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Definition of the solutions

Modeling
Definition of the nonconservative product

Entropy inequality

We want to couple
@ a pointwise particle and
o a fluid (following the Burgers equation)

in such a way that

On the point where the particle is, the particle and the fluid want
to have the same velocity.
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Definition of the solutions

Entropy inequality

Some notation: m is the particle’s mass, h(t) the particle’s
position, u(t, x) the fluid’s velocity and \ is a friction parameter.

Coupled problem

Beu(t, x) + Ox(1?/2)(t, x) = A (K (t) — u(t, x)) One) (%)
mh"(t) = —A(H'(t) — u(t, h(t)))
u(0,x) = uo(x), (h(0),h'(0)) = (0, )

@ Second line: If ' (t) > u(t, h(t)), the particule is decelerating.
@ Second line: action/reaction. The force is pointwise.

Problem
The terms u(t, x)0p(r)(x) in the PDE and u(t, h(t)) in the ODE are
to be defined since the solution can be discontinuous at the point

x = h(t)
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Entropy inequality

Aim: Define (h'(t) — u(t,x)) dp(e)(x)
Idea: Regularize the particle.

Let H® be a C* function, increasing from 0 to 1 on [—¢/2,¢€/2].
The particle’s trajectory h is fixed. We want to solve the previous
system where we replace the Dirac § by its regularization (H¢)'
We look for a special solution in the form:

@ u(t,x) = U(x — h(t)). We denote & = x — h(t).
@ U° has bounded variations
@ The jumps of U are negative.

Therefore we have to solve

€ 2\ '/
~How ) + (CEE) < amo - oy —o
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Lemma:
If a BV function U is solution of

€ 2\ '/
~Hew ) + (LEE) o - oy —o
then

o If & is a discontinuity point, we have the Rankine-Hugoniot
relation U(&8) + U(&, ) = 2 (¢)
@ On intervals where U is continuous (U — h')(U+ AH) =0

If the jumps of U are negative, it exists at most one discontinuity.

\ILEWAY-OHIE A coupling between a pointwise particle and a fluid



Definition of the solutions

Knowing the velocity on the left of the particle, we look at the
possible velocities on the right of the particle.

Proposition:

If U(—€/2) = uy then

{UL = )\} if up < hl(t)
U(e/2) € d R (8) = ur — MK (8)] i ue € [H(2), H(£) + \]
{ut — AV U K() — up — A, 2H(£) — g + A] else

Does not depend neither on H nor on € !

We denote by Up 1 —,r(uL, A, v) this "set of admissible velocities on
the right of the particle (moving at velocity v) with a given velocity
up on the left of the particule"
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T
R
LKA

/

Figure: admissible couples of velocity around a particle moving at
velocity v
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Definition of the solutions .
Modeling

Definition of the nonconservative product

Entropy inequality

Idea: Add some viscosity and deduce informations about the
problem without viscosity.

Problem with viscosity

The problem
Aru(t, x) + Ox(u?(t,x)/2) — €D = A (H'(t) — u(t, x)) 5h(t)(X)
mh"(t) = =X (K (t) — u(t, h(t)))
u(0,x) = up(x)
(h(0), h'(0)) = (0, vo)

has a unique solution, which is global and smooth.
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Definition of the solutions .
Modeling

Definition of the nonconservative product

Entropy inequality

Let G be a smooth approximation of x — |x — k| and ¢ be a
positive test function. Following Krushkov, let us multiply the PDE
by G¢ and the ODE by t +— ¢(t, h(t))G'(H'(t)), sum, integrate by
parts and finally let ¢ — 0. It leads to

Entropy inequality

If (u¢, h¢) — (u, h) then Vk € R, V¢ > 0:
/ /|u—m\8t¢+sgn(u—m)
R: JR

+ /qu(O,x) |ug(x) — K| dx

I / md;p(h) |h — k| dt + (0, h(0)) |vo — k| >0
Ry

2

2 _
u 2“ b dx dt
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Definition of the solutions

Modeling

Definition of the nonconservative product
Entropy inequality

With a ¢ vanishing on the particle’s trajectory we recover the usual
entropy inequality for the Burgers equation (without source term)

