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Abstract

When designing an aircraft, it is necessary to know accurately the
temperatures in the different parts so as to validate the integrity of the
structure and of the systems for different scenarios. The growing role of
composite materials, which are 20 to 100 times less good conductors than
metal structures make the need to have control over the temperatures in
the parts of the plane all the more dire. Heat sources could be the sun or
an electric device. One

We will study convection in air at temperatures between about 10◦

and 100◦. The simplified problem which is posed in this document rep-
resents the insertion of an electronic device (called the Equipment (E))
in a larger bay (called the Cabin (C). We are interested in the develop-
ment of an efficient numerical resolution that enables to test quite rapidly
and accurately several positioning of the equipment inside the cabin for
control purposes (either by active regulation including a control loop or
by passive regulation by choosing adequate materials or input flows). We
are interested in the extremal temperatures inside the Equipment and the
mean temperature inside the cabin.

1 Purpose

The cavity is embedded in a uniform external temperature Text, and sur-
rounded by a heat insulation of constant thickness and thermal conductivity
κisol. Inside the cavity, we consider an equipment, and conditionned air in-
jected through a constant diameter injection nozzles with a velocity U and a
temperature T .
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2.1 Notations

2.2 System of equations

2.2.1 Navier Stokes for incompressible fluids

Let us consider Ω a bounded volume of R2 (R2 = Ω∪Ωc). The boundary of
Ω is denoted ∂Ω. This domain is composed of two subdomains ΩC (cabin) and
ωE (equipment) (Ω = ΩC ∪ ωE).

The system of equations is the Navier Stokes system for incompressible fluids:
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
p = rρT

∂ρ
∂t + ~∇.(ρ~v) = 0

ρ(∂~v∂t + ~v.~∇~v) =ρ~g − ~∇p+ ~∇.[µ(~∇~v + (~∇~v)T ) + (κ− 2
3µ)

~~U ~∇.~v]

ρcp(
∂T
∂t + ~v.~∇T )= −~∇.( ~qcd + ~qr) + P + Tβ dpdt + µφD

∀x ∈ Ω,∀t ∈ R+,

2.2.2 Approximation of the model: Navier Stokes Boussinesq model

• Approximation for the fluid

– Boussinesq approximation: ρ = ρ(T )

– Simplified Boussinesq approximation:

∗ ρ(T ) = ρ0(1− T−T0

T0
in ρ~g

∗ ρ(T ) = ρ0 elsewhere

• Other approximations:

– 2D,

– parameters are invariable with T and p,

– φD = 0, dpdt = 0,

– P = 0 (volumic power dissipation rigourously true in our cases),

– ~qr = ~0 (true in the gas and temporarily between walls),

– ~∇~v = (~∇~v)T (no rotation),

– ∂vx
∂x +

∂vy
∂y = 0⇔ ~~U ~∇.~v = 0 (isovolume).

The system of equation thus becomes:
~∇.~v = 0,

ρ0(∂~v∂t + ~v.~∇~v) = 2ρ0~g − ρ0
T0
T~g − ~∇p+ µ~∇.~∇~v,

ρ0cp(
∂T
∂t + ~v.~∇T )= λ~∇.~∇T︸ ︷︷ ︸

−~∇ ~qcd

.
∀x ∈ Ω,∀t ∈ R+,

2.3 Multi scale problem

A compartment C and an electronic equipement E. The compartment is sup-
posed to be much larger than the electronic equipment (vol(ΩC) >> vol(ωE)).
The internal energy of the equipment is supposed to be smaller than the one
contained in the cavity without the equipment.

Low coupling hypothesis:

•

3 Toy model

3.1 Cavity

3.1.1 Geometries

Two rectangular cavities can be defined (see figure 1 and figure 2).
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Figure 1:

Figure 2:
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3.1.2 Outputs of interest

• Punctual analysis: x ∈ Ω, Tx(.) = T (x, .)

