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Mean field games: introduction

• MFG = model for interaction among a large number of agent / players
... not particles. An agent can decide, based on a set of preferences and
by acting on parameters ( ... control theory).
Note: in standard rumor spreading (or opinion making) modeling agent is
supposed to be a mechanical black-box, not the case here. This situation
is included as particular case.

• distinctive properties: the existence of a collective behavior (fashion
trends, financial crises, real estates valuation, etc.). One agent by itself
cannot influence the collective behavior, it only optimizes its own decisions
given the environmental situation.
References: Lasry Lions CRAS notes (2006), Lions online course at College
de France. Further references latter on.
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Mean field games: introduction

• Nash equilibrium: a game of N players is in a Nash equilibrium if, for
any player j supposing other N − 1 remain the same, there is no decision
of the player j that can improve its outcome.

• MFG = Nash equilibrium equations for N →∞. All players are the
same.

• Agent follows an evolution equations involving some controlling action.
Its decision criterion depend on the others, more precisely on the density of
other players.

• Will consider here stochastic diff. equations, but deterministic case is a
particular situation and can be treated.
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Mathematical framework of MFG

What follows is the most simple model that shows the properties of MFG
models. Cf. references for more involved modeling. X x

t = the
characteristics at time t of a player starting in x at time 0. It evolves with
SDE:

dX x
t = α(t,X x

t )dt + σdW x
t , X x

0 = x (1)

• α(t,X x
t ) = control can be changed by the agent/ player.

• independent brownians (!)
• m(t, x) = the density of players at time t and position x ∈ E ; E is the
state space. Optimization problem of the agent:

inf
α
E
{

1

T

[∫ T

0
h(X x

t , α(t,X x
t )) + V (X x

t ; m(t, ·))dt

]
+ V0(X x

T ; m(T , ·))

}
(2)

here T can be fixed (fixed horizon) or T →∞ (static case).
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Mathematical framework of MFG: examples

Example: choice of a holiday destination.
Particular case: deterministic, no dependence on the initial condition, no
dependence on the control. Each individual minimizes distance to an ideal
destination and a term depending on the presence of others:
V0(y ; m) = F0(y) + F1(m).
Question: what is the solution ? X x

T will be chosen as the minimum of
y 7→ F0(y) + F1(m(y)). Then m is the distribution of such X x

T .
COUPLING between m and X x

T !!
Particular case: F0(y) = y 2 on R. Origin is the most preferred point for all
individuals, distance increases slowly in neighborhood, fast outside. Take
F1(m) = cm.
Modelization: c > 0 = crowd aversion, c < 0 = propensity to crowd.
Remark: all points y in the the support of m have to be minimums of V0 !

Solution: c > 0: semi-circular distribution m(y) = (λ−y2)+

c , c < 0: Dirac
masses at minimum of F0.
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Mathematical objects: SDEs

Brownian motion models a very irregular motion (but continuous).
Mathematically it is a set of random variables indexed by time t, denoted
Wt , with:
• W0 = 0 with probability 1
• a.e. t 7→Wt(ω) is continuous on [0,T ]
• for 0 ≤ s ≤ t ≤ T the increment W (t)−W (s) is a random normal
variable of mean 0 and variance t − s : W (t)−W (s) ≈

√
t − sN (0, 1)

(N (0, 1) is the standard normal variable)
• for 0 ≤ s < t < u < v ≤ T the increments W (t)−W (s) W (v)−W (u)
are independent.

Recall normal density N (0, λ) is 1√
2πλ

e−
x2

2λ ; Wt+dt −Wt has as law
√

dtN (0, 1) (of order dt1/2, cf. Ito formula).

Gabriel Turinici (CEREMADE, Université Paris Dauphine )A numerical approach to the MFG CIRM Marseille, Summer 2011 8 / 57



Martingales

(Ω,A,P) = probability space, (At)t≥0 filtration.
An adapted family (Mt)t≥0 of integrable r.v. (i.e. E|Mt | <∞) is
martingale if for all s ≤ t: E(Mt |As) = Ms .
Thus E(Mt) = E(M0).

