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Time-splitting scheme concept (1/2)

I The Vlasov equation in its conservative form:

∂

∂t
f (Z, t) + div (x ,v) (U(Z, t) f (Z, t)) = 0 (1)

I Then decomposing the components of Z into two sets x and v,
the previous equation can then be written in the form

∂

∂t
f (x, v, t) + div x (Ux(x, v, t) f (x, v, t))

+ div v (Uv (x, v, t) f (x, v, t)) = 0

where Ux and Uv are the components of the advection field.
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Time-splitting scheme concept (2/2)

I A method currently used is to split the both parts by what is
called a splitting method (or an operator decomposition)

∂

∂t
f (x, v, t) + div x (Ux(x, v, t) f (x, v, t)) = 0 with fixed v (2)

and

∂

∂t
f (x, v, t) + div v (Uv (x, v, t) f (x, v, t)) = 0 with fixed x (3)
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Constraint on the advective form (1/3)
I Rk: SL scheme does not solve Vlasov equation in the

conservative form, but in the advective form

I Eqs. (2) and (3) can be put in the advective form

∂f

∂t
+ Ux · ∇x f = 0 (4)

∂f

∂t
+ Uv · ∇v f = 0 (5)

If and only if both conditions hold

div x(Ux(x, v, t) = 0 (6)

div v (Uv (x, v, t) = 0 (7)

Virginie Grandgirard CEMRACS 2010



a
a
a

Numerical Vlasov solving
Physics considerations

HPC

Time-splitting
Eulerian approach
Semi-Lagrangian approach

Constraint on the advective form (2/3)
I On the contrary, if equations (6) and (7) are not satisfied, then

splitting Eq. (1) is equivalent to solve advective equations with a
source term

∂f

∂t
+ Ux · ∇x f = −f div x(Ux) (8)

∂f

∂t
+ Uv · ∇v f = −f div v (Uv ) (9)

I Although from the divergence-free property of the full advection
field U, we have

div x(Ux) = −div v (Uv )

The source term in Eqs. (8) and (9) do not vanish exactly since
Eqs. (8) and (9) are not solved at the same time.
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Constraint on the advective form (3/3)

I This will therefore introduce a cumulative systematic error at
each time step, resulting in poor density conservation.

à A necessary condition for the time-splitting to preserve the
conservative character is that the advections fields Ux and Uv

are both divergence free.

I For instance in Gysela , this constraint limit the
decomposition in the (r , θ) direction
⇒ need to treat a 2D problem and not a 1D problem in r + a
1D problem in θ.
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Formal writing of Vlasov equation (1/2)

I To estimate the splitting error, let consider that Vlasov equation
can be formally written as

df

dt
= (A + B)f (10)

where A and B are any differential operators in space (In our case,

it would be A = v · ∇x and B = E · ∇v because Ux = v and Uv = E),
assumed constant between tn and tn+1.

I The formal solution of this equation (10) on a ∆t time step
reads

f (t + ∆t) = exp [∆t(A + B)] f (t)
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Formal writing of Vlasov equation (2/2)

I Then, the equation (10) is split in two formal equations

df

dt
(t) = Af (t) (11)

df

dt
(t) = Bf (t) (12)

I and the solutions are respectively

f (t + ∆t) = exp(∆tA)f (t) and

f (t + ∆t) = exp(∆tB)f (t)
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Standard splitting method

I The standard splitting method consists in solving successively

1. Eq. (11) on a time step ∆t followed by
2. Eq. (12) also on a time step ∆t

I which gives on one time step

f̃ (t + ∆t) = exp(∆tB) exp(∆tA)f (t)

I If the operators A and B commute the splitting is exact because

exp(∆tB) exp(∆tA) = exp [∆t(A + B)]

I This is true for the particular case where advections are with
constant coefficients.
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Strang splitting (1/2)
I However, in most of the cases A and B do not commute,

I But Strang has proved [Strang, SIAM (1968)] that the splitting
error can be reduce by solving symmetrically

1. Eq. (11) on half a time step ∆t/2, then
2. Eq. (12) on a time step ∆t and finally again
3. Eq. (11) on half a time step ∆t/2.

