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These 4 areas address different timescales and are 
normally studied using different codes



Transport codes solve the same 
equations as the Extended MHD 
codes, but in 2D rather than 3D
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(d) Transport Codes
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First we will consider a model 
problem to better understand the 
timescales in 2D, then will proceed 
to a general approach
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Plasma Cross Section
(toroidal current in)

A tokamak needs an externally 
generated  “vertical field” for equilibrium.  
A purely vertical field will produce a 
nearly circular cross-section plasma.
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Tokamak Equilibrium Basics:  Need for a vertical field

We first consider a very crude “rigid plasma” model to better 
understand where the slow resistive time scale comes from
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Good Curvature
• Stable to vertical mode
• Oblate plasma
• low beta limits

Bad Curvature
• Unstable to vertical mode
• Elongated plasma
• higher beta limits
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In actual tokamak experiments, external  poloidal field 
is not purely straight but has some curvature to it
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Good Curvature
• Stable to vertical mode
• Oblate plasma
• low beta limits

Bad Curvature
• Unstable to vertical mode
• Elongated plasma
• higher beta limits
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In actual tokamak experiments, external field is 
not purely straight but has some curvature to it
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External poloidal field with curvature can be thought 
of as a superposition of vertical and radial field.

If plasma column is displaced upward, the force                   
J x B = IP x BRext

will accelerate it further upward.  Same for downward.

Alfven wave time scale:  very fast!

Vertical 
Instability
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Plasma with                         
current IP

Describe the plasma as a rigid body 
of mass m with Z position ZP.   
Assume time dependence eiωt

ZP

Equation of motion:

Circuit equation for wall:
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A nearby conductor will  produce 
eddy currents which act to stabilize  

Conducting wall
with dipolar current IC

-

+

inertia conductor external field

inductance resistance plasma coupling
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Plasma with                         
current IP

Conducting wall
with dipolar current IC

ZP Three roots:
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Introduce plasma velocity  VP = i ωZP to get a 3x3 
matrix eigenvalue equation for ω of standard form

+

-



Three roots:

These are high frequency 
(~10-7 sec) stable oscillations 
that are slowly damped by the 
wall resistivity

This is the unstable mode.  
Very slow (~ 10-1 sec), and 
independent of plasma mass.
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With only passive conductor, still an unstable root but much smaller.
Not on Alfven wave time scale but on L/R timescale of conductor.
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Plasma with                         
current IP

Conducting Wall
with current IC

ZP Three roots:

This “rigid” mode is easily stabilized by 
adding a pair of feedback coils of 
opposite sign, and applying a voltage 
proportional to the plasma displacement    
-or its time integral or time derivative (PID)

11

Total stability is obtained by adding an 
active feedback system which only 
needs to act on this slower timescale.



To model this “vertical instability” in realistic geometry,  and take the non-
rigid motion of the plasma into account, we take advantage of the fact 
that the unstable mode does not depend on the plasma mass (or inertia), 
and the stable modes are very high frequency and very low amplitude.
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We start with the basic MHD + 
circuit equations and apply a 
“resistive timescale ordering”

Introduce small parameter 1ε �
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To model this “vertical instability” in realistic geometry,  and taking the 
non-rigid motion of the plasma into account, we take advantage of the 
fact that the unstable mode does not depend on the plasma mass (or 
inertia), and the stable modes are very high frequency and low amplitude.
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We start with the basic MHD + 
circuit equations and apply a 
“resistive timescale ordering”

Introduce small parameter 1ε �

~ ~ ~ ~iV R
t

η ε∂
∂

V E∼ ∼
2ε

All equations pick up a 
factor of      , in all terms, 
which cancels out, except 
in the momentum 
equation, where the 
inertial terms are 
multiplied by          .

ε
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To model this “vertical instability” in realistic geometry,  and taking the 
non-rigid motion of the plasma into account, we take advantage of the 
fact that the unstable mode does not depend on the plasma mass (or 
inertia), and the stable modes are very high frequency and low amplitude.
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We start with the basic MHD + 
circuit equations and apply a 
“resistive timescale ordering”

Introduce small parameter 1ε �

~ ~ ~ ~iV R
t

η ε∂
∂

V E∼ ∼
2ε

This allows us to drop the 
inertial terms in the 
momentum equation, and 
replace it with the 
equilibrium equation.

Huge simplification…. 
removes Alfven timescale

0
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To model this “vertical instability” in realistic geometry,  and taking the 
non-rigid motion of the plasma into account, we take advantage of the 
fact that the unstable mode does not depend on the plasma mass (or 
inertia), and the stable modes are very high frequency and low amplitude.
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This is the set of equations we 
solve to simulate control of the 
plasma position and shape.   

