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2-Fluid MHD Equations:

% +Ve(nV)=0 continuity
OB
E — —V X E V.B = O ILIOJ = V X B MaXWCH

nMi(%+VOVV)+Vp =JxB-V-.Il, +uV’V momentum

1
E+VxB=nJ+—(IJxB-Vp,) Ohm's law
ne
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The split-implicit time advance



Consider a simple 1-D Hyperbolic System of Equations (Wave Equation)

up+1_up+1 up _up
=c| 0| ——|+(1-0)| ——
ot O X O X

Substitute from second equation into first:

T o . out Lyt il
u?+1 il U? +(5tC)2 92 j+1 12 j—1 i 0(1_9) j+1 12 j—1 +§tC J+1/2 j—1/2
OX OX OX )

;‘:11/2 =V?+1/2 +%[9(UE —U? : +(1_‘9)(u?+1 _u?)]

Vv

These two equations are completely equivalent to those on
the previous page, but can be solved sequentially!

Only first involves Matrix Inversion ... Diagonally Dominant 5



An alternate derivation:

u_.ov
ot OX
oV ou
—=C—
ot OX

n
»

Expand RHS in Taylor
series in time to time-
center



An alternate derivation:

a_u — C@ > ou 0 n

ot ox a TP
PV Expand RHS in Taylor

E:C& series in time to time- @:ci{u” + 05t =—

center o 0Ox

a ol or . au Aﬁstitute from second
E:c&{v +0§t(c&[u +95tED} equation into first
N = ci[un - Qﬁta—u}

ot  ox ot



An alternate derivation:

u_. v . ou ol

ov ou Expand RHS in Taylor

—=Cc— series in time to time- N _ O o
po o =C u" + 6ot

center ot ox ot

a ol ol . U Aﬁstitute from second
E:C&{V +6’5t(05[u +95ta}ﬂ equation into first
@:ci[u“ +95ta—u}

ot OX ot

l Use standard centered difference in time:

192 2262 n+ 2282 n an
-0 (o) c Fvel u " =[1+6(1-6)(t)°c Fvel u'+otc—v

OX

v =" +§tc{¢9£u”“ +(1—«9)£u”}
OX

OX



An alternate derivation:

a_u = C@ > au a n av_
o au Expand RHS in Taylor Z
— =C— series in time to time- N0 ou
ot ox =C u' + 6ot
center ot oX ot |

a ol ol . U ‘4stitute from second

E:C&{V +6’5t£05[u +6’5tED} equation into first

v = ci[un + Hata—u}

ot OX ot

l Use standard centered difference in time:

2
u™ =1+ 6(1-86)(ot)° ¢’ 6—2 u" + §tcivn
OX OX

v =" +5tc{(9£u”“ +(1—9)£u”}
OX OX

This is the same operator as before when centered spatial differences used 9
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(next 3 vgs)



Linear ideal MHD response can be analyzed with oW approach

Phy let V=% introduce a displacement vector &
E(%,1) linearize equations about V=0
X
ag+Vp1 1 (V><B1)><B—|—L(V><B)><B1
5t Hy )
B, =V x(&xB)
P +Ve(pg)=—2pVe&
or,
8 [2hS L . .
I 8t =F() Linearized equation of motion

| 5
GeAD s Q)= [(VXB)xQ+(VxQ)xB]+V (&:Vp+3pVe)

Q=B,=Vx(§xB)



oW 1s the potential energy for a given displacement field

o _
IO atz _ F(E.:)

F(€) :i[(VXB)XQ-l—(VXQ)XB} +V(§-Vp +32 pV-?‘;)

Q=B, =Vx(§xB)

Assume &(x,t) =&(x)e'" and take dot product with -2&" ,

and integrate over volume to get perturbed energy

Lpo’ [dr & =—1[dr & -F(&)=0oW (&'.8)

if OW < 0 for any displacement field & — instability



The plasma motion will be such as to minimize oW

This is the term associated with the fast wave...it
is positive definite with a large multiplier. Any V.}‘;L ~ _2&.’L ok ~ ()
unstable plasma motion will make this term small

i \
LQ. + LB’ [V, + 28, k| +2p|Veg
__2(§¢ 'Vp)(K°§¢ ) —0¢, xB:Q,

5

oW z%".dr

b=B/B unit vector in direction of field

Kk =bVb curvature of magnetic field
oc=J.-B/B’ parallel current density
Q=Vx(ExB)  perturbed magnetic field

Q, = perpendicular component of Q

&, = perpendicular component of &



Now apply the split implicit advance to the basic 3D (ideal) MHD equations:

pOV:L[VxB]xB—Vp

Hy
B=Vx[VxB]
p=-VVp-ypV:V

ldeal MHD Equations for velocity,
magnetic field, and pressure:

Symmetric Hyperbolic System

7-waves

14



Now apply the split implicit advance to the basic 3D (ideal) MHD equations:

ldeal MHD Equations for velocity,

pOV:L[VxB]xB—Vp L
magnetic field, and pressure:

Hy
B=Vx[VxB] Symmetric Hyperbolic System
p=-VeVp—ypVeV 7-waves

PV = Vx(B+05tB) | (B-+ 65tB) -V p + 65tp)

Hy
: : Taylor Expand in
B= VX[(V+95tV)XB] Time as before

p=—(V+05tV)sVp—ypV+V +65tV)

15



Now apply the split implicit advance to the basic 3D (ideal) MHD equations:

ldeal MHD Equations for velocity,

poV:L[VxB]xB—Vp L
magnetic field, and pressure:

Hy
B=Vx[VxB] Symmetric Hyperbolic System
p=-VeVp—ypVeV 7-waves

PV = Vx(B+05tB) | (B-+ 65tB) -V p + 65tp)

Hy
: : Taylor Expand in
B= VX[(V“L‘%W)XB] Time as before

p=—(V+05tV)sVp—ypV+V +65tV)
Substitute from 2" and 3" equation into first, finite difference in time:

{p=0°(B’LIV™ ={p-0(0-1)(5t)’L} V" + §t{—Vp +i(v xB)xB}
Ky

MHD Operator: —» L{V} =ﬂiO{V><[V><(V><B)]}xB+ﬂi0(VxB)x[V><(VxB)]

+V(V+Vp+ypVeV) 16



Now apply this technique to the basic 3D MHD equations:

ldeal MHD Equations for velocity,

poV:L[VxB]xB—Vp L
magnetic field, and pressure:

Hy
B=Vx[VxB] Symmetric Hyperbolic System
p=-VeVp—ypVeV 7-waves

PV = Vx(B+05tB) | (B-+ 65tB) -V p + 65tp)

Hy
: : Taylor Expand in
B= VX[(V“L‘%W)XB] Time as before

p=—(V+05tV)sVp—ypV+V +65tV)
Substitute from 2" and 3" equation into first, finite difference in time:

n+1/2
{p-0’ (Bt LI V™ ={p—0*(5t)’L| V" +5t{—Vp +i(VXB)xB}
Hy

note!

MHD Operator: —» L{V} :ﬂio{vX[vx(VxB)]}xB+ﬂiO(VxB)x[V><(VxB)]

+V(VeVp+ypVeV) 17



Advantages of

n+1/2
{p-0 (S’ L}V™ ={p-6°(st)’L}V “+5t{—Vp+i(vXB)xB}
Ho

note!
over:

{p-0 (S’ L} V™ ={p-60(0-1)(St)’L}V “+5t{—Vp+i(vXB)xB}
Hoy

1. Gives correct steady-state physics (when v+l =yn)

2. Gives stable numerical method for €= 1/2 even when
plasma is unstable (L has negative eigenvalues)

3. Still second order accurate in time (obtained by
evaluating p and B at the half-time level)

4. Effectively introduces a k-dependent mass term to
provide numerical stability

MHD Operator: — L{V} = 1 {Vx[Vx VXB)]}><B+L(V><B)><[V><(V><B)]
7 7
+V(VeVp +7pVeV) ; 18



Summary of Split Implicit Time Advance

nelil |
1 OnY
{p —6%(ot)° L} Yy = {p —6%(ot)° L} V" + 6t {—Vp +—(VxB)x B} implicit
Ky n VnJrl !
pn+3/2 _ pn+1/2 _ StV .(an+3/2 n (1 . Q)Vpnﬂ/z) i()éllgii(:it
—7/(6’ pn+3/2 +(1-6) pn+1/2 ) StVeV™! + 5tS in pn+3/2 !
_Vn+1 % (9Bn+3/2 +(1- H)Bnﬂ/z ) ]
—n (W < B2 1 (1-0)V x B2 )
n+1/2 n+1/2 Only .
B™32 — B2 1 5tV x 1 (1 —20)(V><B )xB ¥mp1:f31/t2
ne +9(VXB”+3/2)XBn+1/2 +9(VXB”+1/2)><Bn+3/2 mnB !
_Lv(ep:+3/2 +(1_9) pg+1/2) \
. ne _
Hall terms

L{V} =ﬂi{w[vx(vxB)]}xBJrﬂi(vXB)x[vx(VxB)]
+VO(V-Vp+7/pV-V) 0 19



The Major Challenge in M3D-C is in solving the Implicit Velocity Equation

n+1/2
p-0 Gt LIVY ={p t —Vp-;-i(vXB)xB}

Hy
L{V} =ﬂi{Vx[vx(VxB)]}xBJrﬂi(vXB)x:VX(VxB)]
Z +V(VeVp+7pVeV) s

* Need to solve this in 3D torus with
strong magnetic field in toroidal
direction (o) ... anisotropy

» Wide range of wave speeds with
differing polarizations leads to ill-
conditioned matrices

4 0 » Gradients in (R,Z) plane much larger
than in ¢ direction

 Also need to preserve V.-B=0

20



Accuracy and Spectral Pollution

Because the externally imposed toroidal field in a tokamak is very
strong, any plasma instability will slip through this field and not
compress it. We need to be able to model this motion very
accurately because of the weak forces causing the instability.

|

In M3D-C?, we express the V=R*VU x Vo+ R2WV¢ +?VJ_Z

velocity and magnetic fields o

as shown: (K.9,2) B=VyxVg-V o+ (R + RV 1)V
Consider now the action of the first ™ big!
term in V on the external toroidal field: B = FOV¢ V = R*VU x V¢

cB
V e ot =V X (V X B) » The unstable mode will
mostly consist of the
— V oV x [( R2VU x V¢) « FOV¢] velocity component U.

= —FOV-[VU X V¢] The velocity field U does
_0 not compress the
B external toroidal field!

21



The plasma motion will be such as to minimize oW

This is the term associated with the fast wave...it
is positive definite with a large multiplier. Any V.}‘;L ~ _2&.’L ok ~ ()
unstable plasma motion will make this term small

\

) 2 2 2 2]
oW = [ds LQ1 + LB [Veg, +2E, k| +5p|VeE
—2(8,+Vp)(keE, ) -0, xB-Q, |
b=B/B unit vector in direction of field
K =bVb curvature of magnetic field

oc=J-B/B’ parallel current density
Q=Vx(ExB)  perturbed magnetic field

Q, = perpendicular component of Q

&, = perpendicular component of &



L{V}=luio{Vx[Vx(VxB)]}><B+HLO(V><B)><[V><(V><B):|+V(V-Vp+7/pV-V)

This is the ideal MHD operator of Bernstein,
Freeman, Kruskal, and Kulsrud (1958)

Define now 2 displacement (velocity) fields:

V=RVU xV¢+mR2V¢+%VLZ

N 8 3 1
V=RVU ><V¢+a)R2V§o+?Vl;{

4 0] consider the functional:

SW(V,V)=[[d’RV-L(V)

can be broken up into =oW,,(U.U)+oW,,(U, ) +oW;;(U, %)
these 9 parts, each of ——» +OW,,(@,U) +dW,, (@, w) +dW,, (@, 1)

which is a quadratic +OW,, (7,U) +3W,, (7, @)+ SW., (7, %)
functional

23



n+1/2

1
{p-6° (Bt LI V™ ={ p—G*(5t)’L} V" +5t{—Vp +—(V><B)><B}

Hy
* To solve this by the finite element
method, we need to take projections to
get scalar equations, and then to take
the weak form of those equations.