• Zonal analysis: D ⊂ Ω, TD(.) = 1
D
∫
D T (x, .) dx

• Global analysis: Ω, TΩ(.) = 1
Ω

∫
Ω
T (x, .) dx

3.2 Cooling of electronic components: a simplified 2D
heat transfer model

We now present a simplified model of electronic equipment.

3.2.1 Problem description

We consider a 2D model representative of the neighboring of an electronic
component submitted to a cooling air flow. It is described by four geometrical
domains in R2 named Ωi, i = 1, 2, 3, 4, see figure 3. We suppose the velocityv
is known in each domain — for instance in Ω4 it is the solution of previous
Navier-Stokes computations. — The temperature T of the domain Ω = ∪4

i=1Ωi
is then solution of heat transfer equation :

ρCi

(∂T
∂t

+ v · ∇T
)
−∇ · (ki∇T ) = Qi, i = 1, 2, 3, 4 (1)

where t is the time and in each sub-domain Ωi, ρCi is the volumic thermal
capacity , ki is thermal conductivity and Qi is a volumic heat dissipated.

Figure 3: Geometry of Ω = ∪4
i=1Ωi with ∂Ω = ∪4

i=1Γi

One should notice that the convection term in heat transfer equation may
lead to spatial oscillations which can be overcome by Petrov-Galerkin type or
continuous interior penalty stabilization techniques.
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Integrated circuits (ICs) (domains Ω1 and Ω2 ) are respectively soldered on
PCB at x1 = (ePCB, h1) and x2 = (ePCB, h2). They are considered as rectangles
with width eIC and height hIC. The printed circuit board (PCB) is a rectangle
Ω3 of width ePCB and height hPCB. The air (Air) is flowing along the PCB in
domain Ω4. Speed in the air channel Ω4 is supposed to have a parabolic profile
function of x coordinate. Its expression is simplified as follows (notice that v
is normally solution of Navier-Stokes equations; the resulting temperature and
velocity fields should be quite different from that simplified model). We have
for all 0 ≤ y ≤ hPCB

ePCB + eIC ≤ x ≤ ePCB + ea, v =
3

2(ea − eIC)
D
(

1−
(x− ((ea + eIC)/2 + ePCB)

(ea − eIC)/2

)2)
f(t) y

ePCB ≤ x ≤ ePCB + eIC, v = 0
(2)

where f is a function of time modelling the starting of the PCB ventilation, i.e.

f(t) = 1− exp(− t
3

), (3)

D is the air flow rate, see table 1 and y = (0, 1)T is the unit vector along the y
axis. A quick verification shows that∫

Γ4∩Ω4

v · n =

∫
Γ4∩Ω4

vy = D (4)

The medium velocity vi = 0, i = 1, 2, 3 in the solid domains Ωi, i = 1, 2, 3.
ICs dissipate heat, we have respectively

Q1 = Q
(
1− exp(−t)

)
in Ω1

Q2 = Q
(
1− exp(−t)

)
in Ω2

(5)

where Q is defined in table 1.
We shall denote n|Ωi

= ni the unit outward normal to Ωi and n|Ωj
= nj the

unit outward normal to Ωj .

Boundary conditions We set

1. on Γ3, a zero flux (Neumann) condition

−k3 ∇T · n3 = −k4 ∇T · n4 = 0; (6)

2. on Γ4, (0 ≤ x ≤ ePCB + ea, y = 0) the temperature is set (Dirichlet condi-
tion)

T = T0; (7)

3. between Γ1 and Γ2, periodic conditions

T∣∣x=0
= T∣∣x=ePCB+ea

−k3 ∇T · n3∣∣x=0

= k4 ∇T · n4
∣∣x=ePCB+ea

; (8)
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4. at interfaces between the ICs and PCB, there is a thermal contact con-
ductance:

−k1 ∇T · n1 = k3 ∇T · n3 = r13

(
T∂Ω1

− T∂Ω3

)
−k2 ∇T · n2 = k3 ∇T · n3 = r23

(
T∂Ω2

− T∂Ω3

)
;

(9)

5. on other internal boundaries, the coontinuity of the heat flux and temper-
ature, on Γij = Ωi ∩ Ωj 6= ∅

Ti = Tj
ki ∇T · ni = −kj ∇T · nj .