There are 3 production codes that 
solve these nonlinear equations in 
2D and are used to design and 
test control strategies.

• TSC (PPPL)
• DINA         (Russia)
• CORSICA  (LLNL)
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Consider first the vector magnetic field equation

The most general form for an equilibrium axisymmetric magnetic field is: 
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Summary of scalar equations:

Note:
• The pressure and magnetic field variables obey separate time 
advancement equations, yet they must always satisfy the equilibrium 
constraint
• Each of the equations contains the velocity variable V, yet there is no 
equation to advance V.
• The heat flux vector q is very anisotropic, much larger parallel to the 
magnetic field than perpendicular to it.
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Because of the anisotropy of the heat conduction, 
we want to transform to a moving coordinate 
system aligned with the magnetic flux surfaces. 

At any given time, we will define the  non-
orthogonal flux coordinate system:

( )( ), ( ), ( )ψ θ φx x x

We also have the inverse representation: ( , , , )tψ θ φx

This has the associated volume element: and Jacobian:
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The fluid velocity that appears in the 
MHD equations is divided into two parts:

C R= +V u u

Velocity of the 
coordinates

Velocity relative to the 
moving coordinates

actual fluid 
velocity 
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Transform the 
continuity equation 
to the moving frame:

Time dependent 
coordinate transformation ( , ), ( , ),t tψ θ φx x
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Apply the same technique to all the time-advance equations:

These equations are now in the moving frame.  Because these are all 
conservation equations, only the relative velocity appears in the equations!
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After integrating all the equations over a flux surface: 

These are now 1-dimensional equations for the surface averages.   
We can use one of these equations to eliminate the relative velocity 
from the others.

Note that Equation (*) is for the derivative of the toroidal magnetic flux 
inside a flux surface

( , ), ( , ),t tψ θ φx x
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Toroidal flux is the integral of the toroidal 
magnetic field over the area inside a surface
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Equation (*) is for the derivative of the toroidal 
magnetic flux within a flux surface.  If we choose 
the relative velocity       so as to make the time 
derivative vanish, we can identify the flux 
coordinate as the toroidal flux. 
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There is a constraint on the relative velocity in that the 
coordinate ψ must remain a flux coordinate as time involves

Presently undetermined

We now determine this function by requiring that the 
flux coordinate ψ be the toroidal flux inside a surface
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Recall:

Put these together:

Relative velocity is determined by the equations themselves once 
we identify the physical meaning of the flux coordinate.

This says that if the toroidal magnetic flux within a magnetic 
surface is used as the flux coordinate, this Equation (**) gives the 
fluid velocity relative to the flux surface velocity.

We can therefore eliminate this velocity from each of the previous 
equations for the density, pressure, poloidal flux.

( )

( )
2

2
0

define:

1
1

2

R

L

g
gR

V
R

ψ

ηψ
π μ −

Γ ≡ ∇Ψ

∇ ∇Ψ
≡

u i

i

ψ → Φ



[ ]

( ) ( )3/5 3/5 2/5 2

( ) 0

2 0
5

1
2 L

nV nV
t

p V p V p V V
t

V
t

ψ η

π

−

∂ ∂′ ′+ Γ =
∂ ∂Φ

∂ ∂ ∂⎡ ⎤′ ′ ′ ′⎡ ⎤+ Γ + ∇ − =⎣ ⎦ ⎢ ⎥∂ ∂Φ ∂Φ⎣ ⎦
∂Ψ

=
∂

q Ji

( ) ( )

( )

3/5 3/5 2/5 2

*

0

2 2
2

0

( ) 0

2 0
5

1 0

R

R

R

R

nV nV
t

p V p V p V V
t

t

gV R gV R V g
t R

ψ
ψ

ψ ψ η
ψ ψ

η
μ

ηψ ψ
ψ μ

−

− −

∂ ∂′ ′⎡ ⎤+ ∇ =⎣ ⎦∂ ∂

⎡ ⎤∂ ∂ ∂′ ′ ′ ′⎡ ⎤+ ∇ + ∇ − =⎢ ⎥⎣ ⎦∂ ∂ ∂⎣ ⎦
∂Ψ

+ ∇Ψ = Δ Ψ
∂

⎡ ⎤∂ ∂′ ′ ′+ ∇ − ∇ ∇ =⎢ ⎥∂ ∂ ⎣ ⎦

u

u q J

u

u

i

i i

i

i i

2
*

2
0

1

R

g
gR
R

η
μ −

⎡ ⎤
∇ ∇Ψ⎢ ⎥

⎢ ⎥⇒ ∇Ψ = Δ Ψ −
⎢ ⎥
⎢ ⎥
⎣ ⎦

u
i

i ( ) ( )
2

2
0

1
1

2R L

g
gR

V
R

ηψ ψ
π μ −

∇ ∇Ψ
Γ ≡ ∇Ψ ≡u

i
i

ψ → Φ



28

( ) 1
2

d dψ φ τ
π

Φ = ∇ =∫ ∫B B Si i

φ

Just as the toroidal flux is the integral of the 
toroidal magnetic field over the area inside a 
surface, we can define the poloidal magnetic 
flux in a similar way.
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These are the evolution equations for 
the 1D Adiabatic Variables.   Note: 
time derivatives are zero if there is no 
dissipation :  

p∇ = ×J BAlso,

This is solved in a way that the adiabatic 
variables stay fixed during solution.

