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Understanding and predicting physics in ITER

Predicting density and temperature in magnetised plasma is a subject
of utmost importance in view of understanding and optimizing
experiments in the present fusion devices and also for designing future
reactors.

I Certainty : Turbulