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Interface coupling: main features

Framework: given two codes

• two (compressible) fluid codes simulating fluid flow of the
same ‘nature’, taking into account different specificities
not coupled phenomena (monophysics)

• fixed interface (multidomain)

• ‘thin’ interface, the codes interact
exchange of information at the interface (strong coupling)

• need of a robust procedure
understand the physics at the interface (‘intelligent’ coupling)

• use existing codes
few modifications in each domain

→ give a numerical coupling procedure to ‘couple’ the codes.
First: what is the mathematical model?



mathematical model

• the codes simulate compressible fluid flows, modelled by
systems of PDE: hyperbolic systems of balance laws

• the fixed interface is considered as a boundary (artificial, not
physical)

• give a numerical coupling procedure and understand what it
really computes

• understand how to model the exchange of information at the
interface at both continuous and discretized levels

• → need to recall some notions about hyperbolic systems of
conservation laws (HSCL) or balance laws (HSBL), finite
volume schemes (FV), boundary conditions
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1.1. Introduction. Conservation and balance laws

• Hyperbolic systems, entropy, characteristic fields, genuinely
nonlinear / linearly degenerate

• Main example: gas dynamics. Euler system in d = 3, d = 1,
barotropic model, Lagrange, p−system, linearized (acoustic)

• Discontinuities, weak solutions, Rankine-Hugoniot condition,
entropy inequality

• Rarefactions, shocks and contact discontinuities

• Solution of the Riemann problem



Hyperbolic system of balance laws

HSBL: set of p balance laws (pde)

∂u

∂t
+

d
∑

j=1

∂

∂xj

fj(u) = s(u), t > 0, (1)

HSCL: hyperbolic system of conservation laws if s = 0
u = (u1, u2, .., up)

T ∈ Ω (in R
p) set of states, f(u) = (fj(u)) flux

(each fj(u)) ∈ R
p), s(u) source, we will also have latter s(u, x).

we study first Cauchy problem:

x = (x1, . . . , xd) ∈ R
d , (1) + initial condition u(x, 0) = u0(x)

then IBVP (initial boundary value problem):

x ∈ O ⊂ R
d , (1) + initial condition + boundary condition (weak)



hyperbolicity

Definition: the homogeneous system is strongly hyperbolic if for
any direction n the p × p matrix

A(u,n) =

d
∑

j=1

Aj(u)nj , where Aj(u) = f
′

j (u)

is diagonizable with real eigenvalues λk(u,n),
eigenvectors rk(u,n), 1 ≤ k ≤ p, basis of R

p

λ1(u,n) ≤ λ2(u,n) ≤ λp(u,n) (2)

(ranked in increasing order), λk(u,n) is a velocity (wavelike
solution).
In 1D, ∂tu + ∂x f(u) = 0, A(u) = f ′(u), λk(u), rk(u)



entropy for HSBL

Other conservation laws ?
Assume Ω convex, a convex function U : Ω → R is called an
entropy for the system (1) if ∃d functions Fj : Ω → R, 1 ≤ j ≤ d ,
called entropy fluxes, such that

U ′(u)fj(u) = F ′

j (u), (3)

then smooth solutions satisfy an additional (scalar) companion law

∂

∂t
U(u) +

d
∑

j=1

∂

∂xj

Fj(u) = U ′(u).s(u) (4)

U ′(u) = (∂u1
U , ∂u2

U , .., ∂upU). Admissible discontinuous solutions
satisfy an inequality (≤ in (4). Existence of U ? comes from
physics, not from solving (3), p equations 2 unknowns (U ,F).



Example: gas dynamics

Euler system of compressible gas dynamics writes (neglecting heat
conduction and viscosity)

∂̺

∂t
+

3
∑

j=1

∂

∂xj

(̺uj) = 0,

∂

∂t
(̺ui ) +

3
∑

j=1

∂

∂xj

(̺uiuj + pδi ,j) = 0, 1 ≤ i ≤ 3 (5)

∂

∂t
(̺e) +

3
∑

j=1

∂

∂xj

(̺e + p)uj = 0,

̺ density, u = (u1, u2, u3)
T velocity, p pressure, e = ε+ |u|2/2

specific total energy, ε internal energy, |u|2 = u2
1 + u2

2 + u2
3 .

The equations express the conservation of mass, momentum and
energy.



Example: gas dynamics

Conservative variables U = (̺, ̺u, ̺e)T .
Need of a closure law for the pressure p = p(U). In fact,
p = p(̺, ε) for instance γ-law: p = (γ − 1)̺ε for an ideal gas,
ε = e − |u|2/2, ui = ̺ui/̺
In (6) the fluxes fj(U) are then easily expressed.
The set of states is Ω = {̺ > 0,u ∈ R

3, ε = e − |u|2/2 > 0}.
Primitive variables V = (̺,u, p)T are useful for computing the
eigenvalues: u · n ± cn (c speed of sound , c2 = γp/̺ for a γ-law)
and u · n which is an eigenvalue of multiplicity 3.
A(U,n) is diagonalizable and one can compute the eigenvectors.
If U → V = φ(U) is an admissible change of variables, V satisfies
a non conservative system, for instance in d = 1

∂tV + B(V)∂xV = 0

with matrix B(V) similar to A(U), equivalent for smooth solutions,
not for discontinuous solutions.



Example: gas dynamics

The thermodynamic specific entropy s is defined through the
fundamental relation

Tds = dε+ pdτ,

where T = T (̺, ε) temperature, T = ε/Cv for a γ-law, τ = 1/̺,
S = −̺s is a mathematical entropy in the sense of Lax (3) with
entropy flux Fi = −̺ui s and for smooth solutions

∂

∂t
̺s +

d
∑

j=1

∂

∂xj

̺suj = 0. (6)

In general, not an equality, entropy inequality

∂

∂t
̺s +

d
∑

j=1

∂

∂xj

̺suj ≥ 0. (7)



Example: gas dynamics

In dimension d = 2

∂

∂t
̺+

∂

∂x
(̺u) +

∂

∂y
(̺v) = 0,

∂

∂t
(̺u) +

∂

∂x
(̺u2 + p) +

∂

∂y
(̺uv) = 0,

∂

∂t
(̺v) +

∂

∂x
(̺uv) +

∂

∂y
(̺v2 + p) = 0,

∂

∂t
(̺e) +

∂

∂x
(̺e + p)u +

∂

∂y
((̺e + p)v) = 0.

The eigenvalues of A(u,n) are u · n ± c (acoustic or pressure
waves) and u · n is a double eigenvalue (entropy and shear waves).
Euler equations are invariant under rotation: important for the
numerical approximation (project in direction n = (1, 0) → study
the 1d system)



Example: gas dynamics

Assuming a barotropic pressure law p = p(̺) we can ignore the
energy equation

∂̺

∂t
+

∂

∂x
̺u +

∂

∂y
̺v = 0,

∂

∂t
̺u +

∂

∂x
(̺u2 + p(̺)) +

∂

∂y
̺uv = 0, (8)

∂

∂t
̺v +

∂

∂x
̺uv +

∂

∂y
(̺v2 + p(̺)) = 0.

Linearized acoustic: we study small perturbations u = u0 + ũ of a
uniform flow ̺0, u0, v0 and linearize (8)

∂ ˜̺

∂t
+

∂

∂x
˜̺u +

∂

∂y
˜̺v = 0,

∂

∂t
˜̺u +

∂

∂x
( ˜̺u2 + p̃) +

∂

∂y
˜̺uv = 0, (9)

∂

∂t
˜̺v +

∂

∂x
˜̺uv +

∂

∂y
( ˜̺v2 + p̃) = 0.



Example: gas dynamics:linearized acoustic

In primitive variables Ũ = (p̃, ũ, ṽ)T

p(̺0 + ˜̺) ∼ p0 + p̃ ⇒ p̃ = p′(̺0)˜̺,

̺0u0 + ˜̺u ∼ (̺0 + ˜̺)(u0 + ũ) ⇒ ˜̺u = u0 ˜̺+ ̺0ũ.

Simple computations lead to the linear hyperbolic system

∂

∂t
Ũ + A0

∂

∂x
Ũ + B0

∂

∂y
Ũ = 0,

with constant matrices (c2
0 = p′(̺0))

A0 =





u0 ̺0c
2
0 0

1/̺0 u0 0
0 0 u0



 , B0 =





v0 0 ̺0c
2
0

0 v0 0
1/̺0 0 v0



 .

When u0 = v0 = 0, one can derive the wave equation by
differentiating the first equation wrt t, the second wrt x and the
third one wrt y and substracting

∂2

∂t2
˜̺− c2

0∆˜̺ = 0.



Example: gas dynamics, d = 1

Euler system in dimension d = 1 with p = 3 conservation laws

∂

∂t
̺+

∂

∂x
(̺u) = 0

∂

∂t
(̺u) +

∂

∂x
(̺u2 + p) = 0 (10)

∂

∂t
(̺e) +

∂

∂x
(̺e + p)u = 0

The eigenvalues of A(u) are u ± c and u, computed using the
primitive formulation in variables v = (̺, u, p), c2 = ∂p

∂̺ (̺, s)

B(v) =





u ̺ 0
0 u 1/̺
0 ̺c2 u





The system is endowed with a family of entropies U = ̺Φ(s) with
entropy fluxes F = ̺Φ(s)u where Φ is such that U is convex in the
conservative variables (Φ′ ≤ 0,Φ′′ ≥ 0).



Example: gas dynamics, d = 1,Lagrangian frame

Euler system in Lagrangian variables writes

∂

∂t
τ −

∂

∂m
u = 0,

∂

∂t
u +

∂

∂m
P = 0, (11)

∂

∂t
e +

∂

∂m
(Pu) = 0

where m is a mass variable, τ = 1/̺ is the specific volume
P(τ, ε) = p(1/τ, ε). In case of a barotropic pressure law (or an
isentropic flow) we get the classical P−system

∂

∂t
τ −

∂

∂m
u = 0,

∂

∂t
u +

∂

∂m
P = 0, (12)

where P = P(τ) is a given function satisfying P ′ < 0,P ′′ > 0.



Weak solutions of balance laws
Even if u0 is smooth, discontinuities may develop in finite time (ex
of scalar case: a smooth u is constant on characteristics)
Definition of weak solution: u0(x) initial data given in L

∞(Rd)p

for any test function ϕ ∈ C1
c (Rd × [0,∞))p

∫

∞

0

∫

Rd

{

u ·
∂ϕ

∂t
+

d
∑

j=1

fj(u) ·
∂ϕ

∂xj

}

dxdt

+

∫

Rd

u0(x) · ϕ(x, 0) dx =

∫

∞

0

∫

Rd

s(u)(x, t) · ϕ(x, t) dxdt

Rankine-Hugoniot condition: the jumps [u] ≡ u+ − u− and [fj(u)]
are linked across a surface of discontinuity with normal (nt , (nxj

))

[u]nt +

d
∑

j=1

[fj(u)] nxj
= 0

this is a system of p equations (if the system has no differential
source term s does not change R.H. relations)



Entropy weak solution
Non uniqueness of weak solution. Entropy criteria associated to an
entropy pair (U ,F = (Fi ))
Definition of entropy weak solution: u0(x) initial data given in
L
∞(Rd)p, for any test function ϕ ∈ C1

c (Rd × [0,∞))p,ϕ ≥ 0

∫

∞

0

∫

Rd

{

U(u) ·
∂ϕ

∂t
+

d
∑

j=1

Fj(u) ·
∂ϕ

∂xj

}

dxdt

+

∫

Rd

U(u0(x))·ϕ(x, 0) dx+

∫

∞

0

∫

Rd

U ′(u)s(u)(x, t) · ϕ(x, t) dxdt ≥ 0

in D′(Rd × (0,∞))p,
∂

∂t
U(u) +

d
∑

j=1

∂

∂xj

Fj(u) ≤ U ′(u)s(u)

The sign is not arbitrary: by the vanishing viscosity method

∂uε

∂t
+

d
∑

j=1

∂

∂xj

fj(uε) − s(uε) = ε∆(uε)



Entropy weak solution

because U convex, U ′′ ≥ 0 and neglect εU ′′(u)(∂xi
u, ∂xi

u) ≥ 0

∂

∂t
U(uε) +

d
∑

j=1

∂

∂xj

Fj(uε) − U ′(uε)s(uε) ≤ ε

d
∑

j=1

∂xi
(U ′(uε)∂xi

u))

As for Rankine-Hugoniot condition: entropy jump inequality

[U(u)]nt +
d

∑

j=1

[Fj(u)] nxj
≤ 0

(if source term s = s(u), it does not change entropy jump
inequality).
Characterization of a piecewise smooth entropy solution:

• classical solution in the domain where it is C1

• satisfies Rankine-Hugoniot

• and entropy inequality across a discontinuity.

