇒ a chain rule permits to “hide” the convection term

We are specifically interested in the space discretization therefore we skip
difficulties due to elliptic degeneracy: we take b = Id and thus u = b(v) ≡ v .
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Notion of entropy solution

Definition (entropy solution)

Assume ~a0(~ξ) = k(~ξ)~ξ .
An entropy solution of our problem is a function u : Q = (0,T )× Ω → R,

u ∈ L∞(Q) and w = A(u) ∈ Lp(0,T ;W 1,p
0 (Ω));

for all pairs (c, ψ) ∈ R
± ×D([0,T )× Ω), ψ > 0, and also for all pairs

(c, ψ) ∈ R×D([0,T )× Ω), ψ > 0,∫ T

0

∫

Ω

(
η±c (u)∂tψ+~q

±

c (u)·∇ψ−k(∇w)∇Ã
(η±

c )′
(w)·∇ψ

)
+

∫

Ω

η±c (u0)ψ(0, ·) ≥ 0.

Here η±c (r) = (r − c)± (semi-Kruzhkov entropies), (~q±c )′(r) = (η±c )′(r)~F (r)
(chain rule) and Aθ(r) = θ(r)A′(r) and Ãθ(A(r)) = Aθ(r) (another chain rule)

If we replace :

– η±c (u)(·), by
∫ 1

0 η
±
c (µ(·;α)) dα and ~q±c (u(·)), by

∫ 1
0
~q±c (µ(·;α))dα

– and if A(µ(·;α)) ≡ w for all α ∈ (0,1)

then we get the definition of an entropy-process solution µ .

Theorem (uniqueness and reduction of an entropy-process so lution)

Entropy-process solution is unique and it is an “ordinary” entropy solution.
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Notion of entropy solution
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(η±
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Ω
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MESHES, DISCRETE OPERATORS

AND THE SCHEME
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Finite volume meshes and operators...

We are given a mesh T of Ω and one degree of freedom per mesh cell .
Finite volume methods are based upon approximation of fluxes on the
interfaces between cells; we include each interface in a diamond , with
diamond mesh D that also forms a partition of Ω.

In our finite volume setting, the following operators are used :

discrete convection operator (divc
~F )T(·) , it applies to constant-per-cell

scalar functions and gives constant-per-cell scalar functions

discrete diffusion operator divT~a0(∇
TA(·)) , where

the discrete divergence operator divT~· applies to a
const.-per-diamond vector field and gives a constant-per-cell scalar
the discrete gradient operator ~∇

T

· applies to a constant-per-cell
scalar function and gives a constant per diamond vector field

NB: Because of the nonlinearity, it is not enough to define normal
components of the discrete gradient on interfaces !
There are several strategies to reconstruct the full gradient ~∇

T

wT:
Co-Volume schemes, DDFV schemes, SUSHI... Recent unifying framework:
Gradient Schemes (Eymard & Guichard & Herbin ’11 ). Other approaches:
e.g., Andr. & Boyer & Hubert on cartesian meshes; mimetic finite difference
schemes Brezzi & Lipnikov & Shashkov ,...
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Finite volume meshes and operators...

Let us describe one meshing+operators strategy: “Discrete Duality
FV”. The 2D idea is due to Hermeline and to Domelevo & Omnès .
One starts with a usual mesh (called “primal”) and uses both center
and vertex unknowns.

volume

xK

volume
primal

xK∗

dual

K

K∗

diamond
D

xK

boundary primal

volumeK∗

boundary dual

xK∗

“volume” K
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Finite volume meshes and operators...

The space of discrete functions wT =
(
(wK )K ; (wK∗)K∗

)
is denoted

by R
T , for functions zero on the boundary we use R

T

0 .
The set of discrete fields ( ~FD)D is denoted (Rd )D .

On spaces R
T and R

D, we introduce scalar products

[[
wT, vT

]]
=

1
d

∑

K∈M

mK wK vK +
d − 1

d

∑

K∗∈M
∗

mK∗ wK∗vK∗

and {{
~FT, ~GT

}}
=

∑

D∈D

mD
~FD · ~GD;

The discrete divergence operator is the usual Finite Volumes’ one:
we apply the Green-Gauss formula in each primal cell K and in each
dual cell K∗:

div T : (Rd )D −→ RT, with e.g. (div T)K
~F :=

∑

D∈D

∫

∂K∩D

~FD · νK .
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Finite volume meshes and operators...
The discrete gradient operator is of the form

∇T : RT

0 −→ (Rd)D,

where the values ∇DwT are reconstructed
per diamond from two projections: in R

2,

∇DwT =
wL − wK

dKL
νK,L +

wL∗ − wK∗

dK∗L∗
νK∗,L∗ for D = D

K ,L

NB: The 3D case offers several choices:
different constructions due to
Pierre & Coudière ; Coudière & Hubert ;
Hermeline, Andr. & Bendahmane & Hubert & Krell .
We follow the last one, called “3D CeVe-DDFV”. primal

interface
K|L

xK∗

xL

xL∗

xK

DiamondDK,L

dual
interface
K∗|L∗

The DDFV schemes enjoy discrete duality:

Proposition (discrete duality)

For vT ∈ R
T

0 and ~FT ∈ (Rd )D,
[[
− div T[ ~FT] , vT

]]
=

{{
~FT , ∇TvT

}}
.

