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Physical complexity in the gyrokinetic codes

I δf vs full-f − complex
−→ +

à No scale separation between equilibrium and perturbation

I Local (“flux-tube”) approximation vs. global model
à Covering just a local or the whole physical domain

I Adiabatic vs. kinetic electrons
à Taking the full kinetics of all species into account

I Electrostatic vs. electromagnetic model
à Taking self generated currents and Ampère’s law into account

I Collisionless vs. collisional plasma
à Taking collisional effects into account (neoclassical theory)

I Fixed gradient or flux-driven boundary conditions

None of the codes covers all physical aspects
Virginie Grandgirard CEMRACS 2010
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Physical complexity in the gyrokinetic codes

I δf vs full-f − complex
−→ +

à No scale separation between equilibrium and perturbation

I Local (“flux-tube”) approximation vs. global model
à Covering just a local or the whole physical domain

I Adiabatic vs. kinetic electrons
à Taking the full kinetics of all species into account

I Electrostatic vs. electromagnetic model
à Taking self generated currents and Ampère’s law into account

I Collisionless vs. collisional plasma
à Taking collisional effects into account (neoclassical theory)

I Fixed gradient or flux-driven boundary conditions

GYSELA: 4 complexities on 6
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Flux-tube geometry

GS2 code
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Existing gyrokinetic codes
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Gyrokinetic codes require state-of-the-art HPC
I Three existing numerical approaches

¬ Particle-in-Cell (PIC) ­ Eulerian
follow trajectories fixed grid

/ numerical noise / dissipation
F optimized loading F high order scheme

® Semi-Lagrangian scheme
- fixed grid
- calculate trajectories backwards
- interpolation weak noise, moderate dissipation

GYSELA : GYrokinetic SEmi-LAgrangian code
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Gyrokinetic codes require state-of-the-art HPC
I Three existing numerical approaches

¬ Particle-in-Cell (PIC) ­ Eulerian
follow trajectories fixed grid

/ numerical noise / dissipation
F optimized loading F high order scheme

� Monte-Carlo � Domain decomposition

® Semi-Lagrangian scheme
- fixed grid � Domain decomposition
- calculate trajectories backwards
- interpolation / Non-local weak noise, moderate dissipation

GYSELA: more accurate but more difficult to parallelize

Virginie Grandgirard CEMRACS 2010
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Parallelisation of a Semi-Lagrangian method

Advantage (due to the eulerian aspect) :

I fixed grid à perfect load balancing

Drawback (due to interpolation) :

I Several choices for the interpolation

I But we use cubic splines interpolation :

, Good compromise between accuracy and simplicity
/ Loss of locality

(value of f on one grid point requires f over the whole grid)

à Not possible to use a simple domain decomposition
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New approach : Local cubic splines
A new numerical tool has been developed

à Hermite Spline interpolation on patches [Latu-Crouseilles ’07]

I Computational domain decomposed in subdomains

I Definition of local splines on each subdomains with Hermite
boundary conditions

I Derivatives are defined so that they match as closely as possible
those of global splines
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What are the ingredients of a GK code ?

¶ One 3D quasi-neutrality solver

· One gyroaverage operator

¸ One 5D Vlasov solver
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Numerical treatment of the quasi-neutrality

equation

I The treatment of the quasi-neutrality equation is almost the
same for all the codes

I Projection in Fourier space in the periodic directions

I Finite differences or finite elements in 1D or 2D to solve the
Laplacian

Virginie Grandgirard CEMRACS 2010
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Numerical treatment of the gyroaverage
I In Fourier space, the gyro-average reduces to the multiplication

by the Bessel function of argument k⊥ρs .

I This operation is straightforward in simple geometry with
periodic boundary conditions, such as in local codes.

I Conversely, in the case of global codes, the use of Fourier
transform is not applicable for two main reasons:

I (i) radial boundary conditions are non periodic and
I (ii) the radial dependence of the Larmor radius has to be

accounted for.

I Several approaches have been developed to overcome this
difficulty.
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Padé approximation
I One of those consists in approximating the Bessel function with

Padé expansion
JPadé(k⊥ρs) = 1/

[
1 + (k⊥ρs)2/4

]
e.g. see [Y. Sarazin, PPCF (2005)].