Theorem

Let (Wt)t≥0 be a Brownian motion, then Wt , W 2
t − t, eσWt−σ

2

2
t are also

martingales.
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Ito integral

We want to define
∫ T

0 f (t, ω)dWt .

For
∫ T

0 h(t)dt Riemann sums
∑

j h(tj)(tj+1 − tj) converge to the Riemann
integral when the division t0 = 0 < t1 < t2 < ... < tN = T of [0,T ]
becomes finer.
For the Riemann-Stiltjes integral we can replace dt by increments of a
bounded variation function g(t) and obtain

∫
f (t)dg(t)

Similarly one can work with Ito sums
∑N−1

j=0 h(tj)(Wtj+1 −Wtj ) or

Stratonovich
∑N−1

j=0 h(
tj+tj+1

2 )(Wtj+1 −Wtj ) both are the same for
deterministic function h.
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Ito integral

Example: h = W , tj = j · dt.
Ito:

N−1∑
j=0

h(tj)(Wtj+1 −Wtj ) =
N−1∑
j=0

Wtj (Wtj+1 −Wtj ) (3)

=
1

2

N−1∑
j=0

W 2
tj+1
−W 2

tj
− (Wtj+1 −Wtj )

2 (4)

=
1

2

(
W 2

T −W 2
0

)
− 1

2

N−1∑
j=0

(Wtj+1 −Wtj )
2. (5)

The term 1
2

∑N−1
j=0 (Wtj+1 −Wtj )

2 has average Ndt = T and variance of

order dt so the limit will be 1
2

(
W 2

T − T
)

.

Thus
∫ T

0 WtdWt = 1
2

(
W 2

T − T
)

; in particular the non-martingale

(previsible) part of W 2
t will be t.

Gabriel Turinici (CEREMADE, Université Paris Dauphine )A numerical approach to the MFG CIRM Marseille, Summer 2011 11 / 57



Ito integral

Stratonovich:

N−1∑
j=0

h(
tj + tj+1

2
)(Wtj+1 −Wtj ) =

N−1∑
j=0

W tj+tj+1
2

(Wtj+1 −Wtj ) (6)

N−1∑
j=0

(Wtj + Wtj+1

2
+ ∆Zj

)
(Wtj+1 −Wtj ) (7)

Here ∆Zj is a r.v. independent of Wtj , of null average and variance dt/4.

Sum will be 1
2 W 2

T .
Stratonovich is also limit of

N−1∑
j=0

h(tj) + h(tj+1)

2
(Wtj+1 −Wtj ). (8)
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Ito integral

More generally for Ht adapted to the filtration (At)t≥0 we can define (as

soon as
∫ T

0 H2
s ds <∞ ) the Ito integral

∫ T
0 HsdWs (martingale if

E
∫ T

0 H2
s ds <∞; sufficient condition). Ito integral is continuous.

Theorem (Ito Isometry)

E
∫ T

0
H(Wt , t)dWt = 0 (9)

E
(∫ T

0
H(Wt , t)dWt

)2
=

∫ T

0
EH2(Wt , t)dt. (10)

Proof: first verified on sums...
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Ito process (Xt)t≥0 : Xt = X0 +
∫ t

0 Ksds +
∫ t

0 HsdWs , with X0 A0

measurable, Kt and Ht adapted,
∫ T

0 |Ks |ds <∞
∫ T

0 H2
s ds <∞ Xt is the

solution of the stochastic differential equation (SDE): dXt = Kdt + HdWt .
When K ,H depend on Xt too this is an equality with Xt in both terms.

Theorem (Ito)

For f of C 2 class, if

dXt = α(t,Xt)dt + β(t,Xt)dWt

then

df (t,Xt) =
∂f

∂t
dt +

∂f

∂X
dXt +

1

2
β(t,Xt)

2 ∂
2f

∂X 2
dt. (11)

Rq: similar to development of f (t,
√

t) around f (0, 0) = 0...

Exercice dSt
St

= αdt + σdWt and St = eXt then dXt = (α− σ2

2 )dt + σdWt .
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Fokker-Planck

• evolution equation for the density : Fokker-Planck

Theorem (Fokker-Planck)

Let ρ(t, ·) be the probability density of Xt that follows

dXt = α(t,Xt)dt + β(t,Xt)dWt (12)

then

∂

∂t
ρ(t, x) +

∂

∂x
(α(t, x)ρ(t, x))− 1

2

∂2

∂x2

(
β2(t, x)ρ(t, x)

)
= 0. (13)

Proof: compute Eϕ(Xt) by Ito + (martingale property)...
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Fokker-Planck

• evolution equation for the density : Fokker-Planck for several
(independent) noises on same equation.

Theorem (Fokker-Planck)

Let ξ(x) be a probability density on E and for each fixed x consider X x
t

that follows

dX x
t = α(t,X x

t )dt + β(t,X x
t )dW x

t , X x
0 = x . (14)

Denote by ρx(t, y) the density of X x
t for fixed x and ρ(t, y) its marginal

with respect to x i.e.: ρ(t, y) =
∫
ρx(t, y)ξ(x)dx. Then

∂

∂t
ρ(t, x) +

∂

∂x
(α(t, x)ρ(t, x))− 1

2

∂2

∂x2

(
β2(t, x)ρ(t, x)

)
= 0.(15)

ρ(0, ·) = ξ(·) (16)

Proof: by linearity of Fokker-Planck for one noise.
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Optimal control theory

Consider evolution equation (in some Hilbert space):

dx(t)

dt
= A(t, x(t), u(t)) (17)

and optimal control functional to minimize

J(u) =

∫ T

0
f (t, x , u)dt + F (x(T )) (18)

Simplest procedure to minimize: gradient descent. Update formula for
step γ > 0:

un+1 = un − γ∇uJ(un). (19)

How to compute the gradient ?
Answer: calculus of variations: variations, Lagrange multiplier, ...
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Theoretical results of Lasry-Lions

Nash equlibrium for finite N. Agent k minimizes

Jk(α1, ..., αN) = lim infT→∞
1
T E
[∫ T

0 h(X k
t , α

k
t ) + F k(X 1

t , ...,X
N
t )dt

]
The set of decisions (αk)k is a Nash equilibrium if ∀k , ∀αk :

Jk(α1, ...αk−1, αk , αk+1, ..., αN) ≤ Jk(α1, ...αk−1, αk , αk+1, ..., αN),
(20)
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Theoretical results of Lasry-Lions

Here F k is symmetric in the other N − 1 variables and moreover all agents
are the same i.e. F k does not depend on k:
F k(X 1

t , ...,X
N
t ) = V (X k ; 1

N−1

∑
6̀=k δX `)

Define: H(x , α) = supp〈p, α〉 − h(x , p); ν = σ2/2.
Limit for N →∞: static case; the optimality equations converge (up to
sub-sequences) to solutions of MFG system

+div(αm)− ν∆m = 0,

∫
m = 1, m ≥ 0 (21)

α = − ∂

∂p
H(x ,∇u) (22)

−ν∆u + H(x ,∇u) + λ = V (x ,m),

∫
u = 0. (23)

Uniqueness: when V is a strictly monotone operator i.e.∫
(V (m1)− V (m2))(m1 −m2) ≤ 0 implies V (m1) = V (m2).
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Theoretical results of Lasry-Lions

Limit for N →∞: finite horizon case (i.e. finite T ); the optimality
equations converge (up to sub-sequences) to solutions of MFG system

∂tm + div(αm)− ν∆m = 0, (24)

m(0, x) = m0(x),

∫
m = 1, m ≥ 0 (25)

α = − ∂

∂p
H(x ,∇u) (26)

∂tu + ν∆u − H(x ,∇u) + V (x ,m) = 0, (27)

u(T , x) = V0(x ,m(T , ·)),

∫
u = 0. (28)

Remark: these are not necessarily the critical point equations for an
optimization problem ! But will be in some particular cases studied latter.
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Mean field games notations (reminder)

• Mean field games: limits of Nash equilibriums for infinite number of
players (P.L.Lions & J.M.Lasry)

• equation for each player dX x
t = αdt + σdW x

t , α(t, x) = control
• m(t, x) = the density of players at time t and position x ∈ Q
• evolution equation

∂

∂t
m(t, x)− ν∆m(t, x) + div(α(t, x)m(t, x)) = 0,

m(0, x) = m0(x).

• We consider the optimisation setting: minα J(α)

J(α) := Ψ(m(·,T )) +
∫ T

0

{
Φ(m(t, ·)) +

∫
Q L(x , α)m(t, x)dx

}
dt

• Φ,Ψ can be linear, concave, ... Typical L : L(x , α) = α2

2 .
Rq: MFG equations are critical point equations for the functional J;
relationship with individual level: ∇mΦ = V , ∇mΨ = V0, L = h.
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Numerics of MFG : literature overview

• (in)finite horizon: finite-difference discretization: approximation
properties, existence and uniqueness, bounds on the solutions. ”Mean
Field Games: Numerical Methods” Y. Achdou & I. Capuzzo-Dolcetta
• Y. Achdou & I. Capuzzo-Dolcetta: Newton method for the coupled
direct-adjoint critical point equations (finite horizon, cx case)
• O. Gueant: study of a prototypical case: solution, stability (09),
quadratic Hamiltonian (11)
• solution of the MFG equations from an optimization point of view (A.
Lachapelle, J. Salomon, G. Turinici, M3AS 2010)
• Lachapelle & Wolfram (2011) (congestion modelling)
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Optimal control of a Fokker-Plank equation (G. Carlier &
J. Salomon)

Evolution equation :

∂tρ− ε2∆ρ+ div(vρ) = 0 (29)

ρ(x , t = 0) = ρ0(x) (30)

• goal: minimize w.r. to v the functional (for some given V (·)) :

E (v) =

∫ ∫
ρv 2dxdt +

∫
ρ(x , 1)V (x)
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Control of the time dependent Schrödinger equation

{
i ∂∂t Ψ(x , t) = (H0 − ε(t)kµ(x))Ψ(x , t)
Ψ(x , t = 0) = Ψ0(x)

(31)

• vectorial case (rotation control, NMR):
i ∂∂t Ψ(x , t) = [H0 + (E1(t)2 + E2(t)2)µ1 + E1(t)2 · E2(t)µ2]Ψ(x , t).
H0 = −∆ + V (x), unbounded domain
Evolution on the unit sphere: ‖Ψ(t)‖L2 = 1, ∀t ≥ 0.
• evaluation of the quality of a control through a objective functional to
minimize
J(ε) = −2<〈ψtarget |ψ(·,T )〉+

∫ T
0 α(t)ε2(t)dt

J(ε) = ‖ψtarget − ψ(·,T )‖2
L2 − 2 +

∫ T
0 α(t)ε2(t)dt

J(ε) = −〈Ψ(T ),OΨ(T )〉+
∫ T

0 α(t)ε2(t)dt
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General monotonic algorithms (J. Salomon, G.T.)

state X ∈ H , control v ∈ E , H,E = Hilbert/ Banach spaces.

• ∂tXv + A(t, v(t))Xv = B(t, v(t))

• minv J(v), J(v) :=
∫ T

0 F
(
t, v(t),Xv (t)

)
dt + G

(
Xv (T )

)
.

• F , G : C 1 + concavity with respect to X (not v !)

∀X ,X ′ ∈ H, G (X ′)− G (X ) ≤ 〈∇XG (X ),X ′ − X 〉

∀t ∈ R, ∀v ∈ E , ∀X ,X ′ ∈ H :

F (t, v ,X ′)− F (t, v ,X ) ≤ 〈∇XF (t, v ,X ),X ′ − X 〉.
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Direct-adjoint equations and first lemma

∂tXv + A(t, v(t))Xv = B(t, v(t))
X (0) = X0

∂tYv − A∗
(
t, v(t)

)
Yv +∇XF

(
t, v(t),Xv (t)

)
= 0

Yv (T ) = ∇XG
(
Xv (T )

)
.