Using a sequence (¢.) more and more concentrated on the
particle’s trajectory

o(t,x) = Y(t, x)¢ <X—7h(t)>

€

we obtain a new ODE for the particle
mh"(t) =

(u(t, h(t)™) — u(t, h(t)"')) (u(t, h(t)”) "; u(t, h(t)") _ h'(t))
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Solutions of the coupled problem

(u, h) is a solution of the coupled problem if
o uc %Ry xR), he CYR,), h Lipschitz continuous.
@ Classic entropy inequality outside of the particle trajectory
o (u(t,h(t)"),u(t,h(t)™)) is a admissible couple of velocities
around the particle (moving at velocity h'(t)).
e mh'(t) =
(u(t, h(£)™) = w(t, h(e)*)) ((UEMODMEADT) _ jy(r))

A solution can be seen as:
a Burgers solution stopped at h(t) + an admissible jump across the
particle + a Burgers solution starting at h(t)
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© Riemann problem
@ Particule moving with a fixed constant velocity
@ Back to the coupled problem
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Riemann problem Particule moving with a fixed constant velocity

Back to the coupled problem

up(x) = ur(1 — H(x)) + urH(x), H Heaviside and h(t) = vot. We
want to solve the new problem
2
u

Deus + Oy < . > — Mu(t, x) — vo)due(x)

t

Aim: Finding a Burgers wave on each side of the particle, such that
the jump around the line x = vyt is admissible.
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Riemann problem Particule moving with a fixed constant velocity

Back to the coupled problem

Notation: W/(&, ur, ug) is the value on the straight line x = £t of
the solution of the Riemann problem (u;, ug) for the Burgers
equation (without particule).

The fluid’s velocity on the left of the particule should be the value
on the line x = vyt of a Riemann problem (u;, &), where & € R:

u(t, h(t)") € | W(voiue, o) = U (ur, w)

ueR

Accessible velocities on the left of the particle

The set of accessible velocities on the left of a particle moving at
velocity vp, starting from uy, is:

_ . ]_OO7V0] ifULSVO
u (UL’VO)—{ | —o00,2vg — uy [U{ur}  ifup > w
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Riemann problem Particule moving with a fixed constant velocity

Back to the coupled problem

Notation: W/(&, ur, ug) is the value on the straight line x = £t of
the solution of the Riemann problem (u;, ug) for the Burgers
equation (without particule).

The fluid’s velocity on the right of the particle should be the value
on the line x = vyt of a Riemann problem (z, ug), where & € R:

u(t, h(t)*) € | W(vo: T, ur) = U™ (ur, vo)
neR

Accessible velocities on the right of the particle

The set of accessible velocities on the right of a particle moving at
velocity v, arriving at ug, is:

{UR}U] 2vg — UR,+OO[ if up < vy
]V0,+OO] if URZVO

) = |
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Riemann problem Particule moving with a fixed constant velocity
Back to the coupled problem

Determination of u™

The following set has only one element:
Uo1r(U (uL,v0), A\, o)) N U (ur, vo) This is the only velocity
that can be put on the right of the particule which is accessible

o from the left, by a Burgers wave + an admissible jump

@ from the right, by a Burgers wave
uL = Vvo + A

ur

Vo
UL—/\
Ur =\

ur

UR
ud>=2vy — ugp + A
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Riemann problem Particule moving with a fixed constant velocity

Back to the coupled problem

u =vo up =vp+ A

up ) :
Vo Vo | uLvo up up — A
jR=vw | L
Vo UR UL UR up
R=vo-A | :
up + X UR
up =2vg —uR + A

uL:2V07UR7/\

Figure: Determination of u~ and of u™
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Riemann problem Particule moving with a fixed constant velocity

Back to the coupled problem

How do we obtain a solution thanks to the problem with constant
speed?

vo — A< ur < v et u <vy. We suppose ur < u;. Replacing vyt
by h(t) in the solution for a fixed velocity, we find a possible
solution

up if x <ut
u(x,t) =< x/t ifurt <x<h(t)
Ur if h(t) <x

The ODE for the particle gives

() = (M~ ue ) (S + 5~ H(o)

Prop: h(t)/t — ug. —> The second line is not defined for all time
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Riemann problem Particule moving with a fixed constant velocity