I This method is called Strang splitting.

I It corresponds to the formal solution

f̃ (t + ∆t) = exp(
∆t

2
A) exp(∆tB) exp(

∆t

2
A)f (t)
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Strang splitting (2/2)
I The splitting error on one time step, when the operators do not

commute,
I is of order 1 in time for the standard splitting

I is of order 2 in time for the Strang splitting

I The proof can be simply find by using a Taylor expansion of the
formal solutions

I The Strang splitting can be generalized to more than two
operators. If A = A1 + · · ·+ An, the following decomposition
gives a global order of 2 in time

exp(
∆t

2
A1) · · · exp(

∆t

2
An−1) exp(∆tAn) exp(

∆t

2
An−1) · · · exp(

∆t

2
A1)
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Strang splitting commonly used

I The advantage of such a method is that it change a 6D problem
into a succession of 1D advection equations or 1D conservative
equations.

I This technique has been used more than thirty years ago to solve
a 2D Vlasov equation [Shoucri, JOCP (1978)]

I It is now currently used in Eulerian and semi-Lagrangian
approaches

I Strang splitting has made possible the development of Eulerian
and semi-Lagrangian codes of high dimensionality.
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Eulerian method

In Eulerian methods, a fixed grid is defined in phase space (A). Finite difference

expressions are used (B) in order to obtain the value of f at grid points at the

next time step (C). Field equations are then solved (D) after integration over

velocity space. (figure from [Idomura, CR (2006)])
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Eulerian schemes à CFL conditions

I Due to the increase of HPC capabilities, Eulerian schemes have
been more and more preferred to PIC approach, because they are
not subject to the issue of marker sampling noise

I On the other hand, when explicit time integration is applied they
are subject to the CFL stability condition (the maximum time step

depends on grid space resolution)

I A way to improve this CFL condition as been find by using
implicit or semi-implicit time integration schemes [Idomura, NF

(2009)]

I This chronological list of Eulerian GK codes (not exhaustive):
GS2 [Kotschenreuther, CPC (1995)] and [Dorland, PRL (2000), GYRO
[Candy, JOCP (2003)], GENE [Jenko, CPC (2000)], GKV [Watanabe, NF

(2006)], GKW [Peeters, PoP (2004)] and GT5D [Idomura, CPC(2008)].
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Advective and convective forms in 1D

I Therefore we will restrict ourselves, without loss of generality, to
a 1D problem which leads to solving the following advection
equation

∂tf + u(x , t)∂x f = 0, ∀(x , t) ∈ [xmin, xmax ]× R+ (13)

where we will assume that u(x , t) is smooth enough; for instance
u is Lipschitz continuous.

I Besides, taking into account the hypothesis ∂u(x , t) = 0, we will
work with the 1D conservative form

∂tf + ∂x(u(x , t)f ) = 0, ∀(x , t) ∈ [xmin, xmax ]× R+ (14)
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Characteristic curves in 1D

I Then we can define the characteristic curves solution of the
differential system corresponding to the transport equation{

dX
dt

(t) = u(x(t), t)

X (s) = x
(15)

I Let us denote the solution of Eq. (15) by

X (t; x , s)

i.e. the position of a point at time t knowing that its position is
x at time s.
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Definitions of cells, cell centers and cell sizes
I Let us also introduce a finite set of mesh points {xi+1/2}i∈I of

the computational domain [xmin, xmax ] as

xmin = x 1
2
< x 3

2
< · · · < xN− 1

2
< xN+ 1

2
= xmax

I and denote cells, cell centers and cell sizes as, for
i = 1, 2, · · · ,N , by

Ii ≡
[
xi− 1

2
, xi+ 1

2

]
; xi ≡ 1

2

(
xi− 1

2
+ xi+ 1

2

)
; ∆xi ≡ xi+ 1

2
− xi− 1

2

I and the maximum cell size by

∆x ≡ max
1≤i≤N

∆xi
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Properties of positivity and TVD (1/2)

I At first time, let suppose that u is not a function of f or x ,

à The evolution of the advection equation for a time ∆t

∂tf + u(x , t)∂x f = 0

is simply a uniform shift of the distribution function by a
displacement u∆t.

