Cemracs project: Resolution of P1 model on general meshes using asymptotic preserving cell-centered schemes

Emmanuel Franck, Philippe Hoch, Pierre Navarro, Gérald Samba with the help of Georges Sadaka and Delyan Zelyanov

CEA-DAM, DIF

26 August 2010

1 Background and objectives

2 Presentation of cemracs project

3 Presentation of the two diffusion schemes

4 Presentation of the two P1 schemes

5 Numerical results

Physical and mathematical backgrounds

Physical background Inertial confinement fusion. Compression of a gaz capsule with a set of laser beams.

Radiation hydrodynamics simulation Interaction between the gas modeled by Euler equations and the photons by transport equation.

Radiation $I(t, x, \mathbf{v}) \geq 0$ The radiative intensity associated to particules
located in \mathbf{x} with a velocity \mathbf{v}. We consider the following equation of the form
$\partial_{t} I(t, x, \mathbf{v})+\mathbf{v} \cdot \nabla I(t, x, \mathbf{v})=\sigma_{S} \int_{S^{2}}\left(I\left(t, x, \mathbf{v}^{\prime}\right)-I(t, x, \mathbf{v})\right) d v^{\prime}+\sigma_{a}(B(T)-I)$

Diffusion limit The transport equation has, in some regimes, the property to tend towards an equation of diffusion. For example the limit for a long time and $\sigma_{s} \gg \sigma_{a}$.

Physical and mathematical backgrounds

- Physical background Inertial confinement fusion. Compression of a gaz capsule with a set of laser beams.
- Radiation hydrodynamics simulation Interaction between the gas modeled by Euler equations and the photons by transport equation.

Radiation $I(t, x, \mathbf{v}) \geq 0$ The radiative intensity associated to particules located in \mathbf{x} with a velocity \mathbf{v}. We consider the following equation of the form

Diffusion limit The transport equation has, in some regimes, the property to tend towards an equation of diffusion. For example the limit for a long time and $\sigma_{s} \gg \sigma_{a}$.

Physical and mathematical backgrounds

- Physical background Inertial confinement fusion. Compression of a gaz capsule with a set of laser beams.
- Radiation hydrodynamics simulation Interaction between the gas modeled by Euler equations and the photons by transport equation.
- Radiation $I(t, x, \mathbf{v}) \geq 0$ The radiative intensity associated to particules located in \mathbf{x} with a velocity \mathbf{v}. We consider the following equation of the form
$\partial_{t} I(t, x, \mathbf{v})+\mathbf{v} \cdot \nabla I(t, x, \mathbf{v})=\sigma_{S} \int_{S^{2}}\left(I\left(t, x, \mathbf{v}^{\prime}\right)-I(t, x, \mathbf{v})\right) d v^{\prime}+\sigma_{a}(B(T)-I)$,
Diffusion limit The transport equation has, in some regimes, the property to tend towards an equation of diffusion. For example the limit for a long time and $\sigma_{S} \gg \sigma_{a}$.

Physical and mathematical backgrounds

- Physical background Inertial confinement fusion. Compression of a gaz capsule with a set of laser beams.
- Radiation hydrodynamics simulation Interaction between the gas modeled by Euler equations and the photons by transport equation.
- Radiation $I(t, x, \mathbf{v}) \geq 0$ The radiative intensity associated to particules located in \mathbf{x} with a velocity \mathbf{v}. We consider the following equation of the form

$$
\partial_{t} I(t, x, \mathbf{v})+\mathbf{v} \cdot \nabla I(t, x, \mathbf{v})=\sigma_{S} \int_{S^{2}}\left(I\left(t, x, \mathbf{v}^{\prime}\right)-I(t, x, \mathbf{v})\right) d v^{\prime}+\sigma_{a}(B(T)-I)
$$

- Diffusion limit The transport equation has, in some regimes, the property to tend towards an equation of diffusion. For example the limit for a long time and $\sigma_{S} \gg \sigma_{a}$.

$$
\partial_{t} E(t, x)-\frac{1}{\sigma_{S}+\sigma_{a}} \Delta E(t, x)=\sigma_{a}(B(T)-E(t, x)),
$$

with $E(t, x)=\int_{S^{2}} I(t, x, \mathbf{v}) d v$, and $F(t, x)=\int_{S^{2}} \mathbf{v} /(t, x, \mathbf{v}) d v$.

Physical and mathematical backgrounds

- Simplified models : The solution of transport equation depends on too many variables. We can solve simplified hyperbolic models (P^{n}, S^{n}, M^{1}) with the same diffusion limit.

Example P^{11} model

Numerical methods Asymptotic preserving finite volume schemes to capture the diffusion limit.

Physical and mathematical backgrounds

- Simplified models : The solution of transport equation depends on too many variables. We can solve simplified hyperbolic models (P^{n}, S^{n}, M^{1}) with the same diffusion limit.

Example P^{1} model

$$
\left\{\begin{array}{c}
\varepsilon \partial_{t} E+\nabla \cdot(\mathbf{F})=0 \\
\varepsilon \partial_{t}(\mathbf{F})+\nabla E+\frac{\sigma}{\epsilon} \mathbf{F}=0
\end{array}\right.
$$

Numerical methods Asymptotic preserving finite volume schemes to capture the diffusion limit.

Physical and mathematical backgrounds

- Simplified models : The solution of transport equation depends on too many variables. We can solve simplified hyperbolic models (P^{n}, S^{n}, M^{1}) with the same diffusion limit.
- Example P^{1} model

$$
\left\{\begin{array}{c}
\varepsilon \partial_{t} E+\nabla \cdot(\mathbf{F})=0 \\
\varepsilon \partial_{t}(\mathbf{F})+\nabla E+\frac{\sigma}{\epsilon} \mathbf{F}=0
\end{array}\right.
$$

- Numerical methods Asymptotic preserving finite volume schemes to capture the diffusion limit.

Construct asymptotic preserving schemes for the P^{1} model on unstructured

 polygonal meshes given by Lagrangian hydrodynamics.
Physical and mathematical backgrounds

- Simplified models : The solution of transport equation depends on too many variables. We can solve simplified hyperbolic models (P^{n}, S^{n}, M^{1}) with the same diffusion limit.
- Example P^{1} model

$$
\left\{\begin{array}{c}
\varepsilon \partial_{t} E+\nabla \cdot(\mathbf{F})=0 \\
\varepsilon \partial_{t}(\mathbf{F})+\nabla E+\frac{\sigma}{\epsilon} \mathbf{F}=0
\end{array}\right.
$$

- Numerical methods Asymptotic preserving finite volume schemes to capture the diffusion limit.

Aim

Construct asymptotic preserving schemes for the P^{1} model on unstructured polygonal meshes given by Lagrangian hydrodynamics.

Cemracs project

Unfortunately the previous final diffusion scheme may exhibit some spurious modes.

First step

Improve the diffusion Breil-Maire scheme ([3]) to make it consistent.
Implementation and numerical study of glace nodal scheme (diffusion and P1) in the general unstructured gopp code and comparison with the other diffusion schemes.
[3] J. Breil, P-H. Maire A cell-centered diffusion scheme on two-dimensional unstructured meshes. JCP 2007.

Second step
Derivation of a ceheme for the Pl equation having the diffusion Breil-Maire scheme in the diffusion limit. Comparison with the P1 glace scheme.

Cemracs project

Unfortunately the previous final diffusion scheme may exhibit some spurious modes.

First step

Improve the diffusion Breil-Maire scheme ([3]) to make it consistent.
Implementation and numerical study of glace nodal scheme (diffusion and P1) in the general unstructured gopp code and comparison with the other diffusion schemes.
[3] J. Breil, P-H. Maire A cell-centered diffusion scheme on two-dimensional unstructured meshes. JCP 2007.

Second step

Derivation of a scheme for the P1 equation having the diffusion Breil-Maire scheme in the diffusion limit. Comparison with the P1 glace scheme.

Notations

- We define the notation for the nodal scheme.

Notice that $\ell_{j r} \mathbf{n}_{j r}$ is equal to the the half of the vector that starts at \mathbf{x}_{r-1} and finish at \mathbf{x}_{r+1}. The center of the cell is an arbitrary point inside the cell. $\Rightarrow \mathbf{F}_{r}$ and $E_{j r}$ are the fluxes associated to the vertex X_{r}