Back to the coupled problem

There exists t; such that

. up if x < h(tl)
u(x, t1) _{ ug if h(ty) < x

The solution after t; is obtain by replacing vyt by h(t) in the
solution for a fixed velocity:

u if x < h(t
u(x, t):{ un if h(t)g(x)

The ODE gives

mh"(t) = (@ - uR> (% + ”2—R - h/(r))
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Numerical simulations

© Numerical simulations
@ Glimm scheme
@ )\ velocity dragging scheme
@ Drafting kissing tumbling phenomenon
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We start with a piecewise constant approximation U of the initial
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Drafting kissing tumbling phenomenon

A velocity dragging scheme
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Glimm scheme

dx] and consider the values at

)
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The new value on the cell is the value of the solution at the chosen

points




Glimm scheme

. . . A velocity dragging scheme
Numerical simulations e 8ging sc
Drafting ng tumbling phenomenon

Adding the particle is not a problem since we have solved the
Riemann problem with a particle on the interface.

e oandl  on dx
New CFL condition: t t" < s ULV

How do we replace the particle ? Consistently with the choice of
the new value.

.

]

uro
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Glimm scheme

. . . A velocity dragging scheme
Numerical simulations e 8ging sc
Drafting ng tumbling phenomenon

Adding the particle is not a problem since we have solved the
Riemann problem with a particle on the interface.

e oandl  on dx
New CFL condition: t t" < s ULV

How do we replace the particle ? Consistently with the choice of
the new value.
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Glimm scheme
ty dragging scheme

Numerical simulations s 3
kissing tumbling phenomenon

We defined the nonconservative source term thanks to a thickening
of the particle. Looking closer at the proof, we better understand
what happens inside the particle.

@ There can be one (and only one) discontinuity verifying the
Rankine Hugoniot relation

u(§™) +u(Eh) = 2K (¢).

This is actually a shock in the Burgers equation.

@ Outside of this discontinuity, the solution continuously
decreases of at most A. This is the effect of the particle.

When the particle crosses a part of the fluid, it tries to change the
fluid velocity to its own, but cannot change the fluid velocity of
more than A
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Glimm scheme
A velocity dragging scheme

Numerical simulations . s 3
Drafting kissing tumbling phenomenon

Idea of the scheme

Three steps

© Handling the particle
When the particle crosses a part of the fluid, it tries to change
the fluid velocity to its own, but cannot change the fluid
velocity of more than A —> Compute the velocity u~ and u™
around the particle.

© Handling the fluid
Solve the two Dirichlet problems (now that we know the
traces) on the left and right of the particle (using a Godunov
scheme for example).

© Updating the particle velocity
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Glimm scheme
A vel dragging scheme

Numerical simulations s s 3
Drafting kissing tumbling phenomenon

Step 1: Handling the particle
In this example, the particle is moving faster than the shock.

.

\ILEWAY-OHIE A coupling between a pointwise particle and a fluid



Glimm scheme
A velocity dragging scheme

Numerical simulations s s 3
Drafting kissing tumbling phenomenon

Step 1: Handling the particle
What happens if the particle and the shock do not see each other.
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Glimm scheme
A velocity dragging scheme

Numerical simulations s s 3
Drafting kissing tumbling phenomenon

Step 1: Handling the particle
Dragging the fluid that the particle meets at velocity at most A.
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Glimm scheme
A velocity dragging scheme

Numerical simulations s s 3
Drafting kissing tumbling phenomenon

Step 1: Handling the particle
For the sake of simplicity, assume that the shock didn’t move at all
and only keep the dragging velocity on the right.
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Glimm scheme
A velocity dragging scheme

Numerical simulations s s 3
Drafting kissing tumbling phenomenon

Step 1: Handling the particle
Pick randomly a point in the cell and replace the particle according
to this choice.