In d=1, Lax-entropy condition with k−characteristics entering a
shock.



Source term

In dimension d , x = (x1, ..., xd), for a general scalar balance law

∂tu +

d
∑

i=1

∂xi
(fi (u, x , t)) + g(u, x , t) = 0, (t, x) ∈ ΠT

ΠT =]0,T ] × R
d . Existence and uniqueness of Kruzkov’s

‘generalized solution’: test function ϕ ≥ 0,

∫

ΠT

(

|u(x , t)−k|∂tϕ+sgn(u(x , t)−k)
d

∑

i=1

(fi (u(x , t), x , t)−fi (k, x , t))∂xi
ϕ

−sgn(u(x , t) − k)(∂xi
fi (k, x , t) + g(u, x , t))ϕ

)

dxdt ≥ 0

not relevant if x 7→ f (u, x , t) is discontinuous.



Different kind of source terms

• production/destruction terms; external forces, body forces
(gravitational); heat flux (energy equation)

• damping type: Euler with friction






∂t̺+ ∂x(̺u) = 0,
∂t(̺u) + ∂x(̺u

2 + p) = ̺(g − αϕ(u)),
∂t(̺e) + ∂x((̺e + p)u) = ̺(gu − αψ(u))

• geometrical source term: shallow water with topography
{

∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + 1

2
gh2) = −ghB ′(x)

• relaxation
{

∂tu + ∂xv = 0
∂tv + a2∂xu = 1

ε (f (u) − v)

• measure (link with space-varying flux), not of the type s(u)

∂tu + ∂x f (u, x) = Mδ0, Dirac



Influence of source term: a simple example

Linear equations with damping

∂tu + a∂xu = −αu

along line dx
dt

= a, the solution ũ(t) = u(x(t), t) satisfies
dũ
dt

= −αũ, if λ > 0, ũ(t) is no longer constant, decreases if α > 0

u(x , t) = e−αtu0(x − at)

Burgers equation with damping

∂tu + ∂x

u2

2
= −αu

Along a line dx
dt

(t) = u(x(t), t), ũ(t) = u(x(t), t) satisfies
dũ
dt

= −αũ, if α 6= 0, ũ no longer constant, the characteristics are
no longer straight lines. If x(0) = x0, then ũ(t) = u0(x0)e

−αt ,
then from dx

dt
(t) = u0(x0)e

−αt , we get

x(t) =
u0(x0)

−α
(e−αt − 1) + x0



Influence of a measure source term

The Rankine-Hugoniot condition for ∂tu + ∂x f(u) = 0 is

[f(u)] = σ[u], across x = ξ(t),

where σ = dξ
dt

= speed of propagation of the discontinuity. For

∂tu + ∂x f(u) = Mδ0

M weight, δ0 Dirac measure concentrated on x = 0, R.H. becomes
across x = 0

[f(u)] = M

this remark is useful in the framework of interface coupling:
f = f (u, a) = (1 − a)fL(u) + afR(u), a Heaviside,
[f ]x=0 = fR(u(0+)) − fL(u(0−)), M = fR(u) − fL(u), state u
continuous, M = 0, flux f continuous



Riemann problem for HSCL
From now on d = 1
The Riemann problem corresponds to a special Cauchy data

∂u

∂t
+

∂

∂x
f(u) = 0, t > 0, (13)

u(x , 0) = u0(x) where u0(x) is piecewise constant

u0(x) =

{

uL, x < 0
uR , x > 0.

(14)

Self similar solution u(x , t) = WR(x/t;uL,uR) (if source s = 0).
Invariance by translation: Riemann problem at any (x0, t0) has
solution u(x , t) = WR((x − x0)/(t − t0);uL,uR)
Importance:

• gives explicit solutions (for tests)

• used in constructing numerical approximations; general u0(x)
approached by piecewise constant u0

i on (xi−1/2, xi+1/2):
juxtaposition of RP.



Solution of the Riemann problem for linear HSCL

Linear system: A constant p × p matrix, diagonalizable on R

∂tu + A∂xu = 0

Decouples in p scalar transport equations: u =
∑p

i=1
vi ri

∂tvi + λi∂xvi = 0, 1 ≤ i ≤ p

solution: vi (x , t) = vi (x − λi t, 0), uL/R =
∑p

i=1
vL/R,i ri

vi (x , 0) =

{

vL,i , x < 0
vR,i , x > 0

Initial discontinuity at x = 0 gives p discontinuities propagating
with characteristic speed λi , separating constant states (say wi ,
i = 0, p, and wi −−wi−1 = (vR,i − vL,i )ri .
Solution of the Riemann problem is explicit.



RP for linear system

t

0
x

x/t = λ2

x/t = λpw2

wp–1

wp = uRw0 = uL

w1

x/t = λ1



Solution of the Riemann problem for convex HSCL

-Scalar case (strictly convex) case: rarefaction or shock
-Linear system: p contact discontinuities propagating at speed λk

Mix both ingredients: propagation of p elementary waves
(rarefaction, shock, contact) according to the nature of the
characteristic field (λk , rk). The analysis needs:

• Definition of Genuinely Non Linear (GNL) and Linearly
Degenerate (LD) characteristic fields

• Smooth elementary k−waves: k− rarefaction (GNL),
rarefaction curve Rk(uL)

• Discontinuous: k− shock wave (k GNL) or k−contact
discontinuity (k LD), discontinuity curve Ck(uL)

• Lax entropy condition: admissible shocks, shock curve Sk(uL)

• From uL, path in Ω following piecewise curves Rk(uk) or
Sk(uk) if k GNL, Ck(uk) if k LD, uL = u0 and intermediate
states uk , 1 ≤ k ≤ p. Aim: reach uR .

Solution of the Riemann problem: Lax theorem for ‘convex’ HSCL.



Solution of the Riemann problem (rarefaction)

Smooth self similar solutions u(x , t) = v(x/t) satisfy

−
x

t2
v
′ +

1

t
A(v)v′ = 0

Set ξ = x/t
(A(v) − ξI)v′ = 0

∃k ∈ {1, 2, .., p}

(1) v
′(ξ) = rk(v(ξ)), and (2) λk(v(ξ)) = ξ

(1) will give an integral curve of rk , condition (2) implies k GNL
field

Dλk(v(ξ))v′(ξ) = Dλk(v(ξ))rk(v(ξ))= 1

whereas Dλk(v)rk(v)≡ 0 for LD field. Solving (1)+ (2) with
v(ξ0) = u0 gives the k−rarefaction curve from state u0: Rk(u0) .



Solution of the Riemann problem (discontinuities)

Discontinuous solutions. Write

f(u) − f(u0) =

∫ 1

0

d

ds
f(u0 + s(u − u0))ds

develop and use Rankine-Hugoniot condition
∫ 1

0

A(u0 + s(u − u0)ds(u − u0) = σ(u0,u)(u − u0)

define the p × p matrix A(u0,u) =
∫ 1

0
A(u0 + s(u − u0)ds, it is

such that A(u0,u0) = A(u0). Then speed of discontinuity σ(u0,u)
is an eigenvalue, and u − u0 an eigenvector. The eigenvalues of
A(u) are known: λk(u), by continuity, for u near u0, A(u,u0) has
p real distinct eigenvalues λk(u0,u), eigenvectors rk(u0,u) and
‘left’ eigenvectors

lk(u0,u)TA(u0,u) = λk(u0,u)lTk (u,u0)

u − u0 = rk(u0,u) will give a curve (the proof needs some
development). Sk(u0) entropy part of the curve if k GNL.



Solution of the Riemann problem (wave curves)

Wave curves: k− field GNL
Rk(u0) can be parametrized: ε→ Φk(ε) ∈ Ω

Φk(ε) = u0 + εrk(u0) +
ε2

2
Drk(u0).rk(u0) + O(ε3), 0 ≤ ε ≤ ε0

Sk(u0) can be parametrized: ε→ Ψk(ε) ∈ Ω

Ψk(ε) = u0 + εrk(u0) +
ε2

2
Drk(u0).rk(u0) + O(ε3), −ε0 < ε ≤ 0

σk(ε) = λk(u0) +
ε

2
Dλk(u0).rk(u0) + O(ε2), −ε0 < ε ≤ 0

The k wave curve Ck(u0) is thus a C2 curve ε 7→ χk(ε)

χk(ε) = u0 + εrk(u0) +
ε2

2
Drk(u0).r(u0) + O(ε3), −ε0 < ε ≤ ε0

Same equation valid for k− field LD, only σk(ε) ≡ λk(u0)



Solution of the Riemann problem (‘convex’ case)

Assume all fields are either GNL or LD. Find p elementary waves,
and intermediate states: uL = u0 → u1 → . . .→ up

u1 = χ1(ε1;u0),u2 = χ2(ε2;u1), ...up = χp(εp;up−1)

Solve the RP means reach uR = up

up = χp(εp;χp−1(εp−1;χp−2(εp−2; ...χ1(ε1;u0))...) ≡ χ(ε)

ε = (ε1, ..., εp) ∈ R
p. Find ε such that χ(ε) = uR .

χk(ε) = uL + εrk(uL) + O(ε2), |ε| ≤ ε0, χ
′

k(0) ∼ rk(uL)

Local inversion theorem: χ : R
p → V, V neighborhood of uL in

R
p, χ′(0) ∼ (r1(uL), .., rp(uL)) is invertible (basis of R

p).
Lax theorem: ∃V(uL), ∀uR ∈ V, the Riemann problem has a
unique solution built with elementary k− waves.



RP for p−system

p−system has 2 GNL fields, only shocks or rarefactions in the
solution of the Riemann problem. Example: 1-shock and
2-rarefaction

u

v
wR

wL

III

w0

x/t = σ1

wL

x/t = λ2(v0)

x/t = λ2(vR)

0

t

x

w0

1
L

2
L

2(w0)



Example of RP for Euler system: shock tube

1-rarefaction
2-c.d.

3-shock

t

x

x

x

x

RL

0

0

u

ρρL

ρR

uRuL

pL

p

pR

ρI

ρII

u*

p*



Coupled Riemann problem

coupled Riemann problem (CRP) = Cauchy problem for coupled
systems with Riemann data uL,uR

Take CRP for two Euler systems in Lagrangian frame

t

λ = 0
3,Rσ

1σ ,L

0
x

Ru u

u(0−) u(0+)

L

2

Example: solution of a CRP with two shocks 1 − L and 3 − R, one
stationary wave u(0−), u(0+)
(easy because λ1,L(u) < 0 < λ3,R(u), no change of sign)



Coupling algorithms for hyperbolic systems

Edwige Godlewski
Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie (Paris)

Cemracs, July 2011



1.2. Introduction to finite volume methods

• Finite volume methods: definition, conservation, consistency

• 1d conservative schemes; monotone schemes

• simple schemes: Lax-Friedrichs, Lax-Wendroff

• Godunov scheme

• Roe scheme

• Approximate Riemann solver

• Some required properties for applications



Definition

3 principles in the derivation of a FV method for approximating the
solution of a pde (space derivative)

• partition of Ω by cells Ωi or ‘finite volumes’

• 1 unknown per cell

ui ∼
1

|Ωi |

∫

Ωi

u(x)dx

|Ωi | measure of Ωi (length if d = 1, surface if d = 2, volume
if d = 3)

• integrate the pde on Ωi to derive the scheme for computing ui

Here pde in time too: u(x , t). Above lines give an ODE in ui (t),
method of line; add a scheme for advancing in time.
Same formalism for a system: ui has p components.