I Using the equivalence i~k⊥ ↔ ∇⊥, the gyroaverage operation of
any g leads to the equation[

1− (ρ2
c/4)∇2

]
ḡ(r , θ, ϕ) = g(r , θ, ϕ)

where we recall that ∇2
⊥ = ∂2

∂r2 + (1/r2) ∂
2

∂θ2

I Such a Padé representation then requires the inversion of the
Laplacian operator ∇2

⊥ in real space.
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Correct limit in large wavelengths limit
I This approximation gives the correct limit in the large

wavelengths limit k⊥ρc � 1, while keeping JPadé finite in the
opposite limit k⊥ρs →∞
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Padé approximation drawback
I The drawback is an over-damping of small scales: in the limit of

large arguments x →∞,

JPadé(x)→ 4/x2 whereas J0 → (2/πx)1/2 cos(x − π/4)

Fourier space real space

Virginie Grandgirard CEMRACS 2010
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Quadrature formula

I Another possibility, for this gyro-averaging process, is to use a
quadrature formula.

I The integral over the gyro-ring is usually approximated by a sum
over four points on the gyro-ring [Lee, Phys. Fluid (1983)].

I This is rigorously equivalent to considering the Taylor expansion
of the Bessel function at order two in the small argument limit,
namely J0(k⊥ρs) ' 1− (k⊥ρs)2/4, and to computing the
transverse Laplacian at second order using finite differences
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More sophisticated quadrature formula
I This method has been extended to achieve accuracy for large

Larmor radius [R. Hatzky, PoP (2002), i.e the number of points
(starting with four) is linearly increased with the gyro-radius to
guarantee the same number of points per arc-length on the
gyro-ring.

I In this approach, the points that are equidistantly distributed
over the ring are rotated for each particle (or marker) by a
random angle calculated every time step

I Technique used in GT5D code (see [Idomura, Nuc. Fus. (2003)])
and ORB5 code (see [Jolliet, Comp. Phys. Comm. (2007))

For more details on numerical gyroaverage treatments

⇒ N. Crouseilles, C. Negulescu, M. Mehrenberger
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PIC approach in plasma study

I Lagrangian-PIC approach replaces the solution of the partial
differential Vlasov equation by the solution of the ODE’s of
motion of macro-particles.

I Each macro-particles represents a large number of the plasma
particles

I In the context of plasma study, the PIC approach is divided into
two distinct steps

I Step 1: Calculating the self-consistent fields generated by a
given distribution of computational particles in a
multidimensional phase space

I Step 2: Following the particle orbits (characteristics of Vlasov
equation) in these fields
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PIC approach

In Lagrangian-PIC methods, marker initial positions are loaded pseudo-randomly

in phase space (A). Markers are evolved along their orbits (B). Charge and current

perturbations are assigned (projected) to real space (C). Field equations are

solved (D), e.g. on a fixed grid in real space. (figure from [Idomura, CR (2006)])

Virginie Grandgirard CEMRACS 2010
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PIC approach à the simplest approach

I The advantage of PIC codes is their simplicity, robustness and
scalability.

I The first method used in gyrokinetic theory

I Lots of gyrokinetic codes are based on this method (list not
exhaustive)

I Parker’s code [Parker, PFl (1993)], Sydora’s code [Sydora, PPCF

(1996)], PG3EQ [Dimits, PRL (1996)], GTC [Lin, Science (1998)],
ELMFIRE [Heikkinen, JOCP (2001)], GT3D [Idomura, NF (2003),
ORB5 [Bottino, PoP (2007), [Jolliet CPC (2007)], GTS [WangWX,

PoP (2007)]
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PIC drawback = noise (1/2)
I Their disadvantage is the numerical noise –caused by the

technically limited number of macro-particles– which can cause
numerical collisions and artificial dissipation

I Where does this noise come from ?
I The solution of the dynamical equations in the second step

introduces some error and noise
I But what is called the noise in particle simulations is

predominantly associated with the first step, where low-order
moments of the distribution function are calculated to find the
source terms for Poisson’s or Ampere’s equations.

à This noise is essentially due to the error introduced when
evaluating the moments using a relatively small number of points
in phase space, determined by computational particle positions

Virginie Grandgirard CEMRACS 2010
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PIC drawback = noise (2/2)

I The main problem for non-linear gyrokinetic simulations is that
the noise level can accumulate indefinitely (see [Nevins, PoP

(2005)]) and that even small errors in the evaluation of theses
moments can cause a systematic corruption of the simulation in
a relatively short period of time.

I The research of solutions to reduce this numerical noise in PIC
code is right from the start a subject of great importance and
lots of progresses have been performed in this domain since five
years.

I In particular, lots of improvements have been performed in the
ORB5 gyrokinetic PIC-code
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PIC algorithm à Monte-Carlo integration
I Mathematically, Aydemir [Aydemir, PoP (1994)] has point the fact

that the Lagrange-PIC algorithm can be viewed as a statistical
method to obtain estimates of the moments of the distribution
function, via Monte Carlo integration

I For the following the term “Monte-Carlo” will refer to estimation
of multidimensional integrals using statistical sampling
techniques.

I In general, particular form of the integrand and how it is sampled
in the volume of interest determine the accuracy of the
estimates.

I Since the 1950s, the Monte Carlo community has developed a
number of techniques that try to minimize the error in the
estimates and increase the efficiency of the calculations.
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I For the discussion let consider a general integral of the form:

I (Υ) =

∫
V

Υ(Z)f (Z) dτ (1)

where dτ = J dx dv is the volume element, Υ(Z) is a general

function of the phase-space coordinates Z = (x, z) and f (Z, t) is the

distribution function of some population of Ns particles, i.e∫
V

f (Z) dτ = Ns

I For instance, I (Υ) would be the number density in configuration
space if Υ = 1, and the integral is over the velocity space.

I Let treat Z as a continuous random variable with a probability
density function (PDF) p(Z) in the phase-space volume V , the
sampling distribution satisfying,∫

V

p(Z) dτ = 1 (2)

Virginie Grandgirard CEMRACS 2010
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Basic principle of Monte-Carlo methods (1/2)

I Then the basic principle of Monte-Carlo methods is to see the
previous equation (1) ( I (Υ) =

∫
V

Υ(Z)f (Z) dτ ) as

I (Υ) = Ep(g(Z)) =

∫
V

g(Z)f (Z) dτ (3)

where Ep(g) is the expected value of the random variable

g ≡ (Υ(Z)f (Z))/p(Z) (4)

under the probability density p(Z) (
∫

V
p(Z) dτ = 1 )

Virginie Grandgirard CEMRACS 2010
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Basic principle of Monte-Carlo methods (2/2)

I Let also define the variance of g by

V(g) = σ2
g =

∫
V

(g − Ep(g))2p(Z) dτ (5)

I The idea is to produce an independent random sample
(Z1,Z2, · · · ,ZN) for the random variable Z of probability p(Z)

I and to calculate a new estimate (called Monte-Carlo estimate) in
function of this sampling.

Virginie Grandgirard CEMRACS 2010
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I The law of large number (first fundamental theory of probability)
suggests to generate this estimate with the empiric mean

g̃N =
1

N

N∑
j=1

g(Zj) (6)

I It is to notice that N the number of markers is limited by the
computational power and therefore N � Ns .

I Then, let SN the random variable be defined such that
Ep(SN) = 0 and σ(SN) = 1 by

SN ≡
g̃N − Ep(g̃N)

σg/
√

N

where the unbiased estimate g̃N (i.e Ep(g̃N)− Ep(g(Z)) = 0) is

defined by Eq. (6), the expected value Ep by Eq. (3) and the square

root of the variance σg by Eq. (5)

Virginie Grandgirard CEMRACS 2010



a
a
a

Gyrokinetic codes
3D equations

5D Vlasov equation
PIC approach

The central limit theorem

I The central limit theorem (second fundamental theorem of
probability) states that SN will converge in distribution to the
standard normal distribution N(0; 1) as N approaches infinity.

I Convergence in distribution means that if Φ(z) is the cumulative
distribution function of N(0; 1), i.e

Φ(z) =

∫ z

−∞

1√
2π

exp
(
− t

2

)
dt = error function

then for every real number z , we have

lim
N→∞

P(SN ≤ z) = Φ(z)

Virginie Grandgirard CEMRACS 2010
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Confidence interval

I Therefore it is possible to define a confidence interval capable to
indicate the reliability of the estimate g̃N compare to the
moment integral I (Υ).

I Let eN be this error, then for a confident level (1− α) (α ∈ R),

|eN | ≤ z1−α/2
σg√
N

(7)

where the real z1−α/2 is the (1− α)-th percentile of the
distribution.

Virginie Grandgirard CEMRACS 2010



a
a
a

Gyrokinetic codes
3D equations

5D Vlasov equation
PIC approach

Example of confidence interval

I Let for instance take 1− α = 0.95, then

P(−z1−α/2 ≤ SN ≤ z1−α/2) = 1− α = 0.95

where z1−α/2 follows from the cumulative distribution function:

Φ(z1−α/2) = P(SN ≤ z1−α/2) = 1− α

2
= 0.975

z1−α/2 = Φ−1(Φ(z1−α/2)) = Φ−1(0.975) = 1.96

I This can be interpreted as, there is 95% of probability to find a
confidence interval in which the error between the estimate and
the moment integral will be such that

|en| ≤ 1.96
σg√
N

Virginie Grandgirard CEMRACS 2010
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Monte-Carlo estimate for the moment integral

I To summarize, g̃N is an unbiased (i.e Ep(g̃N)− Ep(g(Z)) = 0)
and consistent (i.e V(g̃N) = σ2

g/N → 0 as N →∞) estimate for

the expected value of g , with a standard error ε ' σg/
√

N ,
where σg is the standard deviation defined by Eq. (5).

I Finally, a valid Monte-Carlo estimate for the general moment
integral I (Υ) (Eq. 1) is therefore given by

I (Υ) =
1

N

N∑
j=1

Υ(Zj)f (Zj)

p(Zj)
+ ε with ε ' σg√

N
(8)

Virginie Grandgirard CEMRACS 2010
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Klimontovitch density

I Besides, let fK (Z) be the Klimontovitch density

fK (Z) =
1

J

N∑
j=1

wjδ(Z− Zj) with the weight wj =
1

N

f (Zj)

p(Zj)

(9)

I Then it is trivial to see that for any volume element Ω in V
moments I (Υ) of f can be expressed as∫

Ω

Υ(Z)f (Z) dτ =

∫
Ω

Υ(Z)fK (Z) dτ + ε, ε ' σg√
N

(10)
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Variance reduction techniques
I Let remark that, in practice, σg is unknown and must be

estimated.

I One possibility is to use the discrete variance as

σ2
g '

1

N

N∑
j=1

(g(Zj)− g̃N)2

I Several methods, called variance reduction techniques, allow to
improve the accuracy or to reduce the computation time by
replacing g(Z) by another random variable.

I Two of them are particularly widespread in plasma particle
simulations,

I the importance sampling
I the control variates

Virginie Grandgirard CEMRACS 2010
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Importance sampling (1/2)

I The main idea of importance sampling is not to use an uniform
marker probability as done in the simplest MC method with

p(Z) =
1

V
, wj =

V

N
f (Zj), g = Υ(Z)f (Z)V

but a non-uniform marker probability proportional to the
distribution function:

p(Z) =
1

Ns
f (Z), wj =

Ns

N
and g = NsΥ(Z)

à to sample more frequently the most “important” regions of
the phase-space.

I Remark: In this case, Lagrangian markers are called
“macro-particles”, each representing Ns/N physical particles.

Virginie Grandgirard CEMRACS 2010
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Importance sampling (2/2)

I One first advantage compare to the simple Monte-Carlo method
is that there is no information storage required for the weights,
because they are the same for each marker

wj = Ns/N

I The second and most important point is that this choice reduce
the variation in g because it only comes from the function Υ(Z)
since

f /p = const

I For these two advantages this importance sampling method is
now the basis of lots of PIC simulations in plasma turbulence.

I Hatzky et al. [Hatzky, PoP (2002)] have applied successfully such
kind of “optimized loading” scheme.
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Control variates à The δf method (1/3)
I Control variates method is another intuitively obvious approach

that tries to reduce the variance in I (Υ)
I by replacing as much as possible the Monte Carlo estimate by

analytic or numerical calculations that are more accurate

I Assume that there exists a function f0, formally called the
control variate, such that

(i) moments of f0 can be found easily and preferentially
analytically, and

(ii) at all times, the physical distribution function f (Z) remains
close to f0(Z) in the sense

‖f − f0‖/‖f ‖ � 1

where ‖ · ‖ is some arbitrary norm.

Virginie Grandgirard CEMRACS 2010
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Control variates à The δf method (2/3)

I Then the error in the estimate I (Υ), can be reduced by rewriting
the integral in the form

I (Υ) =

∫
V

Υ(Z)f0(Z) dτ +

∫
V

Υ(Z)δf dτ

where
δf = f (Z)− f0(Z)

and applying a Monte Carlo technique only to the second
integral.

Virginie Grandgirard CEMRACS 2010
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Control variates à The δf method (3/3)

I Therefore, using the same technique than before the Monte
Carlo estimate for I (Υ) is given by

I (Υ) = I0(Υ) +
1

N

N∑
j=1

Υ(Zj)f (Zj)

p(Zj)
+ εδg with εδg '

σδg√
N

where

I0(Υ) =

∫
V

Υ(Z)f0(Z) dτ

can be expressed analytically.
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Advantage of δf method

I The function δg is defined as

δg = Υ(Z)δf (Z)/p(Z)

while σδg the deviation of δg is given by

V(δg) = σ2
δg =

∫
V

(δg − Ep(δg))2p(Z) dτ (11)

I The advantage of this control variate technique is then evident.

I Indeed, by comparing the error in the Monte Carlo estimates, we
see that the noise is reduced by a factor δf /f for the same
number of sample points.
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Limitations of δf method (1/2)

I To conclude, the control variate-δf method reduces noise by
reducing the size of the Monte Carlo contribution to I (Υ).

I But it is important to point that this method also concentrates
all the relevant physics into this small integral of δf and its time
evolution

I The accuracy of the method crucially depends on accurate
evaluations of the moments of δf .
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Limitations of δf method (2/2)

I For this reason, there are two complementary requirements:

(i) Low noise is only accomplished by ensuring that

‖f − f0‖/‖f ‖ � 1

(ii) Accuracy is only possible if the rel. error in δI (Υ) is small, i.e

‖εδg/δI (Υ)‖ � 1

I The first objective can be realized with a well-chosen control
variate f0 and a small number of macro-particles N

I But the second still requires a large number of markers, since

εδg/δI (Υ) ∼ 1/
√

N
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Other major improvements linked to physic

I In addition of these classical Monte Carlo approaches, knowledge
of the underlying physics have inspired other major
improvements.

I These new techniques of reduction of the noise have been
essentially developed in ORB5 code

I Just 2 examples :

1. An optimized choice of f0

2. A field-aligned coordinates filter

Virginie Grandgirard CEMRACS 2010
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An optimized choice of f0
I It is clear that the choice of f0 = feq, where feq represents the

initial equilibrium state, is indicated.

I But as f can evolves away from feq, at least in some regions, use
of the latter will no longer provide a small variance estimator.

I An intuitive idea would be to evolve f0 in such a way to ”follow”
f .

I One such technique has been implemented in collisional Monte
Carlo simulations [Brunner, PoP (1999)].

I An appropriate choice for f0(t) was a shifted Maxwellian
distribution, evolved using fluid equations

I A more general technique [Allfrey, CPC (2003)].
I δf directly from the constancy of f along orbits Z(t) as
δf (Zj(t)) = f (Zj(t0))− f0(Zj(t)).

Virginie Grandgirard CEMRACS 2010
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A field-aligned coordinates filter (1/2)

I Another physics characteristic which has been recently taken
into account is the fact that micro-turbulence modes are
characterized by very small parallel wave-numbers, |k‖|ρs ≤ ρ∗,
due to the gyro-ordering

I Jolliet et al. [Jolliet, CPC (2007)] have developed a filter which
takes advantage of this strong anisotropy of the perturbations.

I They have shown that filter the modes, which may be present in
the simulation but do not satisfy this ordering, is a very efficient
way to avoid accumulating significant level of numerical noise.
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A field-aligned coordinates filter (1/2)

I This has been performed applying what is called a field-aligned
Fourier filter and it is shown that orders of magnitude
improvement can be gained.

à The signal to noise ratio depends on the number of markers per
Fourier mode retained in the filter and no more on the number
of markers per numerical degree of freedom of the field
representation

Virginie Grandgirard CEMRACS 2010
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