I Let us also define λ as the CFL number

λ = u
∆t

∆x
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Properties of positivity and TVD (1/2)

I There are two particular properties of great importance in an
advection solver:

(a) The method should not introduce false extrema, i.e.:

if 0 < λ < 1 and f n
i−1 < f n

i < f n
i+1 then f n+1

i−1 < f n+1
i < f n+1

i+1

(and similarly for the monotone deacreasing),

(b) The method should not accentuate already existing extrema, i.e.

for 0 < λ < 1, if f n
i−1 < f n

i > f n
i+1 then f n

i ≥ max{f n+1
i , f n+1

i+1 }

I Properties (a) and (b) together imply the method is
positivity-preserving and total variation diminushing (TVD).
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Properties of positivity and TVD (2/2)

I The problem is that f is only known at a set of discrete grid
points xj = j∆x .

I One solution would be to interpolate between the grid points by
some function f̃ (y) and write

f (yi , t + ∆t) = f̃ (yi − λ, t), where y = x/∆x (i.e. yi = i)

I However, by a corollary of Godunov’s theorem, any interpolation
scheme that is higher than first order breaks properties (a) and
(b).

I Satisfying these properties has been one of the leitmotiv for the
development of new schemes since more than 10 years.
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Replace f (x , t) by its smoothed approximation

I Let us come back to the general case of a non constant u(x , t)
coefficient.

I Our goal is to solve equation of type Eq. (14) on a grid,
assuming the function f to be smooth in each elementary cell Ii .

I The main idea is to replace f (x , t) by its smoothed
approximation

f̄i(t) =
1

∆xi

∫ xi+1/2

xi−1/2

f (x , t)dx , i = 1, 2, · · · ,N (16)
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Property of particle conservation
I Assuming the values of the approximation of the distribution

function f̄i known at time tn = n∆t for all i = 1, · · · ,N ,

à we find the new values of f̄i at time tn+1 by using the property of
particle conservation and recalling that the Jacobian function
J(tn+1; x , tn) is positive, as

f̄ n+1
i = f̄i(t

n+1) =
1

∆xi

∫ X (tn+1;xi+1/2,t
n)

X (tn+1;xi−1/2,tn)

f (x , t)dx (17)

I Let us also define,

Φi+1/2(tn) =

∫ xi+1/2

X (tn+1;xi+1/2,tn)

f (x , t)dx (18)

I Then we finally obtain the conservative scheme

f̄ n+1
i = f̄ n

i −
1

∆xi

[
Φi+1/2(tn)− Φi−1/2(tn)

]
(19)

Virginie Grandgirard CEMRACS 2010



a
a
a

Numerical Vlasov solving
Physics considerations

HPC

Time-splitting
Eulerian approach
Semi-Lagrangian approach

Interpretation of Φ

I Let us note αi by

αi = xi+1/2−X (tn+1; xi+1/2, t
n)

I Then Φi+1/2 can be rewritten
as

Φi+1/2(tn) =

∫ xi+1/2

xi+1/2−αi

f (x , t)dx

I Then, for the case αi ≥ 0,
I Φi+1/2 represents the decrease of f̄i (t) due to loss of fluid to the

(i + 1)-th cell
I Φi−1/2 is the gain from the (i − 1)-th cell and is equal to the

fluid the (i − 1)-th cell looses.
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Reconstruction of the distribution function

I An essential step is now to choose an efficient method to
reconstruct f from the values on each cell Ii .

I In the Flux Balance Method (FBM), Fijalkow [CPC (1999)]

proposed to use a linear interpolation for this reconstruction, i.e.:

Di =
fi+1 − fi−1

2∆xi

fh(x) = fi + Di(x − xi), ∀x ∈ [xi−1/2, xi+1/2]

then

Φi+1/2(tn) =

∫ xi+1/2

xi+1/2−αi

fh(x , t)dx = αi f (xi) +
Di

2
αi(∆xi − αi)
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FBM improvements
I FBM scheme is only second-order accurate in space and there is

no guarantee that it either preserves monotonicity or does not
introduce false extrema.

I However this method has been shown to be successful for a
variety of Vlasov problems [Fijalkow, CPC (1999)] when it is
coupled with smoothing and averaging techniques to dissipate
fine-scale structure.

I It is also the start point of lot of eulerian methods.

I Several improvements have been for instance proposed by Arber
and Vann [Arber, JOCP (2002)] in two directions

(i) increasing the order of the gradient Di

(ii) applying for instance Van-Leer gradient limiter to the gradient
Di before calculating the cell boundary fluxes
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Reconstruction by the primitive

I Another solution to reconstruct f on each cell is to use a
reconstruction via a primitive function.

I Let F (x , tn) be a primitive of the distribution function f (x , tn).

I Then using f̄i , the averaged value of f on a cell Ii , defined as
previously by:

f̄i(t) =
1

∆xi

∫ xi+1/2

xi−1/2

f (x , t)dx , i = 1, 2, · · · ,N

I We obtain
F (xi+ 1

2
, tn)− F (xi− 1

2
, tn) = ∆xi f̄

n
i

and
F (xi+ 1

2
, tn) =

i∑
k=0

∆xk f̄
n
k
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Positive Flux Conservative scheme (PFC)
I This method has been introduced in 2001 by Filbet [JOCP (2001)].

I It is based on a reconstruction via primitive function using a
Lagrange polynomial.

I For instance for a polynomial of degree two on the interval
[xi−1/2, xi+1/2], it leads to the following approximation:

fh(x) = fi + εi(x − xi)
fi+1 − fi

∆x
, ∀x ∈ [xi−1/2, xi+1/2] (20)

where εi the slope corrector is defined as

εi =

{
min(2(fi − fmin); (fi+1 − fi)) if fi+1 − fi ≥ 0

min(−2(fmax − fi); (fi+1 − fi)) if fi+1 − fi < 0
(21)

where fmin = 0 and fmax = f∞.
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PFC properties
I This approximation satisfies the conservation of the average

for all i ∈ I ,

∫ x1+1/2

x1−1/2

fh(ξ) dξ = ∆x fi

I Its advantage compared for instance to the ENO method is that
it preserves the positivity

for all x ∈ [xmin, xmax ], 0 ≤ fh(x) ≤ f∞

I The drawback of such a method, as seen in [Grandgirard, JOCP

(2006)] applied to 4D drift-kinetic ITG simulations, is that it is
dissipative and can lead to a loss of conservation of the total
energy.
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Modified versions of PFC (1/2)

I Several modified versions of the PFC method have been
proposed.

I Schmitz and Grauer [Schmitz, JOCP (2006)] have modified the
limiter, using fmax =∞,

à to avoid that the maximum value of the profile decreases
and to allow the profile to rise uncontrollably.

I However as the origin one, in this method the profile has a local
maximum and/or minimum and is not necessarily non-oscillatory.
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Modified versions of PFC (2/2)
I Umeda [EPS (2008)], has defined a non-oscillatory scheme

(Positive Interpolation for Conservation), in the sense that the
already-existing extrema are kept, by changing the extrema of
Filbet’s slope corrector as

fmax = max[fmax1; fmax2]

fmin = max[fmin1; fmin2]

where fmax1 = max[max[fi−1, fi ]; min[2fi−1 − fi−2; 2fi − fi+1]],

fmax2 = max[max[fi+1, fi ]; min[2fi+1 − fi+2; 2fi − fi−1]],

fmin1 = min[min[fi−1, fi ]; max[2fi−1 − fi−2; 2fi − fi+1]],

fmin2 = min[min[fi+1, fi ]; max[2fi+1 − fi+2; 2fi − fi−1]]

I This new PFC scheme has been applied successfully to nonlinear
beam-plasma interactions [Ryu, PoP (2007)].
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Morinishi scheme

I Morinishi et al [Morinishi, JOCP (1998)] proposed a new finite
difference operator, which can be extended to higher order
accuracy

I The advantage of this scheme is that it conserves both the
momentum and kinetic energy by construction

I The drawback is that you need to store and evolve f but also
∇f

I This scheme has been successfully implemented in GT5D

Virginie Grandgirard CEMRACS 2010



Numerical Vlasov solving
Physics considerations

HPC

Time-splitting
Eulerian approach
Semi-Lagrangian approach

Semi-Lagrangian approach
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A family of Semi-Lagrangian codes at IRFM
Motivations: show that semi-lagrangian scheme offers a credible

alternative for gyrokinetic turbulence simulations.

2D
Landau damping: (x , v)

→֒ Tests of numerical schemes

Nancy (’96-’99)
P. Bertrand, G. Depret

3D

Gyro-bounce kinetic TIM: (ψ, ξ,E )

→֒ Kinetic vs. fluid [Poster Y. Sarazin]

→֒ Flux driven [G. Darmet]

→֒ Collisions

EPFL (’00-’02)
O. Sauter, L. Villard

M. Brunetti
4D

drift-kinetic slab-ITG: (r , θ, z , v‖)

→֒ numerical validity [Grandgirard ’05]

→֒ interchange turbulence [Sarazin ’05]

Strasbourg (’05)
G. Latu, N. Crouseille

E. Sonnendrücker
5D gyrokinetic ITG: (r , θ, ϕ, v‖, µ)
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Simplified model : 4D drift-kinetic ion turbulence (1/2)
toric geometry cylindrical geometry

I adiabatic electrons

I guiding center assumption

I uniform field ~B along z

I adiabatic invariant µ =
mv2
⊥

2B
= cte
⇓

ion 4D distribution function : f (r , θ, z , v‖)
Virginie Grandgirard CEMRACS 2010
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Simplified model : 4D drift-kinetic ion turbulence (2/2)

A. Drift-kinetic equation (4D)

∂tf + vE · ∇∇∇⊥f + v‖∇‖f +
�
v‖ ∂v‖f = 0︸︷︷︸

no collisions

vE =
B×∇∇∇φ

B2
,
�
v‖= − e

m
∇‖φ with ∇⊥ = (

∂.

∂r
,

1

r

∂.

∂θ
) and ∇‖ = ∂z

B . Quasi-neutrality equation (3D) δne = δni ≡ n − ninit

− 1
n0(r)
∇∇∇⊥ ·

[
n0

B0 ωc
∇∇∇⊥φ

]
+ e

Te(r)
(φ− 〈φ〉) = 1

n0

∫
dv‖ (f − finit)

〈·〉 ≡ flux surface average
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Boundary and initial conditions
I Boundary conditions:

I Periodic in θ and ϕ
I Vanishing perturbations in non-periodic directions r and v‖

I Initial conditions:
I no source

↪→ profile relaxation

I Initialisation of the global distribution function

f = feq (1 + δf )

feq (r , v‖) =
n0(r)

(2πTi (r)/mi )
1
2

exp

(
−

miv
2
‖

2Ti (r)

)
, δf =

∑
m,n

εmn cos

(
2πn

Lz
z + mθ + φmn

)
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How to apply a SL scheme ?