Lemma

Suppose that A,B,F are differentiable everywhere in v ∈ E , then there
exists ∆(·, ·; t,X ,Y ) ∈ C 0(E 2,E ) such that, for all v , v ′ ∈ E

J(v ′)− J(v) ≤
∫ T

0
∆(v ′, v ; t,Xv ′ ,Yv ) ·E

(
v ′ − v

)
dt (32)

Proof: cf. refs.
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Well-posedness

J(v ′)− J(v) ≤
∫ T

0
∆(v ′, v ; t,Xv ′ ,Yv ) ·E

(
v ′ − v

)
dt (33)

Remark: useful factorisation because can test at each step if J goes the
right way; also can choose v ′(t∗) = v(t∗) if pb.
Remark: ∆(v ′, v ; t,X ,Y ) has an explicit formula once the problem is
given; also note the dependence on Yv any not Yv ′ .

Lemma

Under hypothesis on A,B,F ,G , θ > 0

∆(v ′, v ; t,X ,Y ) = −θ(v ′ − v) (34)

has an unique solution v ′ = Vθ(t, v ,X ,Y ) ∈ E .
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Well-posedness

Theorem (J. Salomon, G.T. Int J Contr, 84(3), 551, 2011)

Under hypothesis ...
• the following eq. has a solution:

∂tXv ′(t) + A(t, v ′)Xv ′(t) = B(t, v ′) (35)

v ′(t) = Vθ(t, v(t),Xv ′(t),Yv (t)) (36)

Xv ′(0) = X0 (37)

• ∃ (θk)k∈N such that vk+1(t) = Vθk (t, vk(t),Xvk+1(t),Yvk (t))
• J(vk+1)− J(vk) ≤ −θk‖vk+1 − vk‖2

L2([0,T ]);

• if vk+1(t) = vk(t) : ∇vJ(vk) = 0.
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The Model : framework

• large economy: continuum of consumer agents

• time period: [0,T ]

• any household owns exactly one house and cannot move to another one
until T
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The Model : the agents

• arbitrage between insulation and heating. A generic player (agent) has an
insulation level x ∈ [0, 1] (x = 0: no insulation, x = 1: maximal insulation)

• controlled process of the agent: dX x
t = σdWt + vtdt + dNt(X x

t ),
X x

0 = x ; v is the control parameter (insulation effort), the noise level σ is
given.

• note that Xt is a diffusion process with reflexion, in the above equality,
dNt(Xt) has the form χ{0,1}(Xt)~ndξt ( ξ = local time at the boundary
{0, 1} = ∂[0, 1] cf. Freidlin)

• initial density: X0 ∼ m0(dx)

Gabriel Turinici (CEREMADE, Université Paris Dauphine )A numerical approach to the MFG CIRM Marseille, Summer 2011 35 / 57



The Model : the costs

An agent of the economy solves a minimization problem composed of
several terms:

• Insulation acquisition cost: h(v) := v2

2

• Insulation maintenance cost: g(t, x ,m) := c0x
c1+c2m(t,x) increasing in x

decreasing in m : economy of scale, positive externality. The agents
should do the same choice, stay together. The higher is the number of
players having chosen an insulation level, the lower are the related costs.

• Heating cost: f (t, x) := p(t)(1− 0, 8x) where p(t) is the unit heating
cost (unit price of energy, say)
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The model - The minimization problem and MFG (1)

• Define the aggregate state cost:

Φ(m) :=

∫ 1

0

(
p(t)(1− 0, 8x) +

c0x

c1 + c2m(t, x)

)
m(t, x)dx

and V = Φ′.

• In the model, the agents have rational expectations, i.e they see m as
given; we can write the individual agent’s problem:{

inf
v adm

E
[∫ T

0 h(v(t,X x
t )) + V [m](X x

t )dt
]

dXt = vtdt + σdWt + dNt(Xt),X0 = x
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The model - The minimization problem and MFG (2)

• We already know that it is linked with the optimal control problem:
inf

v adm

∫ T
0

∫ 1
0 h(v(t, x)) + Φ(mt)(t)dt

∂tm − σ2

2 ∆m + div(vm) = 0 , m|t=0 = m0(.) ,
m′(., 0) = m′(., 1) = 0

• Finally, if ν := σ2

2 , a Mean field equilibrium (Nash equilibrium with an
infinite number of players) corresponds to a solution of the following
system: 

∂tm − ν∆m + div(vm) = 0 , m|t=0 = m0

∇u = v

∂tu + ν∆u + v · ∇u − u2

2 = Φ′(m) , v |t=T = 0

(38)
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The model - externality & scale effect

The MFG framework is interesting to describe a situation which lives
between two economical ideas: positive externality and economy of scale

• positive externality: positive impact on any agent utility NOT
INVOLVED in a choice of an insulation level by a player

• economy of scale: economies of scale are the cost advantages that a firm
obtains due to expansion (unit costs decrease)
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Criticism of the model:

• stylised from the ”industrial” point of view

• not realistic (heating price, maintenance...)

• transition effect (continuous time, continuous space)

• atomised agent (her/his action has no influence on the global density,
micro-macro approach)

• non-cooperative equilibrium with rational expectations
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Numerical simulations

• Optimization method: Monotonic algorithm


∂tm

k+1 − ν∆mk+1 + div(vk+1mk+1) = 0 , mk+1(x , 0) = m0

vk+1 = (θ−1/2)vk−∇uk
(θ+1/2)

∂tu
k+1 + ν∆uk+1 + vk+1 · ∇uk+1 − (uk+1)2

2 = Φ′(mk+1), vk+1(T ) = 0
(39)

• Discretization of the PDEs: Godunov scheme (to preserve the positivity
of the density m)
• The costs:
heating: f (t, x) = p(t)(1− 0, 8x)
insulation: g(t, x ,m) = x

0.1+m(t,x)

• 1st example: p(t) constant / same choices
• 2d example: p(t) reaching a peak (non constant) / multiplicity of
equilibria
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Numerical results - First case

• the initial density of the householders is a gaussian centered in 1
2

• the time period and the noise are respectively T = 1 and ν = 0.07

• the energy price is constant (p(t) ≡ 0, 3.2 and 10)
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Figure: Numerical results : p(t) ≡ 0. Since the cost of energy is null all agents
choose to heat their house, move to this choice together.
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Figure: Numerical results : p(t) ≡ 3.2. Cost of energy is intermediary, agents
keep their status.
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Figure: Numerical results : p(t) ≡ 10. Cost of energy is high, agents choose to
better insulate, all have the same behavior.
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Numerical results - Second case

the initial density of the agents is an approximation of a Dirac in 0.1
(i.e agents are not equipped in insulation material)

the energy price is not a constant parameter, we look at the following
case: the price first reaches a peak and then decreases to its initial
level.
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Figure: Numerical results - p(t). Question: In such a case, can we find two Mean
Field equilibria, the first related to the expectation of a higher insulation level, the
second to the expectation of heating ?
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Figure: Numerical results - One of the two equilibria: the energy consumption
equilibrium. Agents expect that everybody will keep a low insulation level so there
are no gains in insulating.
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Figure: Numerical results - One of the two equilibria: the insulation equilibrium.
Agents expect that everybody will better insulate, which makes insulating
attractive.
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Multiplicity of equilibria - Incentive policy

• we found an insulation-equilibrium and an energy
consumption-equilibrium

• from the ecological point of view: the best is the insulation-equilibrium

• incentive public policies could steer towards the ”best” equilibrium (from
a certain point of view) when the solution is not unique.