Definition

Start from u0
i =

1

|Ωi |

∫

Ωi

u(x , 0)dx

define exact ũi (t) =
1

|Ωi |

∫

Ωi

u(x , t)dx , ui (t) ∼ ũi (t)

integrate the equation

∫

Ωi

(
∂u

∂t
+ div f (u(x , t)))dx = 0

∂

∂t

∫

Ωi

u(x , t)dx +

∫

∂Ωi

f (u(x , t)).n dx = 0

∫

∂Ωi

f (u(x , t)).n dx =
∑

j∈N (i)

∫

∂Ωi∩∂Ωj

f (u(x , t)).ni ,j dx

(N (i) neighbors of Ωi ). Replace
∂
∂t

∫

Ωi
u(x , t)dx = |Ωi |∂t ũi (t) ∼ |Ωi |∂tui (t), replace the exact

normal flux through an edge ei ,j = ∂Ωi ∩ ∂Ωj by a numerical one.



Definition

On ei ,j approach the exact normal flux using only the unknown
values (uk(t)); simplest: use only ui (t), uj(t)

∫

ei,j

f (u(x , t)).ni ,j dx ∼ |ei ,j |Φ(ui (t), uj(t), ni ,j)

method of line |Ωi |
∂

∂t
ui (t) +

∑

j∈N (i)

|ei ,j |Φ(ui (t), uj(t), ni ,j) = 0

ODE; for a first order scheme, use Euler method. Fully discretized

scheme
|Ωi |
∆t

(un+1
i − un

i ) +
∑

j∈N (i)

|ei ,j |Φ(un
i , un

j , ni ,j) = 0

Φ(u, v , n) is a numerical flux
Consistency with exact flux: Φ(u, u, n) = f (u).n
Conservation: Φ(ui , uj , ni ,j) = −Φ(uj , ui ,−ni ,j)
Same formalism for a system: Φ(u,u, n) has p components.



Definition of the numerical flux

In dimension d = 2: along an ‘infinite’ edge e = ei ,j , axis (n, n⊥),
the independent variables are noted (ζ, τ), given a constant on
each side of the edge, the solution does not depend on the tangent
variable τ , only on the variable ζ along n, the normal axis.
Solve a 1d Riemann problem for f .n with Riemann data (ui , uj).
In dimension d = 3: the same with an ‘infinite’ face, depends only
on the variable on the normal axis.
Example: vertical edge, n = (1, 0), n⊥ = (0, 1), (ζ, τ) = (x , y): use
a one-dimensional numerical flux g(ui , uj) which approaches the
exact flux.
In general, use this one-dimensional flux for the projected equation
with continuous flux f .n (‘simple’ if the equations are rotational
invariant).
Conclusion: derive good numerical fluxes for 1d problems!
Test ideas on scalar conservation laws. Try to extend to systems.



1d numerical schemes
Ωi = (xi−1/2, xi+1/2), xi = (xi−1/2 + xi+1/2)/2 , |Ωi | = ∆xi . Finite
volume schemes, numerical flux g : R

2 → R

∆xi

un+1
i − un

i

∆t
+ g(un

i , un
i+1)−g(un

i−1, u
n
i ) = 0

sign − expresses conservation; g consistent with f : g(u, u) = f (u)

un+1
i = un

i − ∆t

∆xi

(g(un
i , un

i+1) − g(un
i−1, u

n
i ))

Theorem (Lax-Wendroff): IF converges (in a reasonable way), the
limit is a weak solution.
Finite difference form: ∆xi = ∆x , λ = ∆t/∆x

un+1
i − un

i

∆t
+

g(un
i , un

i+1) − g(un
i−1, u

n
i )

∆x
∼ ∂u

∂t
(xi , tn)+

∂

∂x
f (u(xi , tn))

set gi+1/2 = g(ui , ui+1)

3-point scheme. More generally, gi+1/2 = g(ui−1, ui , ui+1, ui+2)
5-point scheme (necessary for higher order methods) ...



Examples of 1d numerical schemes

Different types

1. finite difference type schemes

2. using the properties of the HSCL: exact or approximate
Riemann solver, FVS (flux vector splitting)

3. using other approaches: Lagrange-projection, relaxation,
kinetic

Examples

1. Lax-Friedrichs, Lax-Wendroff

2. Godunov, Roe, HLLE, Osher

3. relaxation schemes, kinetic schemes

Links between 1, 2 and 3, for instance: Lax-Friedrichs and
Rusanov, Rusanov and relaxation, kinetic and flux vector splitting,
relaxation and Godunov-type schemes...



upwind, Godunov and Roe scheme

• linear case: in the scalar case ∂tu + a∂xu = 0, upwind scheme
g(u, v) = a+u + a−v ; for a system, same in characteristic var.

• nonlinear case if f ′(u) (p = 1) or λi (u) (system) changes sign:
Godunov’s scheme. Discretize u0(x) by averaging on each
cell: u0(x) 7→ u0

i = 1
∆x

∫

Ωi
u0(x)dx

1. (u0
i ) 7→ u∆(x , 0) piecewise constant

2. solve exactly the HSCL with i.c. u∆(x , 0): t ∈]0,∆t] + CFL,
is a juxtapositon of Riemann problems, gives → u(x ,∆t)

3. project back u(x ,∆t) on piecewise constant functions → u1
i

solve a Riemann problem at each interface xi+1/2, gives:
g(ui ,ui+1) = f (wR(0±;ui ,ui+1))= Godunov’s flux

• if too complex! solve a linear Riemann problem at each
interface xi+1/2 with some matrix Ai+1/2 (Roe’s matrix)

• more generally, use an approximate Riemann solver (HLL)



Usual properties
Order of accuracy. Taylor expansion: 3-point schemes are first
order (if monotone) or second order (Lax-Wendroff)
Stability.

• L
2 linear stability: use Fourier transform or normal modes

• L
∞ stability (convex combination)

• monotone schemes: scalar property u0 ≤ v0 ⇒ un ≤ vn

• monotonicity preserving, TVD (scalar)

CFL condition for explicit schemes: ∆t
∆x

max |f ′(u)| ≤ cfl ≤ 1 for

system becomes ∆t
∆x

max |λi (u)| ≤ cfl ≤ 1
Entropy : discrete entropy inequality with entropy U and
consistent numerical entropy flux G

U(un+1
i ) ≤ U(un

i ) + λi

(

G(un
i , un

i+1) − G(un
i−1, u

n
i )

)

Monotone schemes are L
∞ stable, TVD, Entropy satisfying... but

only first order accurate. Example: Godunov, Lax-Friedrichs,
Osher...



Required properties in applications

stability:
-preservation of invariant domains, keep the approximate solution
in the physical set of states, for instance preserve the positivity of
̺, p, α ∈ [0, 1] for a volume fraction...
-discrete entropy inequalities, maximum principle for the specific
entropy satisfied by Godunov, HLLE
accuracy:
-exactly resolve stationary contact discontinuity (satisfied by
Godunov, Roe, VFRoe, not by HLLE)
-capture stationary discrete shocks with at most two intermediate
states (satisfied by Godunov, Roe)
some specific problems:
- well-balanced: preserve equilibria at the discrete level
- asymptotic preserving: when the continuous equation has some
asymptotic behavior, mimic that at the discrete level
- compute low-mach, slowly moving shocks (σ/ maxi |λi | << 1)



Some tools

• entropy fix

• choice of variables: non conservative VFRoenc

• entropy variables

• add diffusion/antidiffusion

•
•



Example: positivity of ̺, p for Godunov

Positivity of ̺ and p satisfied by Godunov (not by Roe) at least for
a γ−law p = (γ − 1)̺ε:

if ̺0
i ≥ 0, p0

i ≥ 0, then ∀n > 0, ̺n
i ≥ 0, pn

i ≥ 0.

Proof: un
i = (̺n

i , (̺u)ni , (̺e)ni ) is the mean value of the solution of
an exact evolution step: un

i = 1
∆xi

∫ xi+1/2

xi−1/2
u(x ,∆t)dx .

It yields ̺n
i ≥ 0,∀i ∈ Z, because u(x , t) = (̺, ̺u, ̺e)(x , t) is an

admissible physical state.
The expression for pn

i is less straightforward. We have

pn
i = (γ − 1)

(

(̺e)ni −
1

2
̺n
i (u

n
i )2

)

, un
i =

(̺u)ni
̺n
i

.

The energy component is given by

∆xi (̺e)ni =

∫ xi+1/2

xi−1/2

̺ε(x ,∆t)dx +
1

2

∫ xi+1/2

xi−1/2

̺u2(x ,∆t)dx ,

then by Cauchy-Schwarz inequality



positivity of p for Godunov

(

∫ xi+1/2

xi−1/2

̺u dx
)2

≤
(

∫ xi+1/2

xi−1/2

̺ dx
)(

∫ xi+1/2

xi−1/2

̺u2 dx
)

gives by definition of un
i

̺n
i (u

n
i )2 ≤

∫ xi+1/2

xi−1/2

̺u2 dx

thus since

∆xip
n
i

(γ − 1)
=

∫ xi+1/2

xi−1/2

̺ε dx +
1

2

∫ xi+1/2

xi−1/2

̺u2 dx − 1

2
̺n
i (u

n
i )2

we get

pn
i ≥ (γ − 1)

1

∆xi

∫ xi+1/2

xi−1/2

̺ε dx ≥ 0

this last integral is positive since ̺ε ≥ 0 again because u(x , t) is an
admissible physical state.



Roe scheme
Roe-type linearization: A(u, v) Roe matrix if A(u, v) is a p × p

matrix satisfying

• f(v) − f(u) = A(u, v)(v − u)

• A(u, v) has real eigenvalues ak(u, v)

• and a corresponding set of eigenvectors, basis of R
p: rk(u, v).

Theoretical result: if the system has a strictly convex entropy U ,
A(u, v) exists.
in practice: A(u, v) = A(m(u, v)), find an averaging operator,
exists for Euler.
The scheme is given by

∆xu
n+1
j =

∫ ∆x/2

0
w ℓ

R(
x

∆t
;un

j−1,u
n
j )dx+

∫ 0

−∆x/2
w ℓ

R(
x

∆t
;un

j ,u
n
j+1)dx

w ℓ
R exact solution of a linear Riemann problem associated resp. to

An
j−1/2 = A(un

j−1,u
n
j ) on (xi−1, xi ) and An

j+1/2 = A(un
j ,u

n
j+1) on

(xi , xi+1).



Roe scheme

The scheme is

u
n+1
j = u

n
j −

λ

2

(

(An
j+1/2−|An

j+1/2|)(un
j+1−u

n
j )+(An

j−1/2+|An
j−1/2|)(un

j −u
n
j−1

‘matrix upwind form’

u
n+1
j = u

n
j −

λ

2

(

(An
j+1/2)

−(un
j+1 − u

n
j ) + (An

j−1/2)
+(un

j − u
n
j−1)

)

eigenvector decomposition: αk coefficient of ∆u on rk , a±k
eigenvalues of A±

u
n+1
j = u

n
j − λ

p
∑

k=1

(

(αka−k rk)nj+1/2 + (αka+
k rk)nj−1/2

)

conservative form with numerical flux

g(u, v) =
1

2
(f(u) + f(v)) − 1

2
|A(u, v)|(v − u)

the viscosity matrix is |A(u, v)|.



Roe matrix for Euler

A(uL,uR) = A(m(uL,uR)), m mean operator computed by
parameter vector = change of variables u → w(u) such that we get
homogeneous quadratic functions of w: u(w) and g(w) = f (u(w))

∆g = g ′((w− + w+)/2)∆w, ∆u = u
′((w− + w+)/2)∆w

then m(u−,u+) = u((w− + w+)/2). H = e + p/̺ total specific
enthalpy (̺e + p)u = ̺Hu

w = (
√

̺,
√

̺u,
√

̺H)T ,u = (w2
1 ,w1w2,w1w3 − p, )T

g(w) = (w1w2, w
2
2 + p,w2w3)

T

for an ideal gas p = −(γ − 1)/2γw2
2 + (γ − 1)/γw1w3, also OK for

Gruneisen law, not possible for any real gas equation of state.
Note u the Roe average state of uL,uR

u =
̺LuL + ̺RuR

̺L + ̺R

,H =
̺LHL + ̺RHR

̺L + ̺R

comes from u = w2/w1, H = w3/w1.



Roe scheme for Euler

Coefficients αk of ∆u on rk given by nice formulas
For a more general equation of state p = p(̺, ̺ε), possible to
define A(u) if one can find mean values of κ, χ such that

∆p = χ∆̺ + κ∆(̺)

Properties of Roe’s scheme. Accuracy: solves exactly pure
discontinuities (shocks and contacts).
Drawbacks: ̺, p are not necessarily positive (in case of the
interaction of strong shocks) and no entropy inequality, needs an
entropy correction near sonic points, for instance diagonalize
Q(u, v) = λ|A(u, v)| in the basis rk(u, v) λdiag(|ak |) and add
some entropy by a smooth quadratic regularization of |x | near 0

Qδ(x) =

{

λ|x |, |x | ≥ δ
λ(x2/2δ + δ/2), |x | ≤ δ

(1)

δ chosen in function of spectral radius of A, δ = α(|u| + c), α
constant depends on the applications.



Extensions
Replace Q(u, v) by a diagonal matrix α(u,v)

λ I gives a Lax-Friedrichs
type scheme

gRoe(u, v) =
1

2
(f(u) + f(v)) − 1

2
|ARoe(u, v)|(v − u)

g(u, v) =
1

2
(f(u) + f(v)) − 1

2λ
α(u, v)(v − u)

Stability: α ≤ 1, LF for α = 1. Rusanov:
α(u, v) = λmax(maxi (|λi (u)|,maxi (|λi (v)|) and CFL 1/2
Extensions of Godunov’s scheme:
- using shock curve decomposition, associated to a path

f(v) − f(u) = A(u, v)(v − u)

A(u, v) =

∫ 1

0
A(u + s(v − u))ds

extends to nonconservative systems
- linearization at another state: VFRoe scheme
AVFR(u, v) = A((u + v)/2).



Extension: VFROEnc

VFRoe scheme in nonconservative variables: w = w(u)

∂tw + B(w)∂xw = 0

linearization
∂tw + B(ŵ)∂xw = 0

ŵ = (w(uL) + w(uR)/2), B(wL,wR) = B((wL + wR)/2) then
AVF (uL,uR) = A(u(ŵ)).
Simple, no theoretical good properties (can produce negative ̺),
but gives practical good results with a good choice of w.
Example: for isentropic gas dynamics,

∂t̺ + ∂x̺u = 0

∂t̺u + ∂x(̺u2 + p) = 0

p = p(̺) = κ̺γ



VFROEnc

Choose w = (ϕ(̺), u), where ϕ is involved in Riemann invariant
w , w± = u ± ϕ(̺), ϕ′(̺) =

√

p′(̺)/̺, quasilinear formulation

∂tϕ + u∂xϕ +
√

p′(̺)∂x̺u = 0,

∂t u + u∂xu +
√

p′(̺)∂x̺u = 0

diagonalizable with w±.
Vacuum appears if uR − uL ≥ ϕR + ϕL

Linearize with û = (uL + uR)/2, ϕ̂ = (ϕ(̺L) + ϕ(̺L))/2,
√

p′(ˆ̺)
Linear Riemann problem has an intermediate state for
λ1 = û −

√

p′(ˆ̺) < x/t < λ2 = û +
√

p′(ˆ̺)
u∗ = (uL + ϕL + uR − ϕR)/2, ϕ∗ = (uL + ϕL − uR + ϕR)/2,
ϕ∗ defines ̺ ≥ 0 only if uL + ϕL − uR + ϕR ≥ 0, take ϕ∗

+ might
‘ensure’ ̺ > 0 (no vacuum).



Second order extension
Use the same numerical flux on more ‘accurate’ values (MUSCL
approach), in time use RK or some 2nd order scheme
-piecewise constant reconstruction, one value per mesh is first order

ui =
1

∆xi

∫ xi+1/2

xi−1/2

u(x)dx

-define two values per mesh ui+1/2−, ui+1/2+ (using ui±1, ui ) such
that both ui+1/2± = u(xi+1/2) + O(∆x)2, and define the new
numerical flux: gi+1/2 = g(ui , ui+1) replaced by
g(ui+1/2−, ui+1/2+)
-second order accurate reconstruction operator: scalar piecewise
linear uδ(x) = ui + δi (x − xi ) in Ωi with slope δi computed from
nearby values and limited,

ui−1/2+ = uδ(xi−1/2) = ui − ∆xiδi/2

ui+1/2− = uδ(xi+1/2) = ui + ∆xiδi/2



Muscl approach

• TVD property ⇒ need of limiter, for example

δi = minmod
(

2
ui − ui−1

∆xi−1 + ∆xi

, 2
ui+1 − ui

∆xi+1 + ∆xi

)

• for systems, which variables are piecewise linear (+limited):
conservative / primitive?

• second order needs ‘slopes’, in 2d, approximating the gradient
is less obvious than in 1d.



Introduction to the treatment of source terms

Treatment depends on the nature of the ‘source’.

• External force, gravity: explicit treatment

• need of upwinding in some cases

• stiff source terms (reacting flow, relaxation): implicit
treatment or

• frequent tool: operator splitting

• geometric source terms: well-balanced schemes = preserve
some discrete steady states

• friction like source terms: asymptotic preserving schemes =
preserve asymptotic behavior

• higher order terms: diffusion, dispersion...



Introduction to operator splitting
A simple example

∂tu + a∂xu = −αu

u(x , t) = e−αtu0(x − at), if a > 0, an upwind method and explicit
treatment of source term give

un+1
j = un

j − λa(un
j − un

j−1) − α∆tun
j

An operator splitting consists in solving in two steps (in time)

• 1. ∂tu + a∂xu = 0 with upwind: un+1−
j = un

j − λa(un
j − un

j−1)

• 2. ∂tu = −αu gives with Euler: un+1
j = un+1−

j − α∆tun+1−
j

results in a first order accurate (setting ν = λa)

un+1
j = un

j − λa(un
j − un

j−1) − α∆tun
j + aαλ∆t(un

j − un
j−1)

un+1
j = un

j − ν(un
j − un

j−1) − α∆t(un
j (1 − ν) + νun

j−1)

1.∂tu + a∂xu = 0 ⇒ u(x , t) = u0(x − at)
2.∂tu = −αu ⇒ u(x , t) = e−αtu0(x) each solved on a time step
gives u(x , t + ∆t) = e−α∆tu(x − a∆t, t)= exact solution



operator splitting

In general
∂tu + (A + B)u = 0

where A,B are operators (differential or not, previous example:
Au = ∂xu,Bu = αu); in general advection (differential) and source
(may be stiff). Solve

• ∂tu + Au = 0 on one time step, from i.c. u(x , t) gives
ũ(x , t + ∆t) = e−∆tAu(x , t)

• ∂tu + Bu = 0 on one time step, from i.c. ũ(x ,+∆t) gives
ˇ̃u(x , t + ∆t) = e−∆tB ũ(x , t + ∆t) = e−∆tBe−∆tAu(x , t)

• exact solution would be u(x , t + ∆t) = e−∆t(A+B)u(x , t)

If A and B do not commute, there is a splitting error, it results in a
first order method. Can be improved by Strang’s splitting.



Strategy

Both schemes (splitting, upwinding) converge towards the same
solution, as the mesh size vanishes, and with the same rate. When
the mesh is given, which is best? Answer: problem dependent

• relaxation scheme: splitting with instantaneous relaxation

• preserve equilibria (A + B)u = 0 (steady solutions) at the
discrete level, in general, by balancing exactly flux gradient
and source term: well balanced scheme (or interface Riemann
solver). If source terms exactly balance convective effects,
source terms have to be upwinded in accordance with
upwinded convective fluxes. Splitting gives poor accuracy on
coarse meshes. The first step may introduce non equilibrium
states (ex. simulating atmosphere at rest may create
‘catastrophic’ behavior).

• compute unsteady flows, with some external time scale;
splitting behaves better, well balanced scheme should be
improved.



Introduction to relaxation schemes

Consider a simple example

∂tu + ∂xv = 0,

∂tv + ∂xp(u) = λ(f (u) − v), (2)

with p(u) = au, a > 0 constant, satisfying Whitham

−
√

a < f ′(u) <
√

a.

Appropriate discretization of (2) will approximate the solution u of
the conservation law ∂tu + ∂x f (u) = 0 for λ large enough.
Diagonalize (2), with ‘Riemann invariants’
w = v −√

au, z = v +
√

au propagating with speed ±√
a, and use

upwind scheme.
Inverse relations u = (z − w)/2

√
a, v = (w + z)/2



a simple example of relaxation scheme

Flux of (2) is (v , au), numerical flux gi+1/2 = (vi+1/2, aui+1/2).
Upwind scheme in (w , z) gives fluxes (wi+1/2 = wi+1, zi+1/2 = zi ),
hence

wi+1/2 = (v −
√

au)j+1/2 = vj+1 −
√

auj+1

zi+1/2 = (v +
√

au)j+1/2 = vj +
√

auj

and

uj+1/2 =
1

2
(uj + uj+1) −

1

2
√

a
(vj+1 − vj)

vj+1/2 =
1

2
(vj + vj+1) −

1

2

√
a(uj+1 − uj).

For the fully discrete first order scheme, this gives with ν = ∆t/∆x

un+1
j − un

j + ν
2 (vn

j+1 − vn
j−1) − ν

2

√
a(un

j+1 − 2un
j + un

j−1) = 0

vn+1
j − vn

j + ν
√

a

2 (un
j+1 − un

j−1) − ν
2
√

a
(vn

j+1 − 2vn
j + vn

j−1) =

λ∆t(f (un
j ) − vn

j ).



a simple example of relaxation scheme

Since the system is linear, the upwind scheme for the first order
system is the exact Godunov solver in variables (w , z)

WR(x/t; (wl , zl), (wr , zr )) =







(wl , zl)
x
t

< −√
a

(wr , zl) −√
c < x

t
<

√
a

(wr , zr )
x
t

>
√

a

The relaxed spatial discretization with v = f (u) gives a
Lax-Friedrichs type scheme

un+1
j = un

j − ν

2
(f (un

j+1) − f (un
j−1)) +

ν

2

√
a(un

j+1 − 2un
j + un

j−1)

associated with the approximate Riemann solver and projection on
the equilibrium variety (u = (w + z)/2, v = f (u))

wR(ξ; ul , ur ) =















ul ξ < −√
a

ul + ur

2
− f (ur ) − f (ul

2
√

a
, −

√
a < ξ <

√
a

ur ξ >
√

a



Jin-Xin relaxation scheme
and thus the numerical flux

g(ul , ur ) =
1

2
(f (ul) + f (ur )) −

√
a

2
(ur − ul)

Remark : the Rusanov scheme is obtained by optimizing the choice
of a, under the subcharacteristic constraint

√
a = sup

ul ,ur

|f ′(u)|.