Grad-Hogan Method

H. Grad and J. Hogan, PRL, 24 1337 (1970)

Just needs heat fluxes to close 
equations!

( )0η = =q



p∇ = ×J B
This must be solved in a way that the 
adiabatic variables stay fixed during solution.

Grad-Hogan Method

H. Grad and J. Hogan, PRL, 24 1337 (1970)

( )
*

0

g

g

φ φ

μ φ φ

= ∇ ×∇Ψ + Ψ ∇

= ∇× = Δ Ψ∇ + ∇ ×∇

B

J B

* 2 0dp dgR g
d d

Δ Ψ + + =
Ψ Ψ

Grad-Shafranov Equation

Must express p and g in terms of adiabatic variables:

( ) ( ) ( ) 5/3
2

q
g p V

dV d R
σ −

−

Ψ
′Ψ = Ψ =

Ψ

Alternate advancing the adiabatic variables in time, and then solving the 
equilibrium equation holding the adiabatic variables fixed.



Time sequence of using the TSC code 
to model the evolution of a highly 
elongated plasma in the TCV 
tokamak.

At each instant of time, the vacuum 
vessel is providing stabilization on the 
fast (ideal MHD) time scale.  The 
external coils are both feedback 
stabilizing  the plasma and providing 
shaping fields as they slowly elongate 
it to fill the entire vessel.

In this case, there were 4 PID 
feedback systems corresponding to:

• Vertical position
• Radial position
• Elongation
• Squareness

Marcus, Jardin, and Hofmann, PRL, 55 2289 (1985)
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Codes can also accurately 
model the current drive action 
of the OH coils.

Simulation of flattop phase of 
a basic tokamak discharge.

(a) At start of flattop, OH coil 
has current in same 
direction as plasma current

(b) Flux in plasma uniformly 
increases due to resistive 
dissipation.  OH and 
Vertical field coils adjust 
boundary values so flux 
gradient in plasma remains 
almost unchanged.

(c)  At end of flattop, OH coil 
has current in opposite 
direction as plasma 
current.

Vertical 
field coil

OH 
coil

φ= ∇ ×∇ΨPB
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PF5

OH PF1AL

PF1AU

PF3L

PF3U
Simulation of NSTX discharge evolution

As a validation exercise, we have simulated 
the evolution of a NSTX discharge using the 
experimental values of the coil currents as 
the preprogrammed currents.

To control the plasma in the simulation, 
several feedback systems need to be 
added to the coil groups.   The “goodness” 
of the simulation is measured by how 
small the current in these feedback 
systems is to still match other measured 
quantities (such as the flux in flux loops).

In general, we find that if we can match 
the plasma density and temperature 
evolution, then we can predict the plasma 
current evolution very accurately.

( ) ( ) ( )i PP FBI t I t I t= +



IOH vs time IPF3U vs time

IPF3L vs timeIPF5 vs time

IPF1AU vs time

IPF1AL vs time

Simulation IOH has feedback added to match experimental plasma current IP
Simulation IPF3U and IPF3L have vertical stability feedback added

Simulation IPF5 have radial feedback system added

experiment
simulation



PF5

OH PF1AL

PF1AU

PF3L

PF3U

Red are simulation flux loop data and green are 
experimental data.  Origin of each curve is 
approximate position of flux loop around machine. Excellent agreement!



Summary

• Resistive time-scale dynamics arise both from dissipation in plasma 
(resistivity, thermal conductivity) and from resistance in nearby conductors

• On this timescale, plasma inertia can be ignored

• Equations can be written in a moving flux-coordinate system and averaged 
over the flux surfaces to give a set of 1D equations + time

• Dissipation coefficients only give relative motion of particles, energies, 
poloidal, and toroidal fluxes, so one can be chosen as reference

• Choosing the amount of toroidal flux within a surface as the reference flux 
coordinate is the most natural for tokamaks

• These equations evolve the 1D adiabatic variables in time.   We also must 
solve the equilibrium equation in a way that the adiabatic variables stay 
fixed during the solution….. Grad-Hogan method
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