L Numerical Vlasov solving
Association Physics considerations
Euratom-Cea HPC

Gyrokinetic simulations of
magnetic fusion plasmas
Tutorial 4
Virginie Grandgirard
CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St

Paul-lez-Durance, France.
email: virginie.grandgirard@cea.fr

Acknowledgements: Yanick Sarazin

Virginie Grandgirard CEMRACS 2010



Time-splitting scheme

m Common to
Eulerian and Semi-Lagrangian

approaches

Virginie Grandgirard CEMRACS 2010



L Numerical Vlasov solving Time-splitting
Association Physics considerations Eulerian approach Cea
Euratom-Cea HPC Semi-Lagrangian approach

Time-splitting scheme concept (1/2)
The Vlasov equation in its conservative form:
%f(z, t) +diviy (U(Z,t) f(Z,t)) =0 (1)

Then decomposing the components of Z into two sets x and v,
the previous equation can then be written in the form

v, 1) v (Uulx,v. 1) Flx v, 1)
+div, (U, (x,v, t) f(x,v,t)) =0

where U, and U, are the components of the advection field.
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Time-splitting scheme concept (2/2)

A method currently used is to split the both parts by what is
called a splitting method (or an operator decomposition)

%f(x7vv t) +diVX (UX(X,V, t) f(x, Vv, t)) =0 with fixed v (2)

and

%f(x,v, t)+div, (U, (x,v, t) f(x,v,t)) =0 with fixed x (3)
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Constraint on the advective form (1/3)

Rk: SL scheme does not solve Vlasov equation in the
conservative form, but in the advective form

Egs. (2) and (3) can be put in the advective form

of
- L V. f =
8t+U \Y% 0
f
a—+UV-va:0
ot

If and only if both conditions hold

divy(Ux(x,v, t) =

0
div,(U,(x,v,t) =0
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Constraint on the advective form (2/3)

On the contrary, if equations (6) and (7) are not satisfied, then
splitting Eq. (1) is equivalent to solve advective equations with a
source term

% + Uy Vo f = —fdiv, (Uy) (8)
%+uv-vvf: —fdiv,(U,) (9)

Although from the divergence-free property of the full advection
field U, we have

divy(Uy) = —div,(U,)
The source term in Egs. (8) and (9) do not vanish exactly since
Egs. (8) and (9) are not solved at the same time.
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Constraint on the advective form (3/3)

This will therefore introduce a cumulative systematic error at
each time step, resulting in poor density conservation.

A necessary condition for the time-splitting to preserve the
conservative character is that the advections fields U, and U,
are both divergence free.

For instance in GYSELA , this constraint limit the
decomposition in the (r, ) direction

= need to treat a 2D problem and not a 1D problem in r + a
1D problem in 6.
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Formal writing of Vlasov equation (1/2)

To estimate the splitting error, let consider that Vlasov equation
can be formally written as

df

— =(A+ B)f 10

= (A+8B) (10)
where A and B are any differential operators in space (In our case,
it would be A=v -V, and B=E-V, because U, =v and U, = E),
assumed constant between t, and t, 1.

The formal solution of this equation (10) on a At time step

reads
f(t+ At) = exp [At(A+ B)] f(t)
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Formal writing of Vlasov equation (2/2)

Then, the equation (10) is split in two formal equations

df

S0 = Af(r) (11)
df
S0 = Br(1) (12)

and the solutions are respectively

f(t+ At) = exp(AtA)f(t) and
f(t+ At) = exp(AtB)f(t)
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Standard splitting method

The standard splitting method consists in solving successively

1. Eq. (11) on a time step At followed by
2. Eq. (12) also on a time step At

which gives on one time step
F(t + At) = exp(AtB) exp(AtA)f(t)
If the operators A and B commute the splitting is exact because
exp(AtB) exp(AtA) = exp [At(A+ B)]
This is true for the particular case where advections are with
constant coefficients.
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Strang splitting (1/2)

However, in most of the cases A and B do not commute,

But Strang has proved [Strang, SIAM (1968)] that the splitting
error can be reduce by solving symmetrically

1. Eqg. (11) on half a time step At/2, then
2. Eq. (12) on a time step At and finally again
3. Eq. (11) on half a time step At/2.

This method is called Strang splitting.

It corresponds to the formal solution

f(t+ At) = exp(%A) exp(AtB) exp(%A)f(t)
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Strang splitting (2/2)

The splitting error on one time step, when the operators do not
commute,

» is of order 1 in time for the standard splitting

» is of order 2 in time for the Strang splitting

The proof can be simply find by using a Taylor expansion of the
formal solutions

The Strang splitting can be generalized to more than two
operators. If A= A; +---+ A,, the following decomposition
gives a global order of 2 in time

At At At At
exp(TAl) o exp(7A,,,1) exp(AtA,) exp(7A,,,1) . -exp(7A1)
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Strang splitting commonly used

The advantage of such a method is that it change a 6D problem
into a succession of 1D advection equations or 1D conservative
equations.

This technique has been used more than thirty years ago to solve
a 2D Vlasov equation [Shoucri, JOCP (1978)]

It is now currently used in Eulerian and semi-Lagrangian
approaches

Strang splitting has made possible the development of Eulerian
and semi-Lagrangian codes of high dimensionality.
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HPC Semi-Lagrangian approach
Eulerian method
t
D: solve fields
~___ c: f;(t—Ar)
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In Eulerian methods, a fixed grid is defined in phase space (A). Finite difference
expressions are used (B) in order to obtain the value of f at grid points at the

next time step (C). Field equations are then solved (D) after integration over

velocity space. (figure from [ldomura, CR (2006)])
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Eulerian schemes "™ CFL conditions

Due to the increase of HPC capabilities, Eulerian schemes have
been more and more preferred to PIC approach, because they are
not subject to the issue of marker sampling noise

On the other hand, when explicit time integration is applied they
are subject to the CFL stability condition (the maximum time step
depends on grid space resolution)

A way to improve this CFL condition as been find by using
implicit or semi-implicit time integration schemes [ldomura, NF
(2009)]

This chronological list of Eulerian GK codes (not exhaustive):
GS2 [Kotschenreuther, CPC (1995)] and [Dorland, PRL (2000), GYRO
[Candy, JOCP (2003)], GENE [Jenko, CPC (2000)], GKV [Watanabe, NF
(2006)], GKW [Peeters, PoP (2004)] and GT5D [Ildomura, CPC(2008)].
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Advective and convective forms in 1D

Therefore we will restrict ourselves, without loss of generality, to
a 1D problem which leads to solving the following advection
equation

Ocf + u(x, t)0,f =0, V(x,t) € [Xmins Xmax] X R+ (13)

where we will assume that u(x, t) is smooth enough; for instance
u is Lipschitz continuous.

Besides, taking into account the hypothesis du(x, t) = 0, we will
work with the 1D conservative form

Ocf + Oy (u(x, t)f) =0, V(x,t) € [Xmin Xmax] X R+ (14)
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Characteristic curves in 1D

Then we can define the characteristic curves solution of the
differential system corresponding to the transport equation

()

t) = u(x(t), t)
X(5) (15)

=u

=X

Let us denote the solution of Eq. (15) by
X(t;x,s)

i.e. the position of a point at time t knowing that its position is
x at time s.
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Definitions of cells, cell centers and cell sizes

Let us also introduce a finite set of mesh points {x;;1/2}ic/ of
the computational domain [Xmjn, Xmax] as

Xmin = X1 < X3 < -+ < Xpy_1 < Xy, 1 =X

min 3 3 N—3 N+3 max
and denote cells, cell centers and cell sizes as, for
i=12--- N, by

l; = Xi—lvxi+% ,X,-:E Xi_%—l—XH_% ,AX,-:XH_%—Xi_%

and the maximum cell size by

Ax = max Ax;
1<i<N
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Properties of positivity and TVD (1/2)

At first time, let suppose that v is not a function of f or x,

The evolution of the advection equation for a time At
Oif + u(x, )0, f =0

is simply a uniform shift of the distribution function by a
displacement uAt.

Let us also define A\ as the CFL number

At
A= u—0
UAX
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Properties of positivity and TVD (1/2)

There are two particular properties of great importance in an
advection solver:

(a) The method should not introduce false extrema, i.e.:

i +1 +1 +1
if 0<A<1 and f7;<f"<fl; then f£7" <Ff"0 < £

(and similarly for the monotone deacreasing),

(b) The method should not accentuate already existing extrema, i.e.

for 0<A<1, if f7y<f">f", then f£">max{f", f;i—lil

Properties (a) and (b) together imply the method is
positivity-preserving and total variation diminushing (TVD).
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Properties of positivity and TVD (2/2)

The problem is that f is only known at a set of discrete grid
points x; = jAX.

One solution would be to interpolate between the grid points by
some function f(y) and write

f(y, t + At) = F(y; — A\, t), wherey = x/Ax (i.e. yj =)

However, by a corollary of Godunov's theorem, any interpolation
scheme that is higher than first order breaks properties (a) and

(b).

Satisfying these properties has been one of the leitmotiv for the
development of new schemes since more than 10 years.
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Replace f(x, t) by its smoothed approximation

Let us come back to the general case of a non constant u(x, t)
coefficient.

Our goal is to solve equation of type Eq. (14) on a grid,
assuming the function f to be smooth in each elementary cell /;.

The main idea is to replace f(x, t) by its smoothed
approximation

1

_ Xi+1/2
f,-(t)—AX_/ f(x,t)dx, i=1,2,---,N (16)

Xi—1/2
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Property of particle conservation

Assuming the values of the approximation of the distribution
function f; known at time t" = nAt foralli=1,--- N,

we find the new values of f; at time t"*! by using the property of
particle conservation and recalling that the Jacobian function
J(t"1; x, t") is positive, as

1 X(t™ X 1)2,t")

?;HH = f(t"") = / f(x, t)dx (17)

AX,- X(tn+1;xl_71/2’tn)

Let us also define, Xit1/2
®ir1a(t") = / F(x, t)dx (18)

X(t"ixiy1/,t")
Then we finally obtain the conservative scheme
1

£l —fn Ax [¢i+1/2(tn) - cDl'fl/?(tn)} (19)
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Interpretation of ¢

Let us note «; by “I aht
L X tn-i—l_ tn T
O = Xjg1/2— ( 1y Xit1/2, ) . -
- |
Then ®;,/, can be rewritten ol e
as >
Xit1/2
. ny _ : : >
¢,+1/2(t )_/ f(xv t)dx (-D)Ax jAx (j+])Ax
Xit1/2—

Then, for the case «; > 0,
®j,1/» represents the decrease of fi(t) due to loss of fluid to the
(i + 1)-th cell
®;_1/5 is the gain from the (i — 1)-th cell and is equal to the
fluid the (i — 1)-th cell looses.
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Reconstruction of the distribution function

An essential step is now to choose an efficient method to
reconstruct f from the values on each cell /.

In the Flux Balance Method (FBM), Fijalkow [CPC (1999)]
proposed to use a linear interpolation for this reconstruction, i.e.:

fiv1—fi1
2AX,'
fo(x) = fi + Di(x — x;), Vx € [Xi—1/2, Xi+1/2)

D, =

then

Xi+1/2 Di
¢,‘+1/2(tn) :/ fh(X, t)dX = (Jé,'f(X,') + ?Oé,'(AX,' — (1,‘)

i+1/2 i
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FBM improvements

FBM scheme is only second-order accurate in space and there is
no guarantee that it either preserves monotonicity or does not
introduce false extrema.

However this method has been shown to be successful for a
variety of Vlasov problems [Fijalkow, CPC (1999)] when it is
coupled with smoothing and averaging techniques to dissipate
fine-scale structure.

It is also the start point of lot of eulerian methods.

Several improvements have been for instance proposed by Arber
and Vann [Arber, JOCP (2002)] in two directions
(1) increasing the order of the gradient D;
(1) applying for instance Van-Leer gradient limiter to the gradient
D; before calculating the cell boundary fluxes
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Reconstruction by the primitive

Another solution to reconstruct f on each cell is to use a
reconstruction via a primitive function.

Let F(x,t") be a primitive of the distribution function f(x, t").

Then using f., the averaged value of f on a cell /;, defined as
previously by:

_ 1 Xit+1/2
ﬁ(t):E/ f(X,t)dX, i:1,2,"',N

Xj—1/2
We obtain F(x,-+%, () — F(x,;%./ t)) = Axif"
and i
F(xip1,tn) = Z Axif]
k=0

Virginie Grandgirard CEMRACS 2010
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Positive Flux Conservative scheme (PFC)

This method has been introduced in 2001 by Filbet [JOCP (2001)].
It is based on a reconstruction via primitive function using a
Lagrange polynomial.

For instance for a polynomial of degree two on the interval
[Xi—1/2, Xi41/2], it leads to the following approximation:

fixn—fi

fo(x) = fi + €i(x — x;) A

Vx € [xi—1/2, Xip12]  (20)

where €; the slope corrector is defined as
minQ2(fi = foin)i (fin = £7))  iffipa = £ >0
o min(_z(fmax - f;)' (f}+1 - fl)) if fi+1 - fl <0

where i, = 0 and f. = f.
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PFC properties
This approximation satisfies the conservation of the average
X1+1/2
forall i eI, / (&) d§ = Ax f;
X1-1/2
Its advantage compared for instance to the ENO method is that
it preserves the positivity

for all X € [Xmin, Xmax), 0 < fu(x) < fio

The drawback of such a method, as seen in [Grandgirard, JOCP
(2006)] applied to 4D drift-kinetic ITG simulations, is that it is
dissipative and can lead to a loss of conservation of the total

energy.
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Modified versions of PFC (1/2)

Several modified versions of the PFC method have been
proposed.

Schmitz and Grauer [Schmitz, JOCP (2006)] have modified the
limiter, using f,.x = o0,
" to avoid that the maximum value of the profile decreases
and to allow the profile to rise uncontrollably.

However as the origin one, in this method the profile has a local
maximum and/or minimum and is not necessarily non-oscillatory.
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Modified versions of PFC (2/2)

Umeda [EPS (2008)], has defined a non-oscillatory scheme
(Positive Interpolation for Conservation), in the sense that the
already-existing extrema are kept, by changing the extrema of
Filbet's slope corrector as

fmax - max[fmaxl; fmax2]

fmin - max[fminl; fmin2]

where £ = max[max[f_1, ] min[2fi_y — fi_9;2f — fiyq]],
fnaxz = max[max[fii1, fi]; min[2fi 1 — fi0;2f; — fi_q]],
fminy = min[min[fi_1, f]; max[2fi_y — fi_2; 2f; — fi11]],
fmin2 = min[min[f 1, fi]; max[2f 1 — fi12; 2fi — fi_1]]

This new PFC scheme has been applied successfully to nonlinear
beam-plasma interactions [Ryu, PoP (2007)].
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Morinishi scheme

Morinishi et al [Morinishi, JOCP (1998)] proposed a new finite
difference operator, which can be extended to higher order
accuracy

The advantage of this scheme is that it conserves both the
momentum and kinetic energy by construction

The drawback is that you need to store and evolve f but also
VvVt

This scheme has been successfully implemented in GT5D

Virginie Grandgirard CEMRACS 2010
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A family of Semi-Lagrangian codes at IRFM
Motivations: show that semi-lagrangian scheme offers a credible
alternative for gyrokinetic turbulence simulations.

Landau damping: (x, v)
T 12D < Tests of numerical schemes

Gyro-bounce kinetic TIM: (¢, &, E)
— Kinetic vs. fluid [Poster Y. Sarazin]

Nancy ('96-99) —— 13D ., Flux driven [G. Darmet]
P. Bertrand, G. Depret < Collisions

EPFL ('00-'02) drift-kinetic slab-1TG: (r, 6, z, v|)
o Sﬁ;{teg;u%emllard T 4D — numerical validity [Grandgirard '05]
— interchange turbulence [Sarazin '05]

Strasbourg ('05)

G. Latu, N. Crouseille
E. Sonnendriicker

gyrokinetic ITG: (r, 0, ¢, v, i)
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Simplified model : 4D drift-kinetic ion turbulence (1/2)

toric geometry cylindrical geometry

adiabatic electrons
. e . rayon
guiding center assumption Larmor
iform field B A
uniform field B along z m//

2
. . . . mv
adiabatic invariant p = —g- = cte

ion 4D distribution function : f(r,0,z,v))

Virginie Grandgirard CEMRACS 2010
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Simplified model : 4D drift-kinetic ion turbulence (2/2)

A. Drift-kinetic equation (4D)

atf—i‘VE'VJ_f—i—VHV”f—i— V|| aVHf: 0
no collisions
BxVo . 0. 10.
VE = - ——V”() with V| = (8r r69) and V|| = 0,
B. Quasi-neutrality equation (3D) 8ne = 0n; = n — Njnit
SV [V + 2 (0 (0) = A L v (F — fie)

() = flux surface average
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Boundary and initial conditions

Boundary conditions:

» Periodic in € and ¢
> Vanishing perturbations in non-periodic directions r and v

Initial conditions: ' Ti(r), ng(r)

> no source
— profile relaxation

r/p,
» Initialisation of the global distribution function

f=f,(1+6f)

o) m _ (m )
fu(r,v) = 2T /) exp ( 2T,-(r)> JOf = Zem,, cos L Z+ mb + dmn

m,n
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How to apply a SL scheme ?

N GUH GUH
VLUGC + 82 6?_)H 0
Vlasov equation Conservative form
a . s of . of f = . Aoy f) Ol f)
g*f’ elon VJ_f +UH6—Z+ UHGT = (0 |——» E VJ_('UGCf) + T + 81—1“ =0
ﬁﬁ'gc =0
o,
) 0z
apg?(‘:iitr)'l?;fion Semi-lagrangian % _0 Time-splitting
of - | o o 0
20 implicit =5 T V6c VS =10 1 o TV lleof) =
(?\cl]uation of N af 0 af N G(UHf) 0
—t v = = —— =
(Newton) 8& ng o az
—f+ T)'H—f =0 ng a(vﬂf) =0
o T o o
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The backward semi-lagrangian Method

Vlasov equation
v
f constant along the
trajectories

v
A = fOX41)

f(X

node

3

cubic spline interpolation
f known on the mesh

Two important steps:

@ Computation of characteristic feet

@ High order interpolation needed = Cubic splines

- AL
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©® Computation of characteristic feet

Problem: Solve backward in time, the characteristics defined by:

dX
2 —aX,t

@ A two step second order method:

Centered quadrature on two time steps:
XML X — oAt (X)), XL 4 X" = 2X" + O(At?)

Use fixed point procedure to compute X"~! such that:

Xn+1 anl
Xn+l o anl — At un(%)

Problem: compute "+ from f"~1. Even and odd order time
approximations become decoupled after some time. Artificial
coupling needs to be introduced in the global leap-frog algorithm.

Virginie Grandgirard CEMRACS 2010
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@ Interpolation by cubic splines
High order interpolation needed to interpolate old value at origin of
characteristics from known grid values.

@ Cubic splines: Represent g(x) in terms of piecewise cubic polynomials
A, twice continuously differentiable, i.e: g(x) ~ s(x) = M coAa(x)

a=—1 Ca
(X = Xa—2)3 if Xo—2 < x < Xa1
h® + 3h%(x — Xq—1) + 3h(x — x0—1)?
1 —3(x — xq-1)3 if xa—1 < x < Xa
where Aa(x) = on h3 4 3R (xp41 — X) 4 3h(xat1 — x)?
—3(Xat1 — x)3 if xa < x < xqt1
(Xa42 — x)3 if Xa+1 < x < Xat2
0 otherwise

A good compromise between between accuracy and simplicity
Value of f on one grid point requires f over the whole grid
= Spline coefficients requires tridiagonal system solve on each line of mesh.
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L Numerical Vlasov solving Time-splitting
Association Physics considerations Eulerian approach
Euratom-Cea HPC Semi-Lagrangian approach

The GYSELA code - global algorithm

For each
global algorithm of second order in time : leap-frog

Solving of the non-linear Vlasov equation (4D):
- Time-splitting of Strang :
4D (r, 0, p, V||) = 2D (r,9) + 1D ((p) et 1D (V”)
- Semi-lagrangian
trajectories (Newton algorithm for (r, 6))
interpolation by cubic splines

Solving of the quasi-neutrality equation (3D) :
- Fourier in 6 and ¢ + finite differences in r

Gyroaverage (Jo < Padé approximation):

end for - Fourier in 8 + finite differences in r
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L Numerical Vlasov solvin, Time-splittin,
Association 8 b

Euratom-Cea HPC Semi-Lagrangian approach

Forward Semi-Lagrangian method

B e f conserved along characteristics

/(" i \ @ Characteristics advanced with same time
7 schemes as in PIC method.

Leap-Frog Vlasov-Poisson

Runge-Kutta for guiding-center or gyrokinetic

e Values of f deposited on grid of phase space using convolution kernel.

e |dentical to PIC deposition scheme but in whole phase space instead
of configuration space only.

e Similar to PIC method with reconstruction introduced by Denavit
(JCP 1972).

[Crouseilles, Respaud, Sonnendriicker (2008)]
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L Numerical Vlasov solving Time-splitting
Association Physics considerations Eulerian approach Ce:]

Conservative semi-Lagrangian scheme (PSM)

e Start from conservative form of Vlasov equation

of
StV (fa)=o0.

° J.v f dx dv conserved along characteristics

@ Three steps:
@ High order polynomial reconstruction.
+ Compute origin of cells
e Project (integrate) on transported cell.

o Efficient with splitting in 1D conservative equations as cells are then
defined by their 2 endpoints. A lot more complex for 2D (or more)

transport.
e Splitting on conservative form: always conservative.

[Crouseilles, Mehrenberger, Sonnendriicker (2009)]

Il 2
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Numerical Vlasov solving Time-splitting

Association Physics considerations Eulerian approach Cea
Euratom-Cea HPC Semi-Lagrangian approach

GK codes: a highly competitive activity

» No miraculous scheme " all have their advantages and drawbacks
» Its important to continue to progress in the three directions
» More and more collaborations ™ " benchmark activity

Local / Global codes Collaborations with GYSELA

* ORB5 global (2007)
" GENE global (2009)

" GYSELA (2006) Grandgirard et al.
£

" XGC (2006) Chang, Ku et al.

{ Nb of codes
- available
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Physics considerations

Where are we in physics with GYSELA 7

Full-f
Collisions

Flux-driven simulations

Virginie Grandgirard CEMRACS 2010



Numerical Vlasov solving Full-f codes

Association Physics considerations Collisions (@<))]
Euratom-Cea HPC Flux driven simulations

Main issues for full-f gyrokinetic codes

Full-F code (F = Fey + 0F) ™ Time evolution of F, is retained

atF _ {H’ F} — C(F) + 5 [Sarazin-Grandgirard (GYSELA) 2009;

Angelino-Bottino (ORB5) 2008;
Idomura (GT5D) 2008;
Chang (XGC) 2008]

I}
0:0F — {H,6F} = {0H, Fq} + C(6F)
O:Feq — ({0H,0F}) = C(Foq)+S

Main critical issues:

» Collision operator: ensures equilibrium Maxwellian &
recovers neoclassical theory

» Source to sustain main profile (decaying turbulence otherwise)
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Numerical Vlasov solving Full-f codes
Physics considerations Collisions
HPC Flux driven simulations

Why collisions play an important role ?

Core plasmas are widely believed to be collisionless, but recent
evidence from experimental side and from GK modelisation are
contributing to modify this classical idea.

Great interest to the adjunction of NC theory to GK models:
Regularisation of filamentation in the velocity phase space
GK equation continuously produces fine scale structures due to
linear and nonlinear mixing effects.
Improvement of confinement regimes = regimes where
turbulence can be locally suppressed
NC transport becomes dominant
Fondamental role of plasma rotation
poloidal rotation believed to be set by NC theory
Impact on the turbulence
ion-ion collisions enhance the damping of zonal flows.
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Numerical Vlasov solving Full-f codes

Association Physics considerations Collisions (@<))]
Euratom-Cea HPC Flux driven simulations

Hand-waving physics for neoclassical theory

Neoclassical theory = describes the effects of @ x&

binary Coulomb collisions in an inhomogeneous

B field in the presence of trapping

2
H = % + uBy — epuBy cos 6 ™ island
——

perturb.

L]

e Inhomogeneities of B field ™ local trapping
e without collisions: non-interacting populations trapped & passing

e with collisions: friction force along v

Virginie Grandgirard CEMRACS 2010



L Numerical Vlasov solving Full-f codes
Association

Euratom-Cea HPC Flux driven simulations

Reduced ion-ion collision operator valid for NC theory

Particles weakly coupled — only two particle interactions considered

Collision of species s with field particles s

w Fokker-Planck collision operator: s(p+ Ap)
Cos = 9 (D(f,) of _ V(fy) f> se) :
= ov ° ov ° = s(p)
s'(p'+ Ap)

w preferred collisional friction —along v
— efficient parallelisation (x remains motion invariant)

Reduced Fokker-Planck operator: | Cos = 0, (D 0y, f — Vf)

V(I‘, V) V||
" = —- = f f) axwe
D(r.v) v} el

Recovers correct NC regimes = analytical proof [Garbet '09]

Virginie Grandgirard CEMRACS 2010
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Numerical Vlasov solving Full-f codes
Physics considerations Collisions
HPC Flux driven simulations

Flux-driven simulations

m Open question: What are the mechanisms that govern the
averaged pressure gradient in flux-driven simulations.

Nonlinear fluid simulations have long demonstrated the existence
of a com pIex reSPONSE [Carreras '96; Garbet-Waltz '98; Sarazin-Ghendrih '98;
Beyer '00;...] as predicted theorically [Diamond '95]

Such a complex interplay between turbulent transport, profile
relaxation and zonal flows =- analysed for the first time in a
reduced GK model for trapped ion mode (TIM) [Darmet 08]

Emergency of flux-driven GK codes with improvement of HPC
ressources [Chang '08; Idomura '08; Jolliet '08; Sarazin '09]
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L Numerical Vlasov solving Full-f codes
Association Physics considerations Collisions (@<))]
Euratom-Cea HPC Flux driven simulations

Importance of boundary conditions
More realistic: System is driven by

Most kinetic simulations rely on _
some prescribed heat source

transport between 2 thermal baths

characterised by prescribed T; (open system)

[Chang, PoP'08
ldomura, NF'09
McMillan, PoP'09
Sarazin, '09]

(thermal bath)

Profile relaxes

Heat source achieve a statistical
steady state

Relaxation of T; profile that

tends to remain flat in the core Mean T; profile does not

T beine localized he ed systematically relax towards
VT; being localized at the edge stability threshold.
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Numerical Vlasov solving Full-f codes

Association Physics considerations Collisions =)
Euratom-Cea HPC Flux driven simulations

Heat source in GYSELA

Constant in time and radially localized heat source
df 3 1
i S,(r) (% - 5) exp (—%) with ¢ = Em,-v”2 +uB

Radial » No particle source » Isotropic in v & v

localisation  » Transfers sub-thermal particles » No injected torque
to supra-thermal region

0

[ [
4 2 0 2 vlvg

Source already tested on a simplified model  [Darmet '08]
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L Numerical Vlasov solving Full-f codes
Association

Euratom-Cea HPC Flux driven simulations

Physics of flux-driven regimes

A GYSELA (p.=1/64)
Requires proper boundar 2 . , ,
q . prop y o Time evolution
conditions 2 (@ At=600)
. . — 15 -
Profile relaxation g |8
ible f i 5 ) 8
> poss! e front propagation 2, %
» requires global geometry to o
capture large scale events or o o5 o

rfa r/ a

Virginie Grandgirard CEMRACS 2010
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Numerical Vlasov solving Full-f codes

Association Physics considerations Collisions =
Euratom-Cea HPC Flux driven simulations

Physics of flux-driven regimes

A GYSELA (p.=1/64)
Requires proper boundar 2 . , ,
q . prop y o Time evolution
conditions 3 (@ At=600)
. . E 1.5 [0 -
Profile relaxation g (8
ible f i s || &
> poss! e front propagation 2, 2
» requires global geometry to o
capture large scale events or o o5 o

rfa r/ a

8 Statistical steady-state regime
E when:
% Qo / 1S rdr ;
* p=042 | ‘ | r QTotaI/ /5 d’x=1
00!
0.0 0.5 1.0 ot 2.0x10°
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Numerical Vlasov solving Full-f codes

] .. e
Avalanche-like dynamics .+ turbulent heat fluxQ
Intermittent dynamics of turbulent ™ .
heat flux Q »
Long range ballistic transport events .
at Vpurst ~ P VT g

e PDF of flux positively skewed (Sx > 0.5)
e 1/f Fourier spectrum far from source
[Bak-Tang-Wiesenfeld '87; Hwa-Kardar '92]

Already reported in fluid simulations
[Carreras '96; Garbet-Waltz '98; Sarazin-Ghendrih '98; Beyer '00;...]

& gyrokinetic simulations
Idomura '08; Jolliet '08

& in experiments
Hidalgo-Sanchez '96; Antar '00; Politzer '00; Boedov-Rudakov '01]

m Pending issue: origin of these avalanche-like events ?
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L. Numerical Vlasov solving Full-f codes
Association Physics considerations Collisions
Euratom-Cea

HPC Flux driven simulations

Streamers during avalanche events

» Radially elongated vortices (streamers) appear during bursts:
» Ballooned character

> Field aligned structures : qRo(kj) ~ 1

Snapshots 8¢

s
50

‘Avalanche

ax10

Hezt flux

1 [
1.5 x10

Quiescent phase
50|

Pp=0.5
fisaiciy

wg t

Avalanche
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HPC

High Performance Computing

Brief idea on the parallelisation

An idea of CPU time and memory size
consumming

Virginie Grandgirard CEMRACS 2010



L Numerical Vlasov solving
Association

Euratom-Cea HPC

Parallelisation of GYSELA

4 = adiabatic invariant
< one p per processor = very performing in //

Each processor is solving separately the vlasov equation

Only communications for [ du (RHS of the Poisson equation)

(r,0) cross-section with the most important discretisation

< 2D domain decomposition in (r,#) (2D local splines)

sequential distribution in ¢ and v directions

Virginie Grandgirard CEMRACS 2010
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Pl Association
Euratom-Cea

Numerical Vlasov solving
Physics considerations

Results - Strong scaling

Ny =32

N, = 512,

Np = 512,

N, = 256,

NV|| = 47,

Execution time for one Gyselarun

1e+05

1le+04

10

a-a advection 1D vy

.o advection 1D ¢

+-# advection 2D

== field solver
diagnostics

= _total for one run

1024

2048

4096 8192

Nb. of processors

120

(main data = 750 GB)

Relative efficiency for one Gyselarun

a-a advection 1D v
-+ advection 1D ¢

+-# advection 2D
== field solver

2 diagnostics
»=x_total for onerun
0
1024 2048 4096 8192

Nb. of processors

Very good result: 82% relative efficiency

[Guillaume Latu, Chantal Passeron (2010)]
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Numerical Vlasov solving

Association Physics considerations

Parallel constraint: large memory / node

» Strong constraint on memory/node for ITER-like simulations
s

]

Upper limit on Jade2 Jade
(CINES - France)

e 267 Tflop/s, 23 040 cores
Upper limit on Jaguar
36 GBytes per node

N

standard Jaguar
GYSELA runs (Oak Ridge - US)

2.3 Pflop/s, 224 162 cores
T

T
64 128 256 512 16 GBytes per node
parameter 1/p,

Memory per node [GB]

w BlueGene architecture not adapted for the code

Virginie Grandgirard CEMRACS 2010
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L Numerical Vlasov solving
Association

Euratom-Cea HPC

An exponential increase of CPU consumption

2010: 8 million CPU hours allocated on european HPC:

» 5 million: GENCI national resources (titane-CCRT+jade-CINES)
» 3 million: HPC-FF (Jﬂlich/Germany) dedicated to Fusion

Allocated — 5D version
o~ 10* L Used JADE-2
=4 "Grand Challenge"
X
~ 3
g 10 TERA-10
3 v
< 2 -
o 10
o
(@]
1
10

T T T T T
2002 2004 2006 2008 2010
Year

~ 5 million on Jaguar (Oak-Ridge/US):
— collaboration G. Dif-Pradalier / P.H. Diamond at UC San Diego

Virginie Grandgirard CEMRACS 2010
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Numerical Vlasov solving

Association Physics considerations Cea
Euratom-Cea ’ HPC

GYSELA Grand Challenge GENCI/CINES

» 8192 processors during 30 days " > 6.7 million hours monoproc.

Mesh (p* = piter):
7] (1024 x 1024 x 128 x 128 x 16)
oot 272 billion points

Il Memory size:

4.7 TBytes for restart files
N 1.3 TBytes of 2D and 3D
4 > 6600 files

0.2 [~ o.0r

4| How to treat such quantities of datas ?

> storage ?
“=p analysis ?
B P T ST Rra— » 3D visualization and more ?

0.6 |-
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Numerical Vlasov solving

Association Physics considerations Ce]
Euratom-Cea ! HPC

Needs of Petaflop computers and more ...

w Next challenge: Global code with kinetic ions + electrons

Now ITER-like ion simulation: 272 billion points
With electrons: pions/ Pelectrons = 60
mesh size x60% and time step/60 !!!

GYSELA ions+electrons version

> ITER
2010 2015 2018
: : : TS
plp, =1 Plp,=10  pp =60
S
PETAFLOPS EXAFLOPS

GYSELA still requires huge efforts of parallelisation to scale to more
than 10 000 processors
» Key question: How to overcome the constraint of large memory/node ?
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