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m Tokamak with cylindrical symmetry
ntroduction . .
: m Magpnetic field following the geometry
m Anisotropic diffusion depends on the

magnetic field and so on the geometry

Aim of this work :

m How develop a Finite Volume method on a variable system
coordinates ?

m Advantages and drawbacks compared with cartesian
formulation



Introduction to curvilinear coordinates
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prolect Physic space : Q(X) Computational space : Q( &)

Covariant basis

coordinates
: 8Xk

Curvilinear

Vi:l,...,n, egi:(a—é'i%

For example in polar coordinates :

m covariant basis :

[ cos® [ —sinf
&=\ sing ) %= cos 0 ’

m contravariant basis : €8 - e, = §; ;
3 ]



Operators in curvilinear coordinates
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Gradient :

Divergence operator :

Ve f=
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Vectorial equation in polar coordinates

Oi(rS)+0(r T e +r Tr’eﬁ)—i—@g(r Te’rﬁ—i— r TG’QE) =0.

Usually

How approach this equation?
m Classical method : Projection before numerical integration
= Drawback : Source terms appear from hyperbolic term
m Other method : Numerical integration before projection
= Drawback : Projection choice needed
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Vectorial equation in polar coordinates :

Oe(rS)+0,(r T" e +r 70 €p)+ Op(r T'g’r&—i— r 799 e) =0.

Usually

Projection

0¢(rS;) + 0,(rT"") + Oy Tr0 — 70,0
at(r 59) + 8,(!‘ Tr,G) + 89 70,0 — 710

Source terms T%% and —T"? appear.

= How discretize source terms to have equivalent methods?



Source term discretization
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Comparison between the two methods

Equivalent methods if :

/ T%(r,0) dr do

Usually 76,0 30,0
700 4 §0 -
_ A9A, s ‘;‘ loa La AO  sin Af

20,0 56,0
( 2 1—cosA9)Ar(T|9s Tig,)

loa

m Usual center term

m Viscosity term

=N WS
!
T




Differences between the polar and cartesian methods
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m Meshes
m Geometrical parameters : cell areas, normals

m Fluxes computing : Constants in cell, post-processing

Differences

Polar and Cartesian meshes



Normals
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Normals in curvilinear coordinates

/ () dl(x) = / Ing(€)kdi()
0%; j(x)

iLi\S

Differences

Divergence theorem on a closed outline :

j{gdl =0i.e. / ndl :/ ndl.
AB AB

m Same normal in polar and cartesian
coordinates

|3

m The normal depends only on A and B
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m Cartesian Coordinates :
A
Qilxy = (r + %)Ar sin Af

m Polar coordinates :

Differences

|Q,-|,79:/ rdrdé?:(r—i—%)ArAﬁ

i

Equivalence between polar and cartesian

When A is small, sin A0 ~ A6, so |Qj|x,, =~ |Qil, 0.



Constants on a cell
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m Cartesian Coordinates : V = Vye, + Vye,

= Velocity vector constant

m Polar coordinates :V = V,e, + Vjey

e = Only V, and Vj constant, Velocity vector no constant

Equivalence between polar and cartesian when Af — 0



Post-processing before Riemann Solver
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m Cartesian coordinates :
Same flux given to two neighbour points i and j

;= d%e, + e, and O; = P%e, + e,

Differences

m Polar coordinates :
Fluxes depend on the local basis (e, ep) so different fluxes
given to two neighbour points i/ and j

9,’ = CDrg,’. + (Deg‘g', and QJ = CDrg,j + ¢9§9j
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Scalar test
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Advection equation

Oin+V.(nu) =0

Initial conditions

Scalar

n=ng, u, = 0 and wy = ug where ng and ug are constant

= Same results for cartesian and polar approaches : the
solution is preserved.

= In scalar test, only the cell areas are different between the
cartesian and polar approaches.



Vectorial test

3D-PRISM
project

Isoterm Euler System

{ O¢n+ div(nu) =0

O¢(nu) +div(nu @ u) + Vn=0

Vectorial

Initial conditions

n=ng, u, = 0 and wy = ug where ng and ug are constant

= In vectorial test, the computation of the fluxes are different
as well as the cell areas.



Vectorial test
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Vectorial Fig.: IC, Cartesian results at t = 0.83; Polar results at ¢t = 0.82

= Same results for cartesian and polar approaches

= Different fluxes for the two methods but fluxes balance is the
same



Gresho test
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Isoterm Euler System

O¢n+ div(nu) =0
O¢(nu) + div(nu @ u) + Vn=20

Stationary solution

2

. . u
Stationary solution if 9,(Inn) = -2
r

For example : n(r) = ngexp(r), u, = 0 and ug(r) =/t



Gresho test
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m Even if Ny is small, polar results
close to stationary solution.

m Cartesian does not show good
results when Ny is small : profile
different to stationary condition.

= Cartesian and polar methods
are only equivalent when Ny is
Fig.: Density profiles for IC, large
cartesian and polar :
Np = 4



Gresho test
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ccccccc

Nbtheta

Fig.: Error profiles in function of Ny

m Polar error depends only on N, and not on Ny
m Cartesian error decreases and comes closer to polar curve

when Ny raises up.
= These results confirm that the two methods are

equivalent when Njy is large
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m Main difference between cartesian and polar methods is the
choice of the constants in the cell

m Fluxes computing different between the two methods but
equivalent methods when Ny is large

m Polar method independant on Ny, good results even if
mesh not refined in 0

m Application to toroidal coordinates (3D)

Conclusions

m Application to Element Finite method



	Introduction
	Introduction
	Curvilinear coordinates

	Numerical approaches
	Usually
	Differences

	Simulations
	Scalar
	Vectorial
	Gresho

	Conclusions