(10)

Initial condition At t = 0s, we set T = T0.

3.2.2 Inputs

The table 1 displays the various fixed and variables parameters of this test-
case.

Name Description Nominal Value Range Units

Parameters

t time [0, 1500] s
Q heat source 106 [0, 106] W ·m−3

IC Parameters

k1 = k2 = kIC thermal conductivity 2 [0.2, 150] W ·m−1 ·K−1

r13 = r23 = r thermal conductance 100 [10−1, 102] W ·m−2 ·K−1

ρCIC heat capacity 1.4 · 106 J ·m−3 ·K−1

eIC thickness 2 · 10−3 m
hIC = LIC height 2 · 10−2 m
h1 height 2 · 10−2 m
h2 height 7 · 10−2 m

PCB Parameters

k3 = kPCB thermal conductivity 0.2 W ·m−1 ·K−1

ρC3 heat capacity 2 · 106 J ·m−3 ·K−1

ePCB thickness 2 · 10−3 m
hPCB height 13 · 10−2 m

Air Parameters

T0 Inflow temperature 300 K
D Inflow rate 7 · 10−3 [5 · 10−4, 10−2] m2 · s−1

k4 thermal conductivity 3 · 10−2 W ·m−1 ·K−1

ρC4 heat capacity 1100 J ·m−3 ·K−1

ea thickness 4 · 10−3 [2.5 · 10−3, 5 · 10−2] m

Table 1: Table of fixed and variable parameters
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3.2.3 Outputs, variables of interest

The outputs are (i) the mean temperature s1(µ) of the hottest IC

s1(µ) =
1

eIChIC

∫
Ω2

T (11)

and (ii) mean temperature s2(µ) of the air at the outlet

s2(µ) =
1

ea

∫
Ω4∩Γ3

T (12)

both depends on the solution of (1) and are dependent on the parameter set µ.

3.2.4 Methodology

The model can be described with increasing difficulty:

Step 1: Consider the problem as stationary, with only 2 varying parameters
kIC and r in their variation interval.

Step 2: Consider the problem step 1 plus variation of geometrical parameters
ea .

Step 3: Consider the problem as stationary with the six varying parameters
listed in section 3.2.2.

Step 4: Consider the full transient problem with the six varying parameters as
described above.

Step 5: D may be considered as a C1 function of time bounded in the defined
interval.

Next steps: Depending on method capabilities, we can go on thermally depen-
dant EDP coefficients, Navier-Stokes coupling or adding surface-to-surface
radiation in boundary conditions. This should be discussed.

3.3 Cavity+equipment

Two rectangular cavities are defined see figure 4 and figure 5.

4 Problem

We propose to address the problem of thermal control in three steps with
increasing difficulties:

1. Computation of the cabin without equipment

2. Computation of the equipment out of the cabin

3. Computation of both cabin and equipement.
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Figure 4:
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Figure 5:
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The prediction of temperature previously described can be involved in vari-
ous contexts:

• In preliminary design, the main goal is to choose the values of the design
parameters κisol, C, Text, P , Tb and Tobs which insure that the tempera-
ture field is between two critical values. In a first step, this is done by a
direct propagation of uncertainties, but eventually, the objective will be
the robust optimization of the parameters under uncertainties constraints.
Moreover, a sensitivity analysis will determine the most important param-
eters for a robust control of the temperature.

• In a verification phase, the design parameters are determined and fixed
and the requierement is to prove that the temperature has a target value
or is not lower than a threshold.

• If the design involves different cooperants, the architect specifies the bounds
of variation (or distributions of fluctuations) for the parameters κisol, C,
Text, P , Tb and Tobs, which are consistent with a temperature between
two given bounds.

If needed, the methodology can be developped on a simplified problem such
as a single equation involving different domains.

5 Material

Numerical models of the equipment and the cavity will be distributed in
FreeFEM++.
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