
Cemracs ’11 : IDSA Project
The IDSA in

Supernovae Modelling

Heiko Berninger, Jérôme Michaud
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Abstract

Modelling of core collapse supernovae leads to a high-dimensional coupled non-linear
problem. A valid model is given by the hydrodynamic equations coupled with Boltz-
mann neutrino transport. The numerical cost of a direct resolution of such a coupled
system is prohibitive in 3D because the treatment of Boltzmann’s equation is too expen-
sive. Therefore, one strives for a good approximation of the transport part. The IDSA
(Isotropic Diffusion Source Approximation) [1] is a candidate for such an approximation.

This project has two aims : first to study analytically the quality of the approxima-
tion compared to the Boltzmann equation in 1D and second to implement a stable and
efficient solver for the IDSA in 1D.

1 Reference model

The system of equations that we consider as a starting point reads

∂u

∂t
+∇ · F(u) = S(F(f),u), (1)
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c

∂f

∂t
+ µ

∂f

∂r
+
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r
(1− µ2)

∂f

∂µ︸ ︷︷ ︸
D(f)

= j(u)− χ̃(u)f + C(f). (2)

Equation (1) is the ideal hydrodynamic equation with source term S accounting for cou-
pling with Boltzmann transport. Equation (2) is the Boltzmann equation in laboratory frame
for the distribution function f(r, t, µ, ω). Here, r is the radius, t the time, µ the cosine of the
angle between the radius and the direction of neutrino emission and ω the neutrino energy,
j(r, t, µ, ω,u) is the emissivity, χ̃(r, t, µ, ω,u) the absorptivity and c the speed of light. C(f)
is the isoenergetic scattering collision integral and linear in f .

2 IDSA [1]

Basic idea : We suppose a decomposition of f = f t + f s with distribution functions f t and
f s accounting for trapped and streaming neutrinos in the whole domain. Physically, this is
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motivated by the very high matter density gradient existing in a supernova. At high densities,
the neutrinos are trapped and at low densities, they are freely streaming.

By linearity of D and C we obtain

D(f s)− C(f s) + χ̃f s = j − χ̃f t + C(f t)−D(f t) =: Σ, (3)

with the diffusion source Σ(r, t, µ, ω, f,u).

Assumptions

1. Isotropy : f t, Σ, j and χ̃ are independent of µ and, therefore, C(f t) = 0. Since f s

is not independent of µ, we consider the angular mean If = 1
2

∫ 1

−1 f
sdµ instead, see

Section 2.2.

2. f s is in the free streaming limit : in this limit we have C(f s) ≈ 0 and we neglect it.

3. f s is in the stationary state limit : the evolution equation for f s reduces to a Poisson
equation.

4. f t is in the diffusion limit : this will give a definition to the source term Σ.

2.1 Trapped particles

Integrating the trapped part of (3) w.r.t. µ and rewriting D in the comoving frame gives,
using the isotropy assumption,

1

2

∫ 1

−1
D(f t)dµ =

1

c

df t

dt
+

1

3c

∂ ln ρ

∂t
ω
∂f t

∂ω
= j − χ̃f t − Σ. (4)

Here, ρ is the matter density.

To compute the diffusion limit, we use a first order approximation of C(f) w.r.t. µ,
integrate (2) w.r.t. µ and perform a Chapman–Enskog expansion [4] of D(f).

The zeroth order term gives the equilibrium distribution function f0 = j
χ̃

!
= f t since f t

is assumed to be in the diffusion limit.
The first order equation, with Assumptions 1. and 2., then reads
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.
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.
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∂ω
+ α

.
= j − χ̃ ·

(
f t + If

)
. (5)

Here the sign
.
= indicates equality up to the order O(ε2).

The comparison of (4) and (5) leads to the definition of Σ, namely

Σ :=M
(
∇ ·
(
−λ(u)

3
∇f t

)
︸ ︷︷ ︸

=:α

+χ̃(u)If

)
, (6)

where we introduce the limiterM := min{max[·, 0], j(u)} to account for the global assump-
tion that we have f t on the whole domain. Here, λ(u) is the mean free path.
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2.2 Streaming particles

Integrating the streaming part of (3) w.r.t. µ and applying the stationary limit and the
free streaming limit assumptions lead to a Poisson equation for a new potential ψ whose
gradient is ∂ψ

∂r
= 1

2

∫ 1

−1 f
sµdµ.

In 1D one has

If = H
( 1

r2

∫ r

0

(Σ− χ̃If )r′2dr′︸ ︷︷ ︸
= ∂ψ
∂r

)
, (7)

where H is given by a geometrical calculation.

2.3 Reduced model after IDSA

The system of equations that we get from the reference model after approximation of (2) is

∂

∂t
u +∇ · F(u) = S (F(f)) , (8)

1

c

df t

dt
+

1

3c

∂ ln ρ(u)

∂t
ω
∂f t

∂ω
= j(u)− χ̃(u)f t − Σ(u, f t, If ), (9)

If = H
( 1

r2

∫ r

0

(Σ(u, f t, If )− χ̃(u)If )r
′2dr′

)
. (10)

3 Project aims

3.1 First aim

Although numerical experiments in [1] suggest good agreement of IDSA and the full Boltz-
mann model in 1D [2], so far no analytical results are at hand that confirm these findings
theoretically. The first aim of this project is to understand analytically the quality of this
approximation. Alternatively, other approximations of the full Boltzmann model [4] should
be searched for and investigated.

3.2 Second aim

Using the hydrodynamic part as a black box, we seek an appropriate discretization and
solution strategy for the IDSA equations (9) and (10) in 1D which shall be implemented in a
prototype Matlab code. In particular, we face the following challenges :

• The limiterM in Σ leads to non-smoothness. Therefore, we need to look for a model
without M or a solver that can handle non-smoothness [5, 6, 7].

• Equation (9) may be stiff in some region. We intend to consider well-known implicit
Runge–Kutta methods like RADAU5 [3] that can tackle stiffness.
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