Diffusion glace scheme

Definition

The diffusion scheme is :

$$
\left\{\begin{array}{c}
\left|V_{j}\right| \frac{E_{j}^{n+1}-E_{j}^{n}}{\triangle t}+\sum_{r} l_{j r}\left(\mathbf{F}_{\mathbf{r}} \cdot \mathbf{n}_{\mathbf{j r}}\right)=0 \\
\sigma\left(\sum_{j} \iota_{j r} \mathbf{n}_{\mathbf{j r}} \otimes\left(\mathbf{x}_{\mathbf{r}}-\mathbf{x}_{\mathbf{j}}\right)\right) \mathbf{F}_{\mathbf{r}}=\sum_{j} \iota_{j r} E_{j} \mathbf{n}_{\mathbf{j r}} .
\end{array}\right.
$$

We define the following errors :

$$
\begin{aligned}
& \|e(t)\|_{L^{2}(\Omega)}=\left(\sum_{j}\left|V_{j}\right|\left(E_{j}(t)-E\left(x_{j}, t\right)\right)^{2}\right)^{\frac{1}{2}} \\
& \|f(t)\|_{L^{2}([0, t] \times \Omega)}=\left(\int_{0}^{t} \sum_{r}\left|V_{r}\right|\left(\mathbf{F}_{r}(t)-\nabla E\left(x_{r}, t\right)\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Theorem

We assume that $E \in W^{3, \infty}(\Omega)$. If there exists a constant α such that $A_{\text {, }}$,
then the semi-discrete diffusion scheme is convergent for all time $T>0$.

Diffusion glace scheme

Definition

The diffusion scheme is :

$$
\left\{\begin{array}{c}
\left|V_{j}\right| \frac{E_{j}^{n+1}-E_{j}^{n}}{\Delta t}+\sum_{r} l_{j r}\left(\mathbf{F}_{\mathbf{r}} \cdot \mathbf{n}_{\mathbf{j r}}\right)=0 \\
\sigma\left(\sum_{j} \ell_{j r} \mathbf{n}_{\mathbf{j r}} \otimes\left(\mathbf{x}_{\mathbf{r}}-\mathbf{x}_{\mathbf{j}}\right)\right) \mathbf{F}_{\mathbf{r}}=\sum_{j} \ell_{j r} E_{j} \mathbf{n}_{\mathbf{j r}} .
\end{array}\right.
$$

We define the following errors :

$$
\begin{aligned}
& \|e(t)\|_{L^{2}(\Omega)}=\left(\sum_{j}\left|V_{j}\right|\left(E_{j}(t)-E\left(x_{j}, t\right)\right)^{2}\right)^{\frac{1}{2}} \\
& \|f(t)\|_{L^{2}([0, t] \times \Omega)}=\left(\int_{0}^{t} \sum_{r}\left|V_{r}\right|\left(\mathbf{F}_{r}(t)-\nabla E\left(x_{r}, t\right)\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Theorem

We assume that $E \in W^{3, \infty}(\Omega)$. If there exists a constant α such that $A_{r} \geq \alpha\left|V_{r}\right|$, then the semi-discrete diffusion scheme is convergent for all time $\mathrm{T}>0$,

$$
\|e(t)\|_{L^{2}(\Omega)}+\|f(t)\|_{L^{2}([0, t] \times \Omega)}=C(T) h
$$

Diffusion maire scheme and its consistant variant

$$
\left\{\begin{array}{c}
\frac{E_{j}-E_{j}^{n}}{\Delta t} V_{j}=-\sum_{r} \frac{1}{2}\left(L_{r-1, r} \Phi_{r-1 / 2, r}^{j}+L_{r, r+1} \Phi_{r, r+1 / 2}^{j}\right) \\
\binom{\Phi_{r-1 / 2, r}^{j}}{\Phi_{r, r+1 / 2}^{j}}=-\frac{1}{2} L_{r}^{j} T_{r}^{j}\binom{L_{r-1, r}^{k-1}\left(\bar{E}_{r-1 / 2, r}-E_{j}\right)}{L_{r, r+1}\left(\bar{E}_{r, r+1 / 2}-E_{j}\right)}
\end{array}\right.
$$

FIG.: Breil-maire scheme stencil

To obtain T_{r}^{j}

$$
T=\left(\begin{array}{cc}
2 \omega_{k} \frac{n_{A} \cdot O C^{\perp}}{\beta L_{k}} & 2 \omega_{k} \frac{n_{A} \cdot O A^{\perp}}{\beta L_{k+1}} \\
2 \omega_{k} \frac{n_{C} \cdot O C^{\perp}}{\beta L_{k}} & 2 \omega_{k} \frac{n_{C} \cdot O A^{\perp}}{\beta L_{k+1}}
\end{array}\right)
$$

Fig.:

If we assume the quadrilatere is a parallelogram, the classical symmetric scheme is obtained.

P1 AP glace scheme

- Ongoing works done by PhD student Emmanuel Franck at the CEA directed by Christophe Buet and Bruno Després.
Idea Use the nodal scheme "GLACE" constructed for linearized Euler equations analog to P1 model and use this scheme with the Jin-Levermore method to construct a nodal asymptotic preserving scheme.

with the fluxes

P1 AP glace scheme

- Ongoing works done by PhD student Emmanuel Franck at the CEA directed by Christophe Buet and Bruno Després.
- Idea Use the nodal scheme "GLACE" constructed for linearized Euler equations analog to P1 model and use this scheme with the Jin-Levermore method to construct a nodal asymptotic preserving scheme.

$$
\left\{\begin{array}{l}
\left|V_{j}\right| \frac{E_{j}^{n+1}-E_{j}^{n}}{\Delta t}+\frac{1}{\varepsilon} \sum_{r} l_{j r}\left(\mathbf{F}_{r} . \mathbf{n}_{j r}\right)=0 \\
\left|V_{j}\right| \frac{\mathbf{F}_{j}^{n+1}-\mathbf{F}_{j}^{n}}{\Delta t}+\frac{1}{\varepsilon} \sum_{r} l_{j r} E_{j r} \mathbf{n}_{j r}=-\frac{\sigma}{\varepsilon^{2}} \mathbf{F}_{j}
\end{array}\right.
$$

with the fluxes

$$
\left\{\begin{array}{c}
E_{j r}=E_{j}+\left(\mathbf{F}_{\mathbf{j}}-\mathbf{F}_{\mathbf{r}}, \mathbf{n}_{\mathbf{j r}}\right)-\frac{\sigma}{\varepsilon}\left(\mathbf{F}_{\mathbf{r}},\left(\mathbf{x}_{\mathbf{r}}-\mathbf{x}_{\mathbf{j}}\right)\right) \\
\sum_{j} l_{j r}\left(\mathbf{n}_{\mathbf{j r}} \otimes \mathbf{n}_{\mathbf{j r}}+\frac{\sigma}{\varepsilon}\left(\mathbf{n}_{\mathbf{j r}} \otimes\left(\mathbf{x}_{\mathbf{r}}-\mathbf{x}_{\mathbf{j}}\right)\right)\right) \mathbf{F}_{\mathbf{r}}=\sum_{j}\left(l_{j r} E_{j} \mathbf{n}_{j r}+l_{j r}\left(\mathbf{n}_{\mathbf{j r}} \otimes \mathbf{n}_{\mathbf{j r}}\right) \mathbf{F}_{\mathbf{j}}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\epsilon \frac{E_{j}-E_{j}^{n}}{\Delta t} V_{j}=-\sum_{r} \frac{1}{2}\left(L_{r-1, r} \Phi_{r-1 / 2, r}^{j}+L_{r, r+1} \Phi_{r, r+1 / 2}^{j}\right) \\
\epsilon \frac{\mathbf{F}_{\mathbf{j}}-\mathbf{F}_{\mathbf{j}}^{\mathbf{n}}}{\Delta t} V_{j}+\frac{\sigma}{\epsilon} \mathbf{F}_{\mathbf{j}} \mathrm{V}_{\mathrm{j}}=-\sum_{r} \frac{1}{2}\left(\mathrm{~L}_{\mathbf{r}-1, \mathrm{r}} \mathbf{n}_{\mathbf{r}-\mathbf{1 , r}}^{\mathbf{j}} \overline{\mathrm{E}}_{\mathrm{r}-1 / 2, \mathrm{r}}+\mathrm{L}_{\mathrm{r}, \mathrm{r}+1} \mathbf{n}_{\mathbf{r}, \mathbf{r}+\mathbf{1}}^{\mathbf{j}} \overline{\mathrm{E}}_{\mathrm{r}, \mathrm{r}+1 / 2}\right) \\
\frac{1}{2} L_{k}\left(\Phi_{k}^{k-1}+\Phi_{k}^{k}\right)=0 \\
\bar{E}_{r-1 / 2, r}-E_{j}+\left(\Phi_{r-1 / 2, r}^{j}-\mathbf{F}_{\mathbf{j}} \cdot \mathbf{n}_{\mathbf{r}-\mathbf{1}, \mathbf{r}}^{\mathrm{j}}\right)=\mathbf{0} \\
\bar{E}_{r, r+1 / 2}-E_{j}+\left(\Phi_{r, r+1 / 2}^{j}-\mathbf{F}_{\mathbf{j}} \cdot \mathbf{n}_{\mathbf{r}, \mathbf{r}+\mathbf{1}}^{\mathrm{j}}\right)=\mathbf{0}
\end{array}\right.
$$

Jin Levermore procedure

Replace E_{j} by $E_{j}+\left(\bar{E}_{r-1 / 2, r}-E_{j}\right)$ where $\left(\bar{E}_{r-1 / 2, r}-E_{j}\right)$ is calculated using the relations of the diffusion scheme

$$
\begin{aligned}
& \left\{\begin{array}{c}
\epsilon \frac{E_{j}-E_{j}^{n}}{\Delta t} V_{j}=-\sum_{r} \frac{1}{2}\left(L_{r-1, r} \Phi_{r-1 / 2, r}^{j}+L_{r, r+1} \Phi_{r, r+1 / 2}^{j}\right) \\
\epsilon \frac{\mathbf{F}_{\mathbf{j}}-\mathbf{F}_{\mathbf{j}}^{\mathbf{n}}}{\Delta t} V_{j}+\frac{\sigma}{\epsilon} \mathbf{F}_{\mathbf{j}} \mathrm{V}_{\mathbf{j}}=-\sum_{r}^{r} \frac{1}{2}\left(\mathrm{~L}_{\mathbf{r}-1, \mathbf{r}} \mathbf{n}_{\mathbf{r}-\mathbf{1}, \mathbf{r}}^{\mathrm{j}} \overline{\mathrm{E}}_{\mathrm{r}-1 / 2, \mathrm{r}}+\mathrm{L}_{\mathrm{r}, \mathrm{r}+1} \mathbf{n}_{\mathbf{r}, \mathbf{r}+1}^{\mathrm{j}} \overline{\mathrm{E}}_{\mathrm{r}, \mathrm{r}+1 / 2}\right) \\
\frac{1}{2} L_{k}\left(\Phi_{k}^{k-1}+\Phi_{k}^{k}\right)=0
\end{array}\right. \\
& \binom{\Phi_{r-1 / 2, r}^{j}}{\Phi_{r, r+1 / 2}^{j}} \\
& =-\left(\begin{array}{cc}
1+\left(S_{r, \epsilon}^{j}\right)^{x x} & \left(S_{r, \epsilon}^{j}\right)^{x y} \\
\left(S_{r, \epsilon}^{j}\right)^{y x} & 1+\left(S_{r, \epsilon}^{j}\right)^{y y}
\end{array}\right)^{-1}\binom{\bar{E}_{r-1 / 2, r}-E_{j}-\mathbf{F}_{\mathbf{j}} \cdot \mathbf{n}_{\mathbf{r}-\mathbf{1}, \mathbf{r}}^{j}}{\bar{E}_{r, r+1 / 2}-E_{j}-\mathbf{F}_{\mathbf{j}} \cdot \mathbf{n}_{\mathbf{r}, \mathbf{r}+\mathbf{1}}^{j}}
\end{aligned}
$$

Where $S_{r, \epsilon}$ is a modification to T_{r}^{j} dependent of ε and σ

Numericals result for diffusion

- We solve the heat equation with $E(t=0)=0$, Neumann boundary condition and a source term $Q(x)=\left(\frac{\cos (1)-1}{\sin (1)}\right) \cos (x)+\sin (x)$. The solution is

$$
E_{\text {stat }}(x)=-x+\left(\frac{\cos (1)-1}{\sin (1)}\right) \cos (x)+\sin (x)+0.5
$$

Result of convergence on Kershaw mesh and Random quadrangular mesh.
Random mesh Kershaw

Numericals result for diffusion on polygonal meshe I

Polygonal mesh and solution for a cartesian mesh.
Mesh solution on cartesian mesh

Numericals result for diffusion on polygonal mesh II

Result on polygonal mesh for diffusion glace scheme and modified Maire scheme.

Glace scheme Maire modified scheme

10

10

Numericals result P1 I

- We solve the P1 equation with $E(t=0)=\delta$. Result on random quadrangular mesh for the two schemes.

P1 glace scheme
P1 maire scheme

1

1

Numericals result P1 II

. Comparaison with the exact solution in 1D.
1D solution