Generalization to a system of p equations gives 2p equations

∂

∂t
u +

∂

∂x
v = 0,

∂

∂t
v + A

∂

∂x
u = λ(f(u) − v), (3)

where A is now a constant diagonal matrix with positive entries.
The choice of a in Rusanov scheme is now

√
a = sup

ul ,ur

sup
j

|λj(u)|.



2d FV schemes

some remarks

• grid effects possible on a cartesian grid

• for a given mesh (Ti ), choice of ‘cells’ Ωi : cell-center Ωi = Ti

or cell-vertex scheme Ωi = T ∗
i dual mesh

• some difficulties to obtain bounds (TVD?), consistency

• attempts to construct truly 2d FV schemes

• second order needs ‘slopes’, approximating the gradient is less
obvious than in 1d

• implementation...
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Our coupling model
the interface is a boundary for both (left and right) systems: two
IBVP

x>0

x=0interface
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system with flux system with flux
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2. Introduction to the boundary value problem,

introduction to interface coupling

• introduction to the IBVP

• simple examples: linear 1d and 2d (scalar, system)

• scalar nonlinear

• nonlinear system

• modeling

• numerical approach

• introduction to interface coupling



Introduction to the boundary value problem

HSCL: set of p conservation laws

∂u

∂t
+

d
∑

j=1

∂

∂xj

fj(u) = 0, t > 0, (1)

u = (u1, u2, .., up)
T ∈ Ω in R

p set of states, f(u) = (fj(u)) flux
(each fj(u)) ∈ R

p). Initial condition, u(x , 0) = u0(x) on the
‘boundary’ t = 0, and for an IBVP (initial boundary value problem)

x ∈ O, + boundary condition g on ∂O × (0,T )

Problems at all levels

• theoretical

• modeling

• numerical approach



Introduction: linear case, advection equation

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ (0, 1), t > 0, (2)

u(x , 0) = u0(x), x ∈ (0, 1), (3)

solutions are constant along characteristic lines x − at =const. If
a > 0, they enter the domain from x = 0, leave it from x = 1. One
needs to prescribe the solution on the boundary x = 0,

u(0, t) = g(t), t > 0 (4)

where g is some given function. If M = (x , t) is any point in the
domain (0, 1) × R

⋆
+, the value of u at M is then uniquely

determined. One cannot prescribe the solution on the boundary
x = 1. The solution u of (2), (3) (4) is then given for t > 0 by

u(x , t) = u0(x − at) if at < x < 1,

u(x , t) = g
(

t − x
a

)

if 0 < x < min(at, 1)



Scalar transport in 2d

The solution of the pure Cauchy problem







∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, (x , y , t) ∈ R × R × R

⋆
+,

u(x , y , 0) = u0(x , y), x , y ∈ R × R

(5)

is
u(x , y , t) = u0(x − at, y − bt),

and is constant on the characteristic lines x − at = cst,
y − bt = cst, advection direction C = (c, 1), c = (a, b)T .
For an I.B.V.P., (x , y , t) ∈ Q = O × R

⋆
+ of R

2 × R+, with
boundary Σ; Q is a cylinder and two different kinds of data are
given on the surface Σ:
(i) initial data on the set O of the plane t = 0,
(ii) boundary data on the remaining part Γ of Σ (Γ is the side of
the cylinder): Γ = ∂O × R

⋆
+. On this surface Γ, nt = 0

Let n = (nx , ny )T be the outward normal to ∂O in the plane t = 0.



Scalar transport in 2d

One says that the boundary of O is characteristic at a point if
anx + bny = c · n = 0 at this point.
Boundary data have to be prescribed on the part Γ− of the
boundary that corresponds to incoming characteristics

∂O− = {(x , y) ∈ ∂O; c · n(x , y) < 0}, (6)

u(·, t) = g(·, t) on ∂O− ⇐⇒ u = g on Γ− = ∂O− × R+, (7)

and not on the part ∂O+ = {(x , y) × ∂O; c · n(x , y) ≥ 0} where
they are outgoing. Note that if O is characteristic at m0 = (x0, y0),
u cannot be specified on the corresponding line of Γ.



Linear system in 1d

∂tu + A∂xu = 0, x ∈ (0, 1), t > 0

First if A = Λ = diag(ai ) constant diagonal p × p matrix and
ai 6= 0 assume q positive eigenvalues ai > 0
A = A+ + A−, A+ = diag(ai+) ≡ ΛI , A− = diag(ai−) ≡ ΛII ,
u = (uI ,uII ). Boundary conditions are

uI (0, t) = gI (t),uII (1, t) = gII (t)

i such that ai = 0 is in II for x = 0, in I for x = 1. More generally

uI (0, t) = gI (t) + S IuII (0, t),uII (1, t) = gII (t) + S IIuI (1, t)

S I ,S II rectangular matrices (allow reflection of the outgoing wave)



Linear system in 1d

if A diagonalizable A = TΛT−1, characteristic variables
w = T−1u, w = (wI ,wII ) ∈ R

q × R
p−q. Boundary conditions are

wI (0, t) = gI (t) + S IwII (0, t),wII (1, t) = gII (t) + S IIwI (1, t)

In conservative variables u?
Can we prescribe Eu(0, t) = g(t), E is a N × p matrix, g(t) ∈ R

N

given (prescribe N linear combinations of the conservative
variables).
It requires N = q (number of > 0 eigenvalues) and if
T = (T I ,T II ) (T I matrix of eigenvectors assoc. to ai > 0, and
T II to ai < 0), ET I must be a q × q invertible matrix



Linear system in 1d

Example: linearized acoustic in 1d given by the linear system

∂tU + A0∂xU = 0, x ∈ [a, b]

U = (p, u) with constant matrix (assume u0 = 0)

A0 =

(

0 ̺0c
2
0

1/̺0 0

)

.

Characteristic variables are w1 = (−p + ̺0c0u)/2̺0c0,
w2 = (p + ̺0c0u)/2̺0c0, resp. propagate at −c0 and c0,
p = ̺0c0(w2 − w1), u = w1 + w2.
Can we prescribe u(a, t) = u(b, t) = 0?
E = (0, 1), T I = r1 = (−̺0c0, 1)T , T II = r2 = (̺0c0, 1)T ,
ET I = ET II = 1 invertible.
At x = a means w2(a, t) = −w1(a, t) (known from initial data), at
x = b means w1(b, t) = −w2(a, t).



Linear system in 2d

∂tu + A∂xu + B∂yu = 0, x > 0, y ∈ R, t > 0

u(x , y , 0) = u0(x , y), Eu(0, y , t) = g(y , t).
Much more difficult ! assume A invertible (x = 0, n = (−1, 0) non
characteristic boundary), even assume A diagonal with q > 0
eigenvalues.
Necessary condition: q boundary conditions prescribed on x = 0
uI (0, y , t) = gI (y , t).
Not sufficient ! other necessary condition: uniform Kreiss condition
(Kreiss-Lopatinski) says

det EN(η, s) 6= 0,∀η ∈ R,Re(s) > 0

Use Laplace transform, D(η, s) = A−1(sI − iηB) has q eigenvalues
ξi with Re < 0, normal modes u(x , y , t) = ϕ(x)e iηy−st , N matrix
of eigenvectors of D (cor. to ξi ), the condition excludes the modes
that yield an ill-posed problem.



Nonlinear equation (scalar)

∂tu +
∑

∂xi
fi (u) = 0, x ∈ O, t > 0

d = 1 already difficult ! Theoretical result (vanishing viscosity
method) Bardos-LeRoux-Nédelec (1979): there exists a unique
entropy (weak) solution u in BV (O × (0,T )) in a sense
well-defined with Kruzkov’s entropy (formulation with test
functions) ϕ ∈ C2

0(O × [0,T [), ϕ ≥ 0 and any k ∈ R

∫ T

0

∫

O

{

|u − k|
∂ϕ

∂t
+ sgn(u − k)

d
∑

i=1

(fi (u) − fi (k))
∂ϕ

∂xi

}

dx dt

+

∫ T

0

∫

∂O
sgn(b − k)(

d
∑

i=1

(fi (k) − fi (γu))νi )ϕ(s, t)ds dt,

+

∫

O

ϕ(x, 0)|u0(x) − k|dx ≥ 0, (8)

where ν is the unit outward normal to ∂O, γu is the trace of u and
u(x, 0) = u0(x) a.e. in O, b boundary data



Nonlinear equation (scalar)

In 1d , domain x > 0 boundary x = 0, easy characterization: given
a ‘boundary value’ b(t), the solution is such that u(0, t) satisfies

f (u) − f (k)

u − k
≤ 0,∀k between u = u(0, t) and b = b(t)

slope of the chord [(u, f (u)), (b, f (b))] negative.
If f ′ > 0, forces u(0, t) = b(t), if f ′ < 0, no condition. If f ′ may
vanish, nonlinear effects are possible.
Example with Burgers:
• u0 = 1, f ′(u0) > 0, b = −2, f ′(b) < 0, rarefaction, u(0, t) = 0.
• u0 = −1, f ′(u0) < 0, b = 2 f ′(b) > 0, shock entering, with
speed σ = 1/2, u(0, t) = b = 2
• u0 = −1, f ′(u0) < 0, b = 1/2 f ′(b) > 0, shock leaving, with
speed σ = −1/4, u(0, t) = −1.



Nonlinear system

∂tu + ∂x f(u) = 0, x > 0, t > 0

Theoretical results: given boundary data g, necessary condition in
the form u(0, t) ∈ E(g(t)) (residual boundary condition, result of
Gisclon-Serre)
Easy ‘characterization’ with Riemann problem: u(0, t) ∈ V(g(t)),
where V = set of traces at 0 of all possible Riemann problems with
given left data g (Dubois-LeFloch)

u(0, t) = WR(0; g, v) for some v ∈ Ω

E = V for scalar (nonlinear) equations and also for linear systems:
if g = cst, a1 ≤ a2 ≤ .. ≤ ar ≤ 0, r = p − q non positive
eigenvalues

V(g) = {u,∃αi ∈ R
r ,u = g +

r
∑

i=1

αi ri}



Modeling and numerics

Different types of boundaries: physical / artificial boundary
Solid boundary: rigid wall. Boundary condition is u.n = 0: the
fluid cannot cross the wall (u = 0 in d=1, slip boundary conditions
in d = 2, the flow moves tangentially to the boundary)
Fluid boundary: linearization. Example in 1d :

• supersonic inflow: u0 > c0, q = 3 , 3 boundary conditions
(the whole state must be prescribed),

• subsonic inflow: 0 < u0 < c0, q = 2, 2 conditions. Prescribe
any linear combination in conservative variables, in primitive
variables, (̺, u), (̺, p), not (u, p)

• subsonic inflow: q = 1, −c0 < u0 < 0, 1 condition, ̺ or u or p

• supersonic inflow: q = 0 no condition

choice of the prescribed condition given by modeling



modeling and numerics

Artificial boundary
For computation, need of a bounded domain, if part of an infinite
domain (example: exterior flow)

• absorbing boundary or nonreflecting conditions: ‘easy’ in 1d,
less in 2d (unless flow normal to the boundary)

• other approach: PML (perfectly matched layer)



Numerical treatment: some items

• For a finite difference scheme, you need the whole boundary
state (uI , uII ) even if only uI is prescribed. Use interpolation
techniques, or an upwind scheme to compute these values from the
interior known values. For a solid wall, use ‘mirror state’.
• In 1d , for a finite volume monotone scheme, the boundary is an
interface, say x = 0, you need a flux at the interface. You may use
the whole boundary state b even if only part of it is ‘used’:
g(b, u1/2) where is g is a monotone numerical flux, it picks up the
relevant data.
• same idea in 2d in the normal direction
• Scalar case: theorem of convergence to the entropy solution of
the IBVP (convergence of the traces in some cases)
Some result also exists for Godunov scheme for a convex system
(non characteristic boundary).