With this property, all “variational” techniques can be used at the discrete
level ! The discretization of the Leray-Lions diffusion operator − div~a0(∇·) by
− divT~a0(∇

T·) preserves the key features of the continuous operator:
coercivity, monotonicity, growth, existence of a potential...
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Finite volume scheme for the problem...

In addition, we take a usual two-point monotone consistent flux
approximation to produce a discrete operator (divc

~F )T(·) which
approximates the convection operator div ~F (·).
With the notation introduced above, our discretization writes:

find a discrete function uT,∆t satisfying for n = 1, . . . ,N = T/∆t the equations
∣∣∣∣∣∣

uT,n − uT,(n−1)

∆t
+ (div c

~F )T[uT,n]− div T[~a0(∇
TwT,n)] = 0,

wT,n = A(uT,n),

together with the boundary and initial conditions

for all n = 1, . . . ,N,

{
un

K = 0 for all K near ∂Ω

un
K∗ = 0 for all K∗ near ∂Ω;

u0
K =

1
mK

∫

K

u0 for all K , u0
K∗ =

1
mK∗

∫

K∗

u0 for all K∗.

Theorem (main result of : Andr. & Bendahmane & Karlsen JHDE’1 1)

The discrete solutions uT,∆t exist and converge to the unique entropy
solution u as the discretization step (space and time) goes to zero.
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DISCRETE CALCULUS TOOLS

AND CONVERGENCE ANALYSIS
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Discrete calculus tools...

Let’s follow the steps of the “continuous” convergence proof, looking
at the discrete analogues of the arguments.

“Variational” arguments: take wT for test function, get
Energy estimates
(=⇒ Existence + Weak Lp compactness for gradients ∇TwT,∆t

+ Estimate of space translates for wT,∆t )
Estimate of time translates for wT,∆t .

We have to establish that (divc
~F )T(·) “coexists nicely” with variational

technique , i.e.,
[[
(div c

~F )T(uT) , A(uT)
]]

behaves more or less like

∫

Ω

div ~F (u) A(u) := −

∫

Ω

~F (u) · ∇A(u)

=

∫

Ω

div
(∫ u

0
F (s)dA(s)

)
=

∫

∂Ω

(∫ u

0
F (s)dA(s)

)
· ν = 0.

We also have to produce discrete versions of Lp(0,T ;W 1,p(Ω)) weak
compactness, of Sobolev embeddings of W 1,p(Ω) into Lsthg(Ω) (Andr.
& Boyer & Hubert ), and exploit discrete duality.
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technique , i.e.,
[[
(div c

~F )T(uT) , A(uT)
]]

behaves more or less like

∫

Ω

div ~F (u) A(u) := −

∫

Ω

~F (u) · ∇A(u)

=

∫

Ω

div
(∫ u

0
F (s)dA(s)

)
=

∫

∂Ω

(∫ u

0
F (s)dA(s)

)
· ν = 0.

We also have to produce discrete versions of Lp(0,T ;W 1,p(Ω)) weak
compactness, of Sobolev embeddings of W 1,p(Ω) into Lsthg(Ω) (Andr.
& Boyer & Hubert ), and exploit discrete duality.
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Discrete calculus tools...

“Entropy” arguments: take (η±c )′(uT) for test function, get
Discrete entropy inequalities
L∞ bound (from comparison with constant solutions)

We already know that the discrete convection operator with monotone
flux leads to discrete entropy inequalities with remainder terms
controlled by the “weak BV” estimate , Eymard, Gallouët, Herbin .
In addition, we have to establish that divT~a0(∇

T·) “coexists nicely”
with the entropy technique , i.e.,

[[
− div Tk(∇TA(uT))∇TA(uT) , θ(uT)ψT

]]

(with θ = (η±c )′, ψT > 0) behaves more or less like

−

∫

Ω

div k(∇A(u))∇A(u) · (θ(u)ψ) :=
∫

Ω

k(∇A(u))∇A(u) · ∇
(
θ(u)ψ

)

>

∫

Ω

k(∇A(u))
(
θ(u)∇A(u)

)
· ∇ψ =

∫

Ω

k(∇A(u))∇Ãθ(A(u)) · ∇ψ

Here we need to replace the chain rule by a convexity inequality and
assume the orthogonality of the meshes.
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Convergence proof...

The above points can be combined into a convergence proof:

weak-* L∞ compactness of (uT,∆t)

=⇒ uT,∆t (·) “converges” to
∫ 1

0 µ(·;α) dα,

the numerical convection flux converges to
∫ 1

0
~F (µ(·;α)) dα

strong L1 compactness of (wT,∆t), weak Lp compactness of (∇TwT,∆t )
=⇒ A(uT,∆t) tends to w strongly, ∇TA(uT,∆t) tends to ∇w weakly,
and ~a0(∇

TA(uT,∆t)) converges to some ~χ weakly.

In addition, A(µ(·;α)) = w(·) for all α.

And we have discrete entropy inequalities (with vanishing remainder
terms) and discrete weak formulation where we can pass to the limit,
using the above convergences + consistency of ∇T on test functions .

From the weak formulation we can identify χ to ~a0(∇w) using the
Minty-Browder argument. As a byproduct, we get strong Lp convergence
of ∇TwT,∆t to ∇w .

From the entropy formulation we conclude that u is an entropy-process
solution , and use the reduction theorem to see that µ(·;α) ≡ u(·).
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