Gabriel Turinici (CEREMADE, Université Paris Dauphine )A numerical approach to the MFG CIRM Marseille, Summer 2011 50 / 57



Outline

1 Motivation and introduction to Mean Field Games (MFG)

2 Mathematical objects: SDEs, Ito, Fokker-Planck

3 Optimal control theory: gradient and adjoint

4 Theoretical results of Lasry-Lions

5 Some numerical approaches

6 General monotonic algorithms (J. Salomon, G.T.)
Related applications: bi-linear problems
Framework
Construction of monotonic algorithms

7 Technology choice modelling (A. Lachapelle, J. Salomon, G.T.)
The model
Numerical simulations

8 Liquidity source: heterogenous beliefs and analysis costs
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Liquidity from heterogeneous beliefs and analysis costs
(joint work with Min Shen, Université Paris Dauphine)

• Why do agents trade ? Here: heterogenous beliefs and expectations
• Liquidity : many definitions (bid/ask spread, rapidity to recover price

after shock, max volume traded at same price etc). Here: trading volume.
• Several approaches: limit order book modeling and optimal order

submission (Avellaneda et al. 2008) Heterogenous beliefs: asset pricing
(working paper by Emilio Osambela), short sale constraints (Gallmeyer and
Hollifield 2008) etc.,
• Specific investigation of this work: question on analysis time/cost
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Heterogeneous beliefs and liquidity: the model

• One security of ”true” value V .
• each agent has each own estimation (random variable) V Ã of mean VA

and variance V 2σ2(A). The precision on Ã is B(A) = 1/σ2(A). The agent
cannot change its A (which will become its index) but can change σ2(A).
Precision can be improved paying f (B) and/or waiting for the estimation
to converge or new data to be revealed.
• Agents are distributed with density ρ(A); the mean of this distribution

is taken to be 1 (overall neutrality).
• Based on its estimations agent trade θ(A) units i.e. V · θ(A) = size of

the position of agent at A.
• Each agent has an utility function U(mean(gain), variance(gain))

(equivalent: expected utility framework for normal variable). Linear
situation U(x , y) = x − λy . Note gain is function of θ,B (thus also mean
and variance).
• Price VpA maximizes liquidity and equals offer and demand (this

conditions are equivalent if monotonicity ... otherwise not). Note: pA is
not necessarily equal to 1 even if the mean E(A) = 1.
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Heterogenous beliefs and liquidity: theoretical results

Technical framework: Mean Field Games by Lasry & Lions; Nash
equilibrium
mean(θ,B) = V θ(A− pA)− f (B); variance(θ,B) = θ2V 2/B.

Theorem (M Shen, G.T. 2011)

Under assumptions on functions f and U the equilibrium exists. Offer and
demand functions are monotone with respect to pA.

Theorem (M Shen, G.T. 2011)

Under assumptions on functions f and U if ρ is symetric around p1 then
(liquidity is maximal for p = p1 i.e.) pA = p1.
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Heterogenous beliefs and liquidity: linear case U = x − λy

Theorem (M Shen, G.T. 2011)

For the linear case the equlibrium relative price is:

PA =

∫∞
0 AB(A)ρ(A)dA∫∞
0 B(A)ρ(A)dA

. (40)

The relative accuracy B(A) cost is

B = (f ′)−1

(
(A− PA)2

2λ

)
. (41)
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Heterogenous beliefs and liquidity: linear case U = x − λy

The relative market price PA is solution to the equation:

1

2Vλ

∫ ∞
0

(A− PA)(f ′)−1

(
(A− PA)2

2λ

)
ρ(A)dA = 0 (42)

The trading volume TVf is

TVf =
PA

2λ

∫ ∞
0

(A− PA)+(f ′)−1

(
(A− PA)2

2λ

)
ρ(A)dA (43)

Theorem (anti-monotony of trading volume)

Let f , g be two information cost functions such that g ′(b) ≥ f ′(b) for any
b ∈ R+. Then the trading volume satisfies TVf > TVg .

Application: for constant total cost
∫

f (B)ρ(A) which is the greatest
volume : is volume brought by best paid analysts ?
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Figure: Quotient of the total volume over total cost for functions f (B) = Bα+1

α+1
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