Numerical treatment

For a system, usual treatment:
–if you have a known state Uext satisfying the linearized condition,
use it in the flux Φ(Uint ,Uext), where Uint is the known state in
the interior cell adjacent to the boundary.
–If nonlinear effects are possible, solve partial Riemann problems.
What is required is that Uext belongs to a manifold with
codimension q = number of specified conditions = number of
positive eigenvalues.
Example: supersonic outflow Vext with subsonic internal computed
state Vi . Look for one (q = 0) supersonic (or sonic) state V0 that
can be connected to Vi by 4-wave in d = 2 (a 3-wave in d = 1).
Since a4(V0,−n) = −un0 + c0 ≤ 0 ≤ a4(Vi ,−n) = −u−ni + ci ,
this wave is a 4-rarefaction (3-rarefaction in d = 1).



Interface coupling: (theoretical) introduction

2 hyperbolic systems of conservation laws : u ∈ Ω ⊂ R
p

∂u

∂t
+

∂

∂x
fL(u) = 0, x < 0, t > 0 (9)

∂u

∂t
+

∂

∂x
fR(u) = 0, x > 0, t > 0 (10)

u(x , 0) = u0(x), x ∈ R

and a coupling condition at x = 0

u(0−, t) ∈ VL(u(0+, t)), u(0+, t) ∈ VR(u(0−, t)) (11)

which says that the 2 IBVP are well posed. u(0+, t) ∈ VR(b)
means for some u ∈ R

p, u(0+, t) = WR(0+;b,u) WR solution of
the Riemann problem for fR (sim. for VL and fL)



Interface coupling

x>0
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Interface coupling: scalar case

‘characteristic’ interface: difficulties are possible !

u(0−)

L L
f’ (u   )
R R

u
R

u
L

u
L

f’ (u   )
R Rf’ (u  )

L L

u
R

u
R

u
L

f’ (u  )
LR

f’ (u  )
L R

x

tt

x

 

u(0−) u(0+)
u(0+)

f’ (u  )



transmission
The coupling condition

u(0−, t) ∈ VL(u(0+, t)), u(0+, t) ∈ VR(u(0−, t))

‘often’ leads to the continuity u(0+, t) = u(0−, t):
the conservative variables are transmitted

Is it possible to transmit other variables (primitive)?
Change of dependent variables : u ∈ Ω → v ∈ Ωv

v → u = ϕα(v);α = L,R admissible i.e. ϕ′
α(v) isomorphism of R

p

c a given boundary physical data, set bα = ϕα(c), define
VL(bL) = {w = WL(0−;u−,bL);u− ∈ Ω}
VR(bR) = {w = WR(0+;bR),u+);u+ ∈ Ω}
are admissible boundary sets for L,R
transmission of variable v obtained by

u(0−, t) ∈ VL(ϕL(v(0+, t)))

u(0+, t) ∈ VR(ϕR(v(0−, t)))

‘often’ yields continuity: v(0−, t) = v(0+, t)



Numerical interface coupling

Finite volume method: ∆x , ∆t, µ = ∆t
∆x

, tn = n ∆t, n ∈ N

cell (xj , xj+1), center xj+1/2 =
(

j + 1

2

)

∆x , j ∈ Z,

u0
j+1/2

= 1

∆x

∫ xj+1

xj
u0(x)dx , j ∈ Z.

2 numerical fluxes gL, gR , gα consistent with fα
3-point monotone scheme (under CFL condition):

gn
α,j = gα

(

un
j−1/2

,un
j+1/2

)

• un+1

j−1/2
= un

j−1/2
− µ

(

gn
L,j − gn

L,j−1

)

, j ≤ 0

• un+1

j+1/2
= un

j+1/2
− µ

(

gn
R,j+1

− gn
R,j

)

, j ≥ 0

2 fluxes at x = 0: gn
L,0, gn

R,0



Numerical interface coupling
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2 (numerical) fluxes at the interface: gL,0 = gL(u−1/2, u1/2),
gR,0 = gR(u−1/2, u1/2) need of a state u1/2 for gL,0, u−1/2 for gR,0
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Interface coupling, coupling algorithm, examples

• Interface coupling: main features, examples

• Mathematical model: coupling condition

• State coupling / flux coupling

• Numerical interface coupling

• Father model, interface model



Interface coupling: main features

Recall the framework: given two codes

• two (compressible) fluid codes simulating fluid flow of the
same ‘nature’, taking into account different specificities
not coupled phenomena (monophysics)

• fixed interface (multidomain)

• ‘thin’ interface, the codes interact
exchange of information at the interface (strong coupling)

• need of a robust procedure
understand the physics at the interface (‘intelligent’ coupling)

• use existing codes
few modifications in each domain

→ give a numerical coupling procedure to ‘couple’ the codes. The
real problem is difficult; try some simpler situations, identifying
some specificities on simpler cases.



Examples

• ‘Real’ examples of coupling codes in thermohydraulics
• homogeneous models: HEM-HRM (assuming thermodynamic

equilibrium or not)
• 1D - 2D, 1D - 3D models (taking into account symmetry or

keeping multidimensional effects)
• bifluid - drift flux models (1 velocity per fluid or algebraic

closure for the drift)

• Some (theoretical) mathematical models for coupling
• (scalar) conservation laws
• linear systems (of the same dimension)
• relaxation (2x2) system / relaxed (scalar) conservation law
• Euler systems in Lagrangian coordinates
• ” ” systems: barotropic (2x2)/ with energy (3x3)
• coupled Riemann problem for two Euler systems
• linearly degenerate systems (relaxing to Euler)



Mathematical model for interface coupling
• Two hyperbolic systems of conservation laws (possibly

nonconservative)

∂u

∂t
+

∂

∂x
fα(u) = 0,u ∈ R

α, α = L, x < 0,R, x > 0, t > 0

(1)
possibly u ∈ R

p left, U ∈ R
q right

• ‘compatibility’ between systems (or not): either p = q or
p 6= q but (if say p < q) ∃L (lift), ∃P (projection),
u → U = Lu and U → u = PU

1. plasma models: same equations, only one flux component is
discontinuous

2. models 1D-2D: 2D system reduces to the 1D system
3. p−system coupled with Euler (in Lagrangian coord.) are

compatible
4. multiphase models: 7 equations (2 velocities) and drift - flux

• two boundary value problems, one on each side of the
interface x = 0 (thin interface, no ‘interface model’)
coupling model through the ‘choice’ of transmitted variables



Coupling Condition

• Given b, IBVP in x > 0, one cannot impose u(0+, t) = b

→ weak formulation of the boundary condition:
u(0+, t) ∈ OR(b) means u(0+, t) = WR(0+;b,u) for some
u ∈ R

p

WR(0+;uℓ,ur ) solution of the Riemann problem(RP) with fR
OR(b) = traces at x = 0 of all possible RP between b and a
right state
(sets O previouly noted V)

• define the sets OL(PU(0+, t)), OR(Lu(0−, t))

• coupling condition (CC):

u(0−, t) ∈ OL(PU(0+, t))), U(0+, t) ∈ OR(Lu(0−, t))

state coupling

• transmission possible with other (primitive) variables u 7→ v

and U 7→ V



Comments

Why a thin interface ? why this mathematical model ?
several levels of answer

• codes should not be modified: only the (boundary) data

• need to understand what a ‘natural’ scheme computes

• in case of non uniqueness, instability linked to resonance is
avoided (ex. plasma)

• if one ‘regularizes’, for large time, behaves like a coupled
problem (CRP)

• thickening requires more physics

When p = q, there is another ‘natural’ conservative approach.



State coupling / Flux coupling

1. A natural link exists with equations with discontinuous
coefficients (p = q): conservative approach

∂tu + ∂x

(

(1 − H(x))fL(u) + H(x)fR(u)
)

= 0

yields fL(u(0−, t)) = fR(u(0+, t)) flux coupling as opposed

to state coupling
A conservative form (given by physics) involves some natural
entropy condition

2. Even for ‘identical’ systems (fL = fR), the conservative
formulation is a choice for transmission: one decides to
‘transmit’ the flux. In some cases, it is not physical (ex.
nozzles with discontinuous but constant section, the rate of
flow is not conserved)
→ we choose to study all possibilities: state and flux coupling

3. One can model the transmission of other variables



State coupling / Flux coupling

∂tu + ∂x fα(u) = 0, α = L, x < 0,R, x > 0, t > 0 (1)

• Flux coupling = conservative approach

∂tu + ∂x

(

(1 − H(x))fL(u) + H(x)fR(u)
)

= 0, x ∈ R

yields fL(u(0−, t)) = fR(u(0+, t)) the flux is transmitted

• 6= State coupling

∂tu + ∂x

(

(1 − H(x))fL(u) + H(x)fR(u)
)

= M, x ∈ R

• when x = 0 is non characteristic the coupling condition CC

‘often’ yields continuity u(0+, t) = u(0−, t)

conservative variables are transmitted, NOT the flux
• when x = 0 is characteristic not all, only part of the
conservative variables can be transmitted

• In some particular case, with transmission of primitive
variables state coupling= flux coupling !



Transmission of other variables

• change of variables : u ∈ Ω → v ∈ Ωv (conservative/primitive)

• v → u = ϕα(v);α = L,R admissible i.e. ϕ′

α(v) isomorphism
of R

p

• c given by physics (pressure), bL = ϕL(c), bR = ϕR(c), set
OL(bL) = {w = WL(0−;u−,bL);u− ∈ Ω}
OR(bR) = {w = WR(0+;bR ,u+);u+ ∈ Ω}
sets of admissible boundary values for L,R

• transmission of variables v obtained by

u(0−, t) ∈ OL(ϕL(v(0+, t)))

u(0+, t) ∈ OR(ϕR(v(0−, t)))

(note that ϕL(v(0+, t)) 6= u(0+, t) = ϕR(v(0+, t)))

It yields ‘continuity’ of (or part of) v : v(0−, t) = v(0+, t)



Example: p−system

Barotropic Euler system in Lagrangian coordinates u = (τ, v)T ,
f(u) = (−v , p)T ,λ1 = −C < 0 < λ2 = +C (C =

√

−p′(τ))
two systems with p = pα(τ), α = L,R
interface x = 0, non characteristic separates the 1− and 2−waves
CC by transmission of v = (v , p) yields continuity of v = (v , p)
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τ, v , p in transmission of u = (τ, v) left vs v = (v , p) right
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p−system

There is a simple explanation:
the flux is an admissible change of variables so the flux can be
transmitted:

(τ, v) 7→ (v , p)

because τ 7→ p(τ) satisfies p′(τ) < 0



Coupling Condition: example of Euler system

Two (full) Euler systems in Lagrangian coordinates
u = (τ, v , e), fα(u) = (−v , p, pv), p = pα(τ, ε), λ2 = 0 eigenvalue

d

uu+

00

u(0−,t) (L)

u

−
(R) u(0+,t)

u(0−,t)u(0+,t)

3−      R

t t

 R1−     1−     L

u g

0

3 −    L

x x

Coupling condition CC
u(0−, t) ∈ OL(u(0+, t)) (left), u(0+, t) ∈ OR(u(0−, t))(right)
u(0−) = WL(0−;ug ,u(0+)), u(0+) = WR(0+;u(0−),ud)



Example: transmission of v , p for Euler system

two Euler systems in Lagrangian coordinates with gamma law:
u = (τ, v , e), fα(u) = (−v , p, pv), p = (γα − 1)ε/τ

r

uu+

x0 x0

(L)

x0

u u

−
(R)

3−      R3 −    L

t t

 R1−     1−     L
v(0−,t) v(0+,t)

v(0+,t) v(0−,t)g

CC in primitive variable v = (τ, v , p) yields continuous flux

p(0−, t) = p(0+, t), v(0−, t) = v(0+, t)

intersection of two wave curves in (v , p)−plane:
v(0+) ∈ C̃3

L(v(0−)) ∩ C̃1
R(v(0−)) = {v(0−)}

CC in conservative variable u = (τ, v , e) yields

ε/τ(0−, t) = ε/τ(0+, t), v(0−, t) = v(0+, t)



heuristic

0

1

L

!
1

R

!
3

R

!
3

L

t

x

!

λL,1 < 0 < λL,3, λR,1 < 0 < λR,3 λL,2 = λR,2 = 0 characteristic
case: the flux is NOT an admissible change of variables
heuristic: transmission of 2 quantities (justified by a linearized
analysis)
coupled RP (CRP): only 1L− waves, 0−wave and 3R−waves



coupled Riemann problem (CRP) = Cauchy problem for (1) with
Riemann data uL,uR for two (full) Euler systems (Lagrangian)

t

λ = 0
3,Rσ

1σ ,L

0
x

Ru u

u(0−) u(0+)

L

2

Example: solution of a CRP with two shocks 1 − L and 3 − R, one
stationary wave u(0−), u(0+)
(easy because λ1,L(u) < 0 < λ3,R(u), no change of sign)



τ, v , p for Euler with CC v = (τ, v , p) Left, vs u = (τ, v , e) Right

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

2.5

3

3.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

2.5

3

3.5

4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5



Comments

Nonuniqueness of CC; different CC give different solutions
→ need of a physical criteria for choosing the transmitted variables
(besides conservation of mass), conservation of some stationary
solutions (material wave)?
Some difficulties linked to the state coupling approach:

• non conservative systems

• singular source terms

• possible resonance: the eigenvalues may change sign (ex.
Euler system in Eulerian coordinates) at x = 0

• non uniqueness of the solution

A natural answer: add viscosity

• Dafermos regularization (does not bring uniqueness)

• numerical (uniqueness, but which solution is computed?)



Numerical coupling by a two-flux FV method

Finite volume method: ∆x , ∆t, µ = ∆t
∆x

, tn = n ∆t, n ∈ N

cell (xj , xj+1), center xj+1/2 =
(

j + 1

2

)

∆x , j ∈ Z,

u0
j+1/2

= 1

∆x

∫ xj+1

xj
u0(x)dx , j ∈ Z

two numerical fluxes gL, gR , gα consistent with fα
3-point monotone scheme (under CFL condition):

gn
α,j = gα

(

un
j−1/2

,un
j+1/2

)

• un+1

j−1/2
= un

j−1/2
− µ

(

gn
L,j − gn

L,j−1

)

, j ≤ 0

• un+1

j+1/2
= un

j+1/2
− µ

(

gn
R,j+1

− gn
R,j

)

, j ≥ 0

• x0 = 0 is a boundary between two cells: two fluxes for j = 0

gn
α,0 = gα

(

un
−1/2

,un
+1/2

)

, α = L,R



Numerical interface coupling

two numerical fluxes at x = 0,

• gn
α,0 = gα

(

un
−1/2

,un
+1/2

)

, α = L,R ensures u-state coupling

x=0

 ,0
g

R ,0
g

x
!1

x
1

x
!2

x
2

!1/2u

t

x

u1/2

L

• gn
L,0 = gL(u

n
−1/2

, ϕL(v
n
+1/2

)), gn
0,R = gR(ϕR(vn

−1/2
),un

+1/2
)

ensures v-state coupling
• other approach (JM. Hérard): interface model to compute the
two numerical fluxes at x = 0



Other approaches
Coupling consistent systems with relaxation term:
(R) ∂tU + ∂xF(U) = λS(U) as λ → ∞ gives
(E ) ∂tu + ∂x f(u) = 0 (equilibrium)
Example: coupling HEM/HRM (homogeneous models for
two-phase flow): U = (̺, ̺u, ̺e, ̺1z) (̺ =mixture density, and ̺1

=phase one),F(U) = (̺u, ̺u2 + pR , (̺e + pR)u, ̺1zu),
S(U) = (0, 0, 0, ̺∗1z

∗(̺) − ̺1z),
u = (̺, ̺u, ̺e), f(u) = ̺u, ̺u2 + pE , (̺e + pE )u),
HEM is obtained from HRM through relaxation (thermodynamical
equilibrium) pR(̺1z , ̺, ε) ≡ pE (̺, ǫ) if ̺1z = ̺∗1z

∗(̺)

• conservative state coupling: transmission of (̺, ̺u, ̺e)

• state coupling: transmission of primitive variables (̺, u, p)

• keep the larger system everywhere and λL = ∞/λR finite
allows flux coupling: conservative system with discontinuous
flux

Introduce a larger system = father model



Other approaches, other examples

Coupling compatible models through an interface model used to
define interface fluxes (J.-M. Hérard-O. Hurisse).
Example 1D/2D: u = (̺, ̺u, ̺e) and U = (̺, ̺u, ̺v , ̺e)

2D"1D"

h

PIPE

TANK

Interface

i I
00

∆

y

xx=0x= –∆ x

x

transverse velocity v ; need to compute a flux on the ̺v component
use ‘well balanced’ approach of LeRoux et al: add a color function
z , ∂tz = 0, thus a standing wave at interface, nonconservative pde
∂tv + zu∂xv = 0, solve Riemann problem wR(0±) for the
numerical interface fluxes
Remark: gives same discrete fluxes as state coupling



Developments: theoretical results

1. Scalar case
• Existence theorem in some generic situations (and uniqueness

in some cases)
• convergence of the two-flux scheme (monotone, E-scheme)
• Coupled Riemann problem
• coupling of the 2x2 relaxation system with the relaxed

equation with F. Caetano
• Dafermos regularization with Benjamin Boutin

2. The case of systems

• coupling of linear systems
• multiple choice of transmitted variables
• coupling of Lagrange-type systems (characteristic interface)
• coupling Euler system (3x3) and p-system (2x2)
• coupling two Euler systems (Eulerian coordinates)

• coupled Riemann problem (state coupling, not easy)
• relaxation model: explicit solution of CRP for a relaxation

system with LD fields; flux coupling for Euler



developments: applications, numerical study

1. Plasma model: same model (same pde), one neglects the
current density. Case of non uniqueness

2. Coupling two Euler systems: same model, different closure
laws

• choice of transmitted variables
• example u, p for a material wave
• choice of scheme (relaxation, Lagrange+projection)
• examples of coupled Riemann problem

3. Coupling multi-phase models: HRM-HEM, two different but
consistent models, 4 equations / 3 equations

4. Work in progress: 4 equations (mixture model with drift) / 7
equations (bifluid model) compatibility is not obvious

5. Hérard-Hurisse: 2D/1D
bifluid (6 eqns)/HRM
transition free/porous media



further developments

• coupling bifluid and drift flux models:
• asymptotic expansion of a bifluid model (→ drift flux model)
• relaxation approximation of a bifluid (→ a drift flux) model

• control of the transmission procedure, optimization

• asymptotic preserving schemes
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Interface coupling, coupling algorithm, further topics

• Regularization for state coupling
• Dafermos regularization
• finite volume scheme

• Relaxation state coupling solver for flux coupling

• Conclusion and future directions



Interface coupling

CC = coupling conditions
Nonuniqueness of CC; different CC give different solutions
Some difficulties linked to the present approach:

• non conservative systems

• singular source terms

• possible resonance: the eigenvalues may change sign (ex.
Euler system in Eulerian coordinates) at x = 0

• non uniqueness of the solution

A natural answer: add viscosity
idea: Dafermos regularization (B. Boutin) but does not bring
uniqueness



State coupling = non-conservative approach

∂tu + ∂x f (u, a) = M, x ∈ R, t > 0, ∂ta = 0,

f (u, a) = afL(u) + (1− a)fR(u), M measure (Dirac), weight jump

[f (u, a)] = fR(u(0+, t)) − fL(u(0−, t))

Riemann data for a: aL = 1, aR = 0 and ∂ta = 0
⇒ a(x) is a Heaviside function, ∂xa = −δ0,
{

∂tu + ∂x

(

afL(u) + (1 − a)fR(u)
)

+
(

fR(u) − fL(u)
)

∂xa = 0

∂ta = 0

If u continuous, (fR(u) − fL(u))∂xa (non conservative product) is
well defined. Write the 1st equation

∂tu + (afL
′(u) + (1 − a)fR

′(u))∂xu = 0

System with eigenvalues 0 and λ(u, a) = afL
′(u) + (1 − a)fR

′(u).
Extends to v -coupling



Dafermos regularization (scalar case)

Non conservative system

{

∂tu + λ(u, a)∂xu = 0
∂ta = 0

add a regularization term

{

∂tuε + λ(uε, aε))∂xuε = tε∂xxuε

∂taε = tε2∂xxaε

initial data uε(x , 0) = u0(x), aε(x , 0) = a0(x)

u0(x) =

{

uL, x < 0
uR , x > 0

a0(x) =

{

1, x < 0
0, x > 0.

Regularization with t in the RHS was proposed by Dafermos.
It corresponds to a classical viscous regularization in variable
ξ = x/t,T = ln t and allows to study the approximation of
self-similar solutions.



Dafermos regularization: profile at the interface

Look for self similar solutions: ξ = x/t, uε(ξ), aε(ξ)
uε, aε exist, ∃u, ‘uεk

→ u’ as ε → 0,
• u solution of the CRP, entropy solution in x < 0, x > 0
• at interface possible boundary layer → zoom: fast variable
y = ξ/ε Uε(y) = uε(εy), Aε(y) = aε(εy).

• Aε(y) converges to A(y) = (1 − erf(y/
√

2))/2,
A(−∞) = 1,A(+∞) = 0, non trivial profile connecting 1 to 0
thanks to ε2 (if ε, A(y) = 1/2)

• possible non trivial profiles for U . If fα strictly convex:

-left: U(−∞) = u(0−) or U(−∞) < u(0−)
f ′L(U(−∞)) < 0 < f ′L(u(0−))

-right: U(+∞) = u(0+) or U(+∞) > u(0+)
f ′R(U(+∞)) > 0 > f ′R(u(0+))

Structure of the discontinuity u(0−), u(0+): u(0−),U(−∞) L-
stationary shock, U(−∞),U(+∞), U(+∞), u(0+) R- stationary
shock. Rules out some unstable solutions, possible nonuniqueness



Example, quadratic case

solution of the CRP, in the plane (uL, uR)

fL(u) = u2/2, fR(u) = (u − c)2/2, c > 0 (B. Boutin)



Numerical state coupling

numerical coupling with FV methods and 2 fluxes at x = 0: one
can always compute a numerical solution (which?)

• gn
α,0 = gα

(

un
−1/2

,un
+1/2

)

, α = L,R ensures u-state coupling

x=0
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L,0 = gL(u

n
−1/2

, ϕL(v
n
+1/2

)), gn
0,R = gR(ϕR(vn

−1/2
),un

+1/2
)

ensures v-state coupling



Numerical coupling: what is computed ?

If* the two-flux FV scheme converges (u∆ → u) in some ‘sensible
way’, (*proven in the scalar case, with rather general assumptions)
then u is solution of the coupled problem with our CC.
In case of

• uniqueness, u is the unique solution

• non-uniqueness, u is a solution, which solution?



which solution is computed?

scalar quadratic case: fL(u) = u2/2, fR(u) = (u − c)2/2, c < 0:
possible solutions obtained by Dafermos regularization

double shock missing in central area



which solution is computed?

scalar quadratic case: fL(u) = u2/2, fR(u) = (u + 4)2/2

CRP with uL = −0.5, uR = −2.5, f ′L(uL) < 0, f ′R(uR) > 0

exact solution: 2 shocks computed with Godunov’s scheme and
Lax-Friedrichs modified: um

G = −1, 21, um
LF = −1, 12



which solution is computed?

fL(u) = u2/2, fR(u) = (u + 3)2/2, CRP with uL = 3, uR = −6

computed solution: a R−shock with Godunov’s scheme,
L−shock + stationary discontinuity + R−shock with mod. L.-F.



which solution is computed?

fL(u) = u2/2, fR(u) = (u + 3)2/2, same CRP with uL = 3, uR = −6

data such that f ′L(uL) > 0, f ′L(uR) < 0, f ′R(uL) > 0, f ′R(uR) < 0,

u(0−)

L L
f’ (u   )
R R

u
R

u
L

u
L

f’ (u   )
R Rf’ (u  )

L L

u
R

u
R

u
L

f’ (u  )
LR

f’ (u  )
L R

x

tt

x

 

u(0−) u(0+)
u(0+)

f’ (u  )

mod. LF computes a compound discontinuity with boundary layer:
L−shock uL → u(0−), discontinuity u(0−) → u(0+), R−shock
u(0+) → uR



Numerical flux coupling for Euler

For Euler, u = (̺, ̺u, ̺e), flux f(u) = (̺u, ̺u2 + p, (̺e + p)u),
two gamma laws γL, γR . The eigenvalues may change sign, the
flux is not an admissible change of variables.
Numerical flux coupling via a global relaxation coupling solver

• a larger relaxation system relaxing towards Euler as ǫ → 0

• a numerical coupling of the convective part of the relaxation
systems with judicious choice of CC

• a splitting method: convection + instantaneous relaxation
ǫ = 0

Results in a standard finite volume method: if it ‘converges’ to u,
u is solution of a coupled problem with continuous flux, and
entropy solution in x < 0 and x > 0
Extends to general fluid models



Relaxation system for Euler

Euler (barotropic case): u = (̺, ̺u), flux f(u) = (̺u, ̺u2 + p)
Relaxation system (Suliciu):







∂t̺ + ∂x(̺u) = 0
∂t(̺u) + ∂x(̺u2 + Π) = 0
∂t(̺T ) + ∂x(̺T u) = λ̺(τ − T )

with Πα = Π̃(τ, T ) ≡ p̃α(T ) + a2(T − τ), τ = 1/̺, p̃(τ) = p(̺).
Formally T → τ , Π → p as λ → ∞.
3 LD fields, RP are easily computed → Godunov’s scheme:
j 6= 0 (left and right) gn

α,j = fα(Wα(0;un
j−1/2

,un
j+1/2

))

j = 0, solve a CRP with transmission of v = (τ, u,Π) then
gn

α,0 = fα(Wc(0; vn
−1/2

, vn
+1/2

)), gn
L,0 = gn

R,0

→ results in a conservative consistent scheme for Euler, entropy
scheme in x < 0, x > 0



Example of a (numerical) flux coupling:
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CRP for Euler: data ̺L = 1.902, uL = 1.6361, pL = 2.4598;
̺R = 1, uR = 2, pR = 1 (computation by Thomas Galié)
exact solution: 1L−shock, stationary (coupling) wave, 1R− sonic
rarefaction, 2R−CD and 3R−shock



Conclusion

• This analysis was necessary: it gives in many cases
• a theoretical model for interface coupling
• a better understanding of what can be transmitted
• a robust coupling scheme

and useful tools (even for other approaches)

• Some questions left

• It is not the ultimate approach
• thickened interface

• Related topics of interest are
• interface coupling with small scale phenomena
• coupling more complex fluid systems (multiphysics)
• model adaptation
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Université Pierre et Marie Curie (Paris)

Cemracs, July 2011



Interface coupling, coupling algorithm, further topics

• Regularization for state coupling
• Dafermos regularization
• finite volume scheme

• Relaxation state coupling solver for flux coupling

• Conclusion and future directions



Interface coupling

CC = coupling conditions
Nonuniqueness of CC; different CC give different solutions
Some difficulties linked to the present approach:

• non conservative systems

• singular source terms

• possible resonance: the eigenvalues may change sign (ex.
Euler system in Eulerian coordinates) at x = 0

• non uniqueness of the solution

A natural answer: add viscosity
idea: Dafermos regularization (B. Boutin) but does not bring
uniqueness



State coupling = non-conservative approach

∂tu + ∂x f (u, a) = M, x ∈ R, t > 0, ∂ta = 0,

f (u, a) = afL(u) + (1− a)fR(u), M measure (Dirac), weight jump

[f (u, a)] = fR(u(0+, t)) − fL(u(0−, t))

Riemann data for a: aL = 1, aR = 0 and ∂ta = 0
⇒ a(x) is a Heaviside function, ∂xa = −δ0,
{

∂tu + ∂x

(

afL(u) + (1 − a)fR(u)
)

+
(

fR(u) − fL(u)
)

∂xa = 0

∂ta = 0

If u continuous, (fR(u) − fL(u))∂xa (non conservative product) is
well defined. Write the 1st equation

∂tu + (afL
′(u) + (1 − a)fR

′(u))∂xu = 0

System with eigenvalues 0 and λ(u, a) = afL
′(u) + (1 − a)fR

′(u).
Extends to v -coupling



Dafermos regularization (scalar case)

Non conservative system

{

∂tu + λ(u, a)∂xu = 0
∂ta = 0

add a regularization term

{

∂tuε + λ(uε, aε))∂xuε = tε∂xxuε

∂taε = tε2∂xxaε

initial data uε(x , 0) = u0(x), aε(x , 0) = a0(x)

u0(x) =

{

uL, x < 0
uR , x > 0

a0(x) =

{

1, x < 0
0, x > 0.

Regularization with t in the RHS was proposed by Dafermos.
It corresponds to a classical viscous regularization in variable
ξ = x/t,T = ln t and allows to study the approximation of
self-similar solutions.



Dafermos regularization: profile at the interface

Look for self similar solutions: ξ = x/t, uε(ξ), aε(ξ)
uε, aε exist, ∃u, ‘uεk

→ u’ as ε → 0,
• u solution of the CRP, entropy solution in x < 0, x > 0
• at interface possible boundary layer → zoom: fast variable
y = ξ/ε Uε(y) = uε(εy), Aε(y) = aε(εy).

• Aε(y) converges to A(y) = (1 − erf(y/
√

2))/2,
A(−∞) = 1,A(+∞) = 0, non trivial profile connecting 1 to 0
thanks to ε2 (if ε, A(y) = 1/2)

• possible non trivial profiles for U . If fα strictly convex:

-left: U(−∞) = u(0−) or U(−∞) < u(0−)
f ′L(U(−∞)) < 0 < f ′L(u(0−))

-right: U(+∞) = u(0+) or U(+∞) > u(0+)
f ′R(U(+∞)) > 0 > f ′R(u(0+))

Structure of the discontinuity u(0−), u(0+): u(0−),U(−∞) L-
stationary shock, U(−∞),U(+∞), U(+∞), u(0+) R- stationary
shock. Rules out some unstable solutions, possible nonuniqueness



Example, quadratic case

solution of the CRP, in the plane (uL, uR)

fL(u) = u2/2, fR(u) = (u − c)2/2, c > 0 (B. Boutin)



Numerical state coupling

numerical coupling with FV methods and 2 fluxes at x = 0: one
can always compute a numerical solution (which?)

• gn
α,0 = gα

(
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,un
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, α = L,R ensures u-state coupling
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ensures v-state coupling



Numerical coupling: what is computed ?

If* the two-flux FV scheme converges (u∆ → u) in some ‘sensible
way’, (*proven in the scalar case, with rather general assumptions)
then u is solution of the coupled problem with our CC.
In case of

• uniqueness, u is the unique solution

• non-uniqueness, u is a solution, which solution?



which solution is computed?

scalar quadratic case: fL(u) = u2/2, fR(u) = (u − c)2/2, c < 0:
possible solutions obtained by Dafermos regularization

double shock missing in central area



which solution is computed?

scalar quadratic case: fL(u) = u2/2, fR(u) = (u + 4)2/2

CRP with uL = −0.5, uR = −2.5, f ′L(uL) < 0, f ′R(uR) > 0

exact solution: 2 shocks computed with Godunov’s scheme and
Lax-Friedrichs modified: um

G = −1, 21, um
LF = −1, 12



which solution is computed?

fL(u) = u2/2, fR(u) = (u + 3)2/2, CRP with uL = 3, uR = −6

computed solution: a R−shock with Godunov’s scheme,
L−shock + stationary discontinuity + R−shock with mod. L.-F.



which solution is computed?

fL(u) = u2/2, fR(u) = (u + 3)2/2, same CRP with uL = 3, uR = −6

data such that f ′L(uL) > 0, f ′L(uR) < 0, f ′R(uL) > 0, f ′R(uR) < 0,

u(0−)

L L
f’ (u   )
R R

u
R

u
L

u
L

f’ (u   )
R Rf’ (u  )

L L

u
R

u
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u
L

f’ (u  )
LR

f’ (u  )
L R

x

tt

x

 

u(0−) u(0+)
u(0+)

f’ (u  )

mod. LF computes a compound discontinuity with boundary layer:
L−shock uL → u(0−), discontinuity u(0−) → u(0+), R−shock
u(0+) → uR



Numerical flux coupling for Euler

For Euler, u = (̺, ̺u, ̺e), flux f(u) = (̺u, ̺u2 + p, (̺e + p)u),
two gamma laws γL, γR . The eigenvalues may change sign, the
flux is not an admissible change of variables.
Numerical flux coupling via a global relaxation coupling solver

• a larger relaxation system relaxing towards Euler as ǫ → 0

• a numerical coupling of the convective part of the relaxation
systems with judicious choice of CC

• a splitting method: convection + instantaneous relaxation
ǫ = 0

Results in a standard finite volume method: if it ‘converges’ to u,
u is solution of a coupled problem with continuous flux, and
entropy solution in x < 0 and x > 0
Extends to general fluid models



Relaxation system for Euler

Euler (barotropic case): u = (̺, ̺u), flux f(u) = (̺u, ̺u2 + p)
Relaxation system (Suliciu):







∂t̺ + ∂x(̺u) = 0
∂t(̺u) + ∂x(̺u2 + Π) = 0
∂t(̺T ) + ∂x(̺T u) = λ̺(τ − T )

with Πα = Π̃(τ, T ) ≡ p̃α(T ) + a2(T − τ), τ = 1/̺, p̃(τ) = p(̺).
Formally T → τ , Π → p as λ → ∞.
3 LD fields, RP are easily computed → Godunov’s scheme:
j 6= 0 (left and right) gn

α,j = fα(Wα(0;un
j−1/2

,un
j+1/2

))

j = 0, solve a CRP with transmission of v = (τ, u,Π) then
gn

α,0 = fα(Wc(0; vn
−1/2

, vn
+1/2

)), gn
L,0 = gn

R,0

→ results in a conservative consistent scheme for Euler, entropy
scheme in x < 0, x > 0



Example of a (numerical) flux coupling:
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CRP for Euler: data ̺L = 1.902, uL = 1.6361, pL = 2.4598;
̺R = 1, uR = 2, pR = 1 (computation by Thomas Galié)
exact solution: 1L−shock, stationary (coupling) wave, 1R− sonic
rarefaction, 2R−CD and 3R−shock



Conclusion

• This analysis was necessary: it gives in many cases
• a theoretical model for interface coupling
• a better understanding of what can be transmitted
• a robust coupling scheme

and useful tools (even for other approaches)

• Some questions left

• It is not the ultimate approach
• thickened interface

• Related topics of interest are
• interface coupling with small scale phenomena
• coupling more complex fluid systems (multiphysics)
• model adaptation