I
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Glimm scheme
A velocity dragging scheme

Numerical simulations 3
ng tumbling phenomenon

Step 1: Handling the particle
Change the value of the fluid velocity.
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Glimm scheme
dragging scheme
ng tumbling phenomenon

Numerical simulations

Godunov scheme for the Burgers equation:

fu(t, %))

Oru(t, x) + Ox > =0
1 Xk+1 J
Uk(t) = m /)Y(k U(t,X) t

Integrate over a cell
1
Or Ur(t) + ————(F(u(t; xi41)) — F(u(t, xu11))) = 0
Xk+1 — Xk

Godunov scheme:
u(t, xk) = W(0; Uk-1(t), Uk(t))

Explicite Euler scheme in time:

. tn+1 _¢n
Ut = Uf — ————(F(W(0; U, UR,y)) — F(W(0; U4, U})))
Xk+1 — Xk
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Glimm scheme
gging scheme

Numerical simulations 3
ssing tumbling phenomenon

Step 2: Handling the fluid

We want to solve the Burgers equation on the left of the particle.
We now have at Dirichlet condition since we know the velocity
u~ = Uk,—1 at the left of the particle.

n the1 — ¢ _
UptY = U+ (W05 U, Uf 1)) — F(W(0; Uy, 07))
On the right of the particule, u™ is known.

n the1 — t
R = U+ S0 (F(W(0; 7 U) = F(WI5 U Uf)
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Glimm scheme
A velocity dragging scheme

Numerical simulations s b 3
Drafting kissing tumbling phenomenon

Step 3: Updating the particle velocity
We can of course use the PDE.
BUT we have formally

Ve >0, / u(t, x)dx + mh/(£) = 0.
R

We easily compute

A S U pn S - VR Ui
XZ i XZ = At 5
J J

So in order to obtain a conservative scheme we can choose:

n+l1 _ . n (tn+1 B tn) (UJ[:))2 B ( J[:)—l)z
Ax 2m '
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Glimm scheme

Numerical simulations

A velocity dragging scheme
Drafting kissing tumbling phenomenon

erreur en norme C* au temps final

+ Gimm + Gimm

pente -0.562578 pente ~0.555246

o *  Godunov

pente -0.494464 pente -0.524686

% Godunov conservatif . % Godunov conservatif
pente -0.535518 pente ~0.60981

erreur en norme L* au temps final

%

nombre de mailles

nombre de mailles

Figure: Average error in 10 simulations on the final velocity and position

of the particle (left) and the L' norm of u (right) for different space
discretizations. We find an order 1/2.
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Glimm scheme
A vel dragging scheme

\ ical simulati o U .
umerical simulations Drafting kissing tumbling phenomenon

We start with a fluid with velocity 0 with two particles having the
same viscosity vy > 0.
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Glimm scheme
A velocity dragging scheme

\ ical simulati . .. .
umerical simulations Drafting kissing tumbling phenomenon

At the beginning the two particles don't see each other (here the
particles manage to drag the fluid to their own velocities).
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Glimm scheme
A velocity dragging scheme

\ ical simulati . .. .
umerical simulations Drafting kissing tumbling phenomenon

At some time t; the particle on the left meets the wave creating by
the particle on the right.
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Glimm scheme
A velocity dragging scheme

\ ical simulati . .. .
umerical simulations Drafting kissing tumbling phenomenon

On this moment on, this particle on the left is going faster than the
other one and will eventually catch it up.
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Glimm scheme
A velocity dragging scheme

\ ical simulati . . .
umerical simulations Drafting ing tumbling phenomenon

1
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o
o, 05F
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2 A1 ]
4 fluide initialement au repos
s vitesse initiale des particules : 2
3 | | | . |
o 1 2 3 4 5 6

Figure: The kissing drafting tumbling phenomena
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© Uniqueness of the Riemann problem 7 Existence and
uniqueness for the coupled Cauchy problem 7 DONE !! B.
Andreianov, F. Lagoutiére, N. Seguin, T. Takahashi

© Precise modeling of the collisions between particles.

© A more relevant equation for the fluid. The model could be,
for the barotrope Euler equation:

Otp—l—@ ( u) =
¢ (pu) + O« (p (p)) = Xp(H'(t) — u(t, h(t)))dnce) (x)
mh"(t ) —A(h (f) - U(fa h(t))),

\ILEWAY-OHIE A coupling between a pointwise particle and a fluid



	Definition of the solutions
	Modeling
	Definition of the nonconservative product
	Entropy inequality

	Riemann problem
	Particule moving with a fixed constant velocity
	Back to the coupled problem

	Numerical simulations
	Glimm scheme
	 velocity dragging scheme
	Drafting kissing tumbling phenomenon

	Perspectives