Time-splitting

Vlasov equation

Semi-lagrangian 0

 

parabolic
approximation

2D implicit
equation
(Newton)

Conservative form
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The backward semi-lagrangian Method

Two important steps:

¶ Computation of characteristic feet

· High order interpolation needed Ô Cubic splines

Virginie Grandgirard CEMRACS 2010
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¶ Computation of characteristic feet
Problem: Solve backward in time, the characteristics defined by:

dX

dt
= a(X, t)

* A two step second order method:

I Centered quadrature on two time steps:

Xn+1 − Xn−1 = 2∆t un(Xn) , Xn+1 + Xn−1 = 2Xn +O(∆t2)

I Use fixed point procedure to compute X n−1 such that:

Xn+1 − Xn−1 = 2∆t un(
Xn+1 + Xn−1

2
)

I Problem: compute f n+1 from f n−1. Even and odd order time
approximations become decoupled after some time. Artificial
coupling needs to be introduced in the global leap-frog algorithm.
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· Interpolation by cubic splines
High order interpolation needed to interpolate old value at origin of

characteristics from known grid values.

* Cubic splines: Represent g(x) in terms of piecewise cubic polynomials

Λα, twice continuously differentiable, i.e: g(x) ' s(x) =
∑Nx +1

α=−1 cαΛα(x)

where Λα(x) =
1

6h3

8>>>>>>>>>><>>>>>>>>>>:

(x − xα−2)3 if xα−2 ≤ x ≤ xα−1

h3 + 3h2(x − xα−1) + 3h(x − xα−1)2

−3(x − xα−1)3 if xα−1 ≤ x ≤ xα

h3 + 3h2(xα+1 − x) + 3h(xα+1 − x)2

−3(xα+1 − x)3 if xα ≤ x ≤ xα+1

(xα+2 − x)3 if xα+1 ≤ x ≤ xα+2

0 otherwise

, A good compromise between between accuracy and simplicity

/ Value of f on one grid point requires f over the whole grid
å Spline coefficients requires tridiagonal system solve on each line of mesh.
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The Gysela code - global algorithm

For each µ:
||||||||||||||||||

end for

global algorithm of second order in time : leap-frog

I Solving of the non-linear Vlasov equation (4D):

- Time-splitting of Strang :
4D (r , θ, ϕ, v‖) ⇒ 2D (r , θ) + 1D (ϕ) et 1D (v‖)

- Semi-lagrangian

⇒ trajectories (Newton algorithm for (r , θ))
⇒ interpolation by cubic splines

I Solving of the quasi-neutrality equation (3D) :

- Fourier in θ and ϕ + finite differences in r

I Gyroaverage (J0 ⇔ Padé approximation):

- Fourier in θ + finite differences in r
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Forward Semi-Lagrangian method

[Crouseilles, Respaud, Sonnendrücker (2008)]
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Conservative semi-Lagrangian scheme (PSM)

[Crouseilles, Mehrenberger, Sonnendrücker (2009)]

à Implementation in Gysela in progress by J.P Braeunig
Virginie Grandgirard CEMRACS 2010
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GK codes: a highly competitive activity
I No miraculous scheme à all have their advantages and drawbacks

I Its important to continue to progress in the three directions

I More and more collaborations à ↗ benchmark activity
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Where are we in physics with Gysela ?

¶ Full-f

· Collisions

¸ Flux-driven simulations
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Main issues for full-f gyrokinetic codes

I Full-F code (F = Feq + δF ) à Time evolution of Feq is retained

∂tF − {H ,F} = C(F ) + S

m{
∂tδF − {H , δF} = {δH ,Feq}+ C(δF )

∂tFeq − 〈{δH , δF}〉 = C(Feq)+S

I Main critical issues:
I Collision operator: ensures equilibrium Maxwellian &

recovers neoclassical theory

I Source to sustain main profile (decaying turbulence otherwise)
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Why collisions play an important role ?