V=RVU xV¢+wR2V(o+%VLZ

# v.(R,Z) isi" finite element trial function
¢
~[[d*Rv,Vpev, xR [d>R RV v, x Ve
[ d2R v.R*V g by parts [ d2R v.R*V @
.o 1 . p 1
2 2
/ —“d RViVL°R2 “d R?VLVf

Projection or annihilation operators: Same form as velocity! 24



n+1/2
{p-0° (Bt LIV™ ={p—0*(5t)’L| V" +5t{—Vp+i(vXB)xB}
Hy

» Consider the effect of these projection
operators on the MHD operator
L{V} :i{vX[vx(VxB)]}xB
Hy
+i(V><B)x[V><(VxB)]+v(V-Vp+ypv-V)
Hy

(P V =R*VU xV¢+wR2W+%ViZ
[d°R RV, v, xVeL{V] BW, (1,U) + 8W, (1,0) +8W,, (4, 7)
JIRVRVOLEVE o 5w 0,09+ 8Wa, () + 5Ws (11,2)
[d°R % V vsL{V] OWs(7,0)+OWs, (%, 0) +OWis (v, 7)

same functions!
these “energy terms” add to mass matrix to make a fully stable implicit system2°



The sparse matrix equation to be solved for the velocity variables take the form:

v % n v v

D12 D1 3 U R1 1 R12
\ \' \ \Y

Dzz D23 o @ | + RZ] Rzz

DIXZ D?\>/3 Z R;II R;Z

\' \" \'
S11 Slz 813

v v v
Sy Sy Syl

vV XV v
S31 "=.__S32 S33

S, =Dy :p(ViaU )_(05t)26\N11(Vi>U)

etc.

n+1/2

R1V3 4
Ry | T
R, || F

SV matrix is self-adjoint!

» Corresponds to projections of the operator equation derived on earlier vg:

n+1/2

{,0 —B*(61) L} Y = {,0 —0*(5t) L} V" + 5t~§r—

<

 Also contains 2 non-trivial sub-systems (reduced MHD) that
conserve appropriate “energy” and are numerically stable

[Slvl:'.[u ]n+1 = |:D1V1:|.[U ]n +[R1V1]°[W]n

etc.

26



First 3 oWj; terms

Ml(‘/wU)=+%([U»W]a[Vi»W])—%A*w[Vi,[U,w]]——{U,—}sz

F

ool (gl £ )

' i ' . i F , Y

W, (v, ) = ——[w,w] ;)2 (v.[9.w])+ ;)2 A W[Vi,l//]+g(w (v.%))
1 ) 1. F . _F

éWn(vi,z)=—?((z,w),[vi,w])+?A w Vs (2.w) |+ 2V V.

= [Vi,w],z’]+g((zaw)»%)’—%A*W(%(m)j‘%(F[”i])"

-present in 2D

|
[a,b]E[VavaV(D]:E(asz —agh; ) -3D only

(a,b)=Va-Vb=a.b; +a,b,
note: at most second order
fr=0of [op derivatives on each scalar > 27

compatible with C? elements



Magnetic Field

A=R’VoxVf +yVo-F InRZ Vl-%A =0 (gauge condition)

B=VxA
=VyxVep-V '+FVgp
=V xVp-VIi'+F' Vg

F=F +RV.V f
F*=F +R°Vf=F+f"
f'=of /0
J=VxB=VxVxA / i
:VF*nger%VLw'—A*nga

2 scalar variables and a gauge condition

28



Magnetic Field Advance Equations
A=RVoxVf +yVp-F,InR

B=VyxVp-V f'+FVgp

(1) %—?zvX[VxB—nu---]

[[IRvVEV <)) > [[d°RV v, xVeu()

[[d?RvVe() > [[d’RyVeu()

—”dZR v.Ve(1) N ”dZR V v.o() Not needed!

29



Energy Conservation:

Vo[(’i;[fz(VxB)xB—Vp}z —VeVp
B-[aB:Vx(VxB)}: +Ve/ (VxB)xB|
ot
1 ap /4
V.V VeV]=———Ve(pV)+ VeV
ot - —[VeVP+ypVeV] 7V (PV)+VeVp

For energy conservation, the like colored terms must cancel exactly.
Since this only requires that the projections we take of the momentum
equation are equivalent to the dot product with the velocity, we will
have energy conservation for each of the 3 velocity fields:

V=R’VUxVop “—__—— Reduced MHD
V=RVUxVp+wR*Vp

V=R*VU xV¢+a)R2V¢+%Vl;{ “—— Full MHD



2-Variable 3D Toroidal subset of full equations....or, (1,1) component

A=yVo-F InRZ

V=RVU xVp
1 AU Ay F, 1 (F, 1 1 :
?AU :—I:?,U:|+I:?,W:| R4Al//+R2(R2,l//j |:R ( AU)+V'R4,UVU :l
I . F , 1 : 1 .
-@-Aw:—-@-A [z//,u]+v-Rg V.U +V-R2 [V(m y/)+n?vlw }

These reduced equations have an energy conservation theorem, and the
ideal terms have an associated energy principle and variational form

Weak form for the velocity equation:

_%(V“u) (05t W (U,v,) = S E("'/’) ‘{AF?ZJ - Fi“ - }
L U, ]V, +ig L —EZV,U', \
aWzD(U,V)=HRde24R;(z[ 2 w*]) e W])>
)-SRV Uy A ]

31



4-Variable 3D Toroidal subset of full equations....or, 2x2 submatrix

A=R*VoxVf +yVop-F,InR2Z
V=RVUxVp+R’oVep

NEESEL \,J_W_W - 2)+RZ[AR*Z/,y/}—(A*t//)A*f’—(A*y/,f')

',','— a F . * * 2 lu "
. +A,u(AU)+RV-R4VU

R

Ré=—-[ wR’,U |-00'R’ —Rl(y/,w'){l:*,y/: +[1w]-(f.F)-p+ A R0+ 2.0

f

. F’;V U-wV, y-oR’V f'xV¢)+77R}2VL1// +17V , F ' xVep
W=V Y, 1 -

* T 2
R +(F", )+ Rz(t//@//) 1 3 IAWM FVF{;VM A(//Vf}xV(D

—[w.U]-(U, f’)-l—?]A*l//-}—[l//,F*:'

| ivgng U e LV oxV .,y
S R* R

: leiifiay F I Loas B :
—?A WV¢XVW—?V¢XVLF +Fvll/l —?A l//VJ_f

These equations also have an energy theorem and associated energy principle.
32



3D C! elements by combining Q,, triangles in (R,Z)
Hermite Cubic representation in the toroidal angle ¢

Each toroidal plane has two Hermite
cubic functions associated with it

@, (x) = (| x|-1)" (2] x| +1); @, (x)=x(| x| 1)’

VAN o

Solution for each scalar function is represented in each triangular
wedge as the product of Q5 and Hermite functions

18
U(R.Z,9) =D v;(R,Z)[U}, @,(p/h)+U} ®,(p/h)
j=1

+U;

j.k+1

q)1((p/h_1)+ujz,k+1q)z(¢/h_l)]

All DOF are still located at nodes: => very efficient representation

33



3D Nonlinear Solver Strategy

« In 2D, solve efficiently with direct solver up to (200)? nodes

e In 3D, leads to block triangular structure

B, ( A, X, Y,
° ° ° Xj—l yj—l
AJ BJ CJ‘ . XJ yJ
¢ ¢ ¢ Xj+1 yj+1
Cy Ay BN__XN_ _yN_

AJ’BJ’CJ

are 2D sparse
| 7} matrices at plane |

Block Jacobi preconditioner corresponds to multiplying each row by B}I

PETSc has the capability of doing this using SuperLU_Dist

34



N=1 Resistive Internal Kink mode in CMOD with S=10’

Close-up Perturbed Current with Mesh

0.80 0.85 Q.50 Q.93 1.0 0.7 .8 0.9 1.0 1.1 1.2 1.3
L) o oii




High-S tearing mode studies

« M3D-C!, is now being used for linear physics
studies in NSTX, CMOD and ITER

* high order C! finite elements, adaptive mesh,
and fully implicit time advance allow high
resolution studies of localized modes

* Now being used to study tearing (and double
tearing) modes at realistic S values, including
pressure (Glasser) stabilization

S=108

(Top) Equilibrium current density
with adaptive mesh superimposed.

(Left) perturbed current density for
(1,1) tearing mode at different S.
Rightmost figure corresponds to
NSTX parameters




Growth Rate vy

0.12

CMQOD Series: p, =.006 I, =.250

0.10 -

0.08 -

0.06 -

0.04 A

0.02 A

0.00

— 5=10°
— $=10°
— 5$=10'

0.55

0.60

0.65 0.70 0.75 0.80 0.85

On Axis Safety Factor q,

0.90






n=1 Double Tearing Mode in NSTX....S =108

g-profile Toroidal current Vorticity Normal displacement

39




Z (m)

Linear ELM!s: Code Verification

CBM18

0.4 3D (F<5/3) ] Edge Localized Modes

. F a M3D-C' (=0 :
= ] . . .

2 03 o E ideal limit:
K> : - "gﬂ'__:.: ....... 3 ]
2 00 ] s i plasma resistivity - 0.
o Rt : vacuum region resistivity = oo,
s oL ELITE (I'=5/3) 1 vacuum region density > 0
z A __. ELITE ({I'=0 E
°o O.1F /¢ __. GATO (I'=5/3) 7
S e _... GATO (I'=0 g

0.0f £ 5

0 10 20 30 40 50

Toroidal Mode Number (n)

CBM18 (Ideal): u,

We have performed detailed
benchmarking for ELM unstable
equilibrium in the ideal limit between
M3D-C! and GATO and ELITE up to n=40

n=10"

 required discontinuous n and p profiles
with jump of 108 Ferraro +0



Linear ELLMs: Code Verification-2

Meudas! (Ideal): wu, Meudasl
' | 0.200" " m3p-c! (1ldeat)
- " a M3D-C' (Nonuniform p)
< g M3D-C' (Nonuniform p, n, T, = 38 eV) |
3 0.15F x M3D-C' (Nonuniform p, n, T, = 243 eV) -
S e ELITE ]
% : a A A A
S 0.10[ e |
~A 0 ° o
5 0.05F s R R g -
= L
O g O
L X
ocool. . . . % . ..
0 2 10 15 20 25
598 APETT Toroidal Mode Number (n)
2.0 2.8 3.0 3.5
R (m) _
10 T . Studies have been extended to:
o ] « diverted equilibrium (JT-60)
w06 > ] . . . . s .
E Y ' « finite resistivity in the plasma and SOL
N 0.4k

* realistic density profiles

0.2 [
i \ Close-up showing M3D-C’ 41
0.0 Tl I i i
3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 trlanQUIar adaptlve meSh
% (m) Ferraro




Linear ELLMs: Code Verification-3

Comparison of eigenfunctions of normal plasma displacement for
“ideal limit” and more realistic Spitzer resistivity with SOL with M3D-C’

Meudas1 (Ideal):
. Meudasl (ldeal): w, Meudast (0spizer): tn

rrrrrrrrr

T Tl T

Ideal MHD limit Sptizer resistivity with SOL,,



Non-linear ELLM simulation with M3D

Multi-stage ELM = DIII-D 119690 Full simulation of nonlinear
ELM event shows complex
structure with secondary
instabilities
-
0 | )"LI___,..\ ‘"*—-f“AV \ }(\f" [rrﬂ Il“ |!|”” ’”m I!l | .1-1,|,” l"""'l'”"L'h"’lhﬂlw“"m"l‘rf,
o time (1,)
Z 1 [ N ’J 0T W T T [
Outer div
| || || | ‘ Inner div
ZI Linear mode growth and mode consolidation
L] Plasma burst outboard, midplane n reduced
[] Density to outboard divertor
B inboard edge instability
[ ] Density to inboard divertor

43
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First 50 1,: linear mode growth
Nonlinear harmonic consolidation

Initially many unstable linear modes.
These rapidly consolidate into lower-n
field-aligned mode " filaments"
(n=6-10 at t=43)

Similar to what is seen experimentally.

RJ
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Early time: T and n ballooning in rapid burst
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Longer time: T
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Longer time: n
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ECCD Stabilization of NTM

100

GENRAY code computes
NIMROD code calculates wave induced ECCD

the MHD growth of NTM ¢ current drive term

Code coupling provided by SWIM framework
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Results to date are for an equilibrium that 1s tearing unstable
and using a model toroidally localized CD term

1 [ v v v v ¥ N - r
o5k RF time dependence /_ |

0 002 004 008 008 01 012 014 018
Time (s)

t=0.103 s, salurated islands

orf
005}
)
Close up %
ik
1455

I\ .Eaﬁ

|
|
1

l:Jl

1.95 2

Model current drive source applied
to original O-point in 1 toroidal

location.

(2,1) island shrinks, becomes (4,2)
(4,2) island shrinks, (2,1) grows
New (2,1) 90° our of phase with old
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o.s}
0.4}
0.3f
0.2H

0.1

=0.1

0.2k
-0.3H
-0.4f
-0.5p

As RF suppresses the original islands,

Magnetic energy of toroidal Fourier components

new islands arise

(2,1) islands grow up
again after (4,2) island
has been suppressed;

new islands are 90° out

of phase (poloidally)
from the old ones.
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Frequency (kHz)

Study of saturated mode in NSTX-Motivation

NSTX shot 124379 has a steadily growing 2,1 mode with no
apparent trigger seen by the USXR, D_, or neutron diagnostics.

B N T e - :
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50 T T ' S G P ..
c Core Rotation Frequency 0E_ —_— ]
=2 Rotation Frequency 065 0.70 0.75 0.80
- Iy, Bl |
z 155 p P -
= 1.0¢
~ 0SE =
00:=
0.85 0.70 0.75 0.80
— ‘ -
a 3
a D Neutrons
0.65 0.70 0.75 0.80
JDE E
25: R=100 cm E
el | | R=110cm 3
g 155_________5.__ R=120cm 3
o anE R=130 cm ;
L 10= - R=140 cm E
1= %
e e o e
0.65 0.70 0.75 0.80
time (sec)
Gerhardt

51



Eigenfunction Analysis of Multichord Data Suggests
Coupling to 1,1 Ideal Kink

Measurement, 124379, t=0.730000

Island Equilibrium and USXR Chords, 124379, 1=0.730000
'

hup, Chord #

2
0
0.0 0.5 1.0 15
time (m=ser)
Simulation, 124379, t=0.730000 Sim ulation, 124379, t=0.730000

" 1111
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\ \‘é‘-‘:‘-.-

hup, Chord #
hup, Chord #

0.0 0.5 1.0 15 0.0 05 1.0
time (msec) time (msec)
2,1 only 2,1+ 1,1 pert
0.0 AN . 2.0 52

Gerhardt

1.5



M3D simulation of saturated mode in NSTX when q, > 1

$=z=0

| __t= as3oen

[ = B27.020

[+ La 1.5 2.0
Mejor Redius

Saturated n=1 mode can set develop when q, slightly > 1, as seen in Poincare
plot on left. Can flatten temperature (right) and also drive m=2 islands.
Breslau, et al. IAEA 2010



VDE?" and Plasma Disruption simulations in ITER

“¥(c)

(a) Poloidal flux, (b) toroidal current, and (c) temperature during
a vertical displacement event. A VDE brings the plasma to the
upper wall where a (m,n) = (1,1) kink mode grows. Forces on
the vacuum vessel are calculated.

Vertical Displacement Event 54



Runaway electron evolution in disrupting plasma is computed.

0.8

0.6

0.4

0.2r

Z (m)

| |
o o
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T T

1
o
[==]

T

“R(m) "~ R(m)

Simulation of DIII-D Ar pellet experiments. Runaway electrons of

different energy shown. Synchrotron emission on right. 55
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Thin Resistive Wall Boundary Conditions

hin resistive wall

Tangential integration path

New instabilities can be present if the plasma is surrounded
by a thin resistive wall. This can be modeled by modifying
the boundary conditions.

All the boundary conditions follow from imposing that the
normal component of B is continuous across the wall, and the
tangential components can have a jump.

Follows from: V.B=0



Thin Resistive Wall Boundary Conditions-2

Opp=Surp g, i]+L g 5 B, 4]

B, =magnetic field on vacuum side of wall
B, = magnetic field on plasma side of wall
@, = magnetic scalar potential in wall

n, = resistivity of wall

o = thickness of wall



Without the presence of flow 1n the plasma, a wall stabilized
plasma will become unstable as wall resistance 1s increased
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With sufficient plasma flow, the unstable mode will stabilize
due to doppler shifted resonance with sound continua
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Summary

Implicit Methods

— Use differential approximation to reduce matrix size and improve condition
number

Highly magnetized plasma

— Stream-function/potential representation of velocity and magnetic fields

Momentum equation projections
— @Gives energy conservation for full and reduced equation sets

Finite Elements
— High-order C! elements needed for high-order equations.

Solver Strategy

— Block Jacobi preconditioner

Recent Results
— Demanding ELM ideal MHD benchmarking studies give excellent results
— Lundquist numbers up to 10% or higher are possible
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