à Core plasmas are widely believed to be collisionless, but recent
evidence from experimental side and from GK modelisation are
contributing to modify this classical idea.

à Great interest to the adjunction of NC theory to GK models:
¶ Regularisation of filamentation in the velocity phase space

↪→ GK equation continuously produces fine scale structures due to
linear and nonlinear mixing effects.

· Improvement of confinement regimes = regimes where
turbulence can be locally suppressed
↪→ NC transport becomes dominant

¸ Fondamental role of plasma rotation
↪→ poloidal rotation believed to be set by NC theory

¹ Impact on the turbulence
↪→ ion-ion collisions enhance the damping of zonal flows.
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Hand-waving physics for neoclassical theory

Neoclassical theory ≡ describes the effects of

binary Coulomb collisions in an inhomogeneous

B field in the presence of trapping

H =
mv2

‖
2 + µB0 − εµB0 cos θ︸ ︷︷ ︸

perturb.

à island

• Inhomogeneities of B field à local trapping
• without collisions: non-interacting populations trapped & passing

• with collisions: friction force along v‖
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Reduced ion-ion collision operator valid for NC theory

I Particles weakly coupled → only two particle interactions considered

à Fokker-Planck collision operator:

Css′ =
∂

∂v

(
D(fs′)

∂f

∂v
− V(fs′) f

)
à preferred collisional friction –along v‖

↪→ efficient parallelisation (µ remains motion invariant)

I Reduced Fokker-Planck operator: Css′ = ∂v‖

(
D ∂v‖f − Vf

)
à
V(r , v)

D(r , v)
=

v‖
v 2
th

⇒ f → fMaxwell

I Recovers correct NC regimes ⇒ analytical proof [Garbet ’09]
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Flux-driven simulations

à Open question: What are the mechanisms that govern the
averaged pressure gradient in flux-driven simulations.

I Nonlinear fluid simulations have long demonstrated the existence
of a complex response [Carreras ’96; Garbet-Waltz ’98; Sarazin-Ghendrih ’98;

Beyer ’00;...] as predicted theorically [Diamond ’95]

I Such a complex interplay between turbulent transport, profile
relaxation and zonal flows ⇒ analysed for the first time in a
reduced GK model for trapped ion mode (TIM) [Darmet ’08]

I Emergency of flux-driven GK codes with improvement of HPC
ressources [Chang ’08; Idomura ’08; Jolliet ’08; Sarazin ’09]
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Importance of boundary conditions

Most kinetic simulations rely on

transport between 2 thermal baths

characterised by prescribed Ti

I Relaxation of Ti profile that
tends to remain flat in the core

I ∇Ti being localized at the edge

More realistic: System is driven by

some prescribed heat source

, Heat source achieve a statistical
steady state

I Mean Ti profile does not
systematically relax towards
stability threshold.
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Heat source in Gysela
I Constant in time and radially localized heat source

df

dt
= Sr (r)

(
ε

T
− 3

2

)
exp
(
− ε

T

)
with ε =

1

2
miv

2
‖ + µB

↙ ↓ ↘ ↓
Radial I No particle source I Isotropic in v‖ & v⊥
localisation I Transfers sub-thermal particles I No injected torque

to supra-thermal region

I Source already tested on a simplified model [Darmet ’08]
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Physics of flux-driven regimes

I Requires proper boundary
conditions

I Profile relaxation
I possible front propagation
I requires global geometry to

capture large scale events

I Statistical steady-state regime
when:

r QTotal /

∫
S d3x = 1
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Physics of flux-driven regimes

I Requires proper boundary
conditions

I Profile relaxation
I possible front propagation
I requires global geometry to

capture large scale events

I Statistical steady-state regime
when:

r QTotal /

∫
S d3x = 1
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Avalanche-like dynamics
I Intermittent dynamics of turbulent

heat flux Q

I Long range ballistic transport events
at vburst ∼ ρ∗vT

• PDF of flux positively skewed (Sk > 0.5)

• 1/f Fourier spectrum far from source

[Bak-Tang-Wiesenfeld ’87; Hwa-Kardar ’92]

Already reported in fluid simulations
[Carreras ’96; Garbet-Waltz ’98; Sarazin-Ghendrih ’98; Beyer ’00;...]

& gyrokinetic simulations
Idomura ’08; Jolliet ’08

& in experiments
Hidalgo-Sanchez ’96; Antar ’00; Politzer ’00; Boedov-Rudakov ’01]

à Pending issue: origin of these avalanche-like events ?
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Streamers during avalanche events
I Radially elongated vortices (streamers) appear during bursts:

I Ballooned character
I Field aligned structures : qR0〈k‖〉 ∼ 1
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High Performance Computing

¶ Brief idea on the parallelisation

· An idea of CPU time and memory size
consumming
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Parallelisation of Gysela

I µ = adiabatic invariant
↪→ one µ per processor à very performing in //

I Each processor is solving separately the vlasov equation

I Only communications for
∫

dµ (RHS of the Poisson equation)

I (r , θ) cross-section with the most important discretisation

↪→ 2D domain decomposition in (r , θ) (2D local splines)

I sequential distribution in ϕ and v‖ directions

à {MPI + OpenMP} parallelisation
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Results - Strong scaling
Nr = 512, Nθ = 512, Nϕ = 256, Nv‖ = 47, Nµ = 32 (main data = 750 GB)

1024 2048 4096 8192
Nb. of processors

10

100

1e+03

1e+04

1e+05
advection 1D v

||
advection 1D ϕ
advection 2D
field solver
diagnostics
total for one run

Execution time for one Gysela run 

1024 2048 4096 8192
Nb. of processors

0

20

40

60

80

100

120

advection 1D v
||

advection 1D ϕ
advection 2D
field solver
diagnostics
total for one run

Relative efficiency for one Gysela run 

I Very good result: 82% relative efficiency

[Guillaume Latu, Chantal Passeron (2010)]
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Parallel constraint: large memory / node
I Strong constraint on memory/node for ITER-like simulations

à (1/4 torus) : 272 billion points - 27.2 GBytes per node

Jade

(CINES - France)

267 Tflop/s, 23 040 cores

36 GBytes per node

Jaguar

(Oak Ridge - US)

2.3 Pflop/s, 224 162 cores

16 GBytes per node

à BlueGene architecture not adapted for the code
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An exponential increase of CPU consumption
I 2010: 8 million CPU hours allocated on european HPC:

I 5 million: GENCI national resources (titane-CCRT+jade-CINES)
I 3 million: HPC-FF (Jülich/Germany) dedicated to Fusion

+ ∼ 5 million on Jaguar (Oak-Ridge/US):
→ collaboration G. Dif-Pradalier / P.H. Diamond at UC San Diego
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Gysela Grand Challenge GENCI/CINES

I 8192 processors during 30 days à > 6.7 million hours monoproc.

Mesh (ρ∗ = ρ∗ITER):

(1024× 1024× 128× 128× 16)

272 billion points

Memory size:

4.7 TBytes for restart files
1.3 TBytes of 2D and 3D

> 6600 files

How to treat such quantities of datas ?

I storage ?
I analysis ?
I 3D visualization and more ?

Virginie Grandgirard CEMRACS 2010



a
a
a

Numerical Vlasov solving
Physics considerations

HPC

Needs of Petaflop computers and more ...

à Next challenge: Global code with kinetic ions + electrons

I Now ITER-like ion simulation: 272 billion points
I With electrons: ρions/ρelectrons = 60
I mesh size ×603 and time step/60 !!!

I GYSELA still requires huge efforts of parallelisation to scale to more

than 10 000 processors

à Key question: How to overcome the constraint of large memory/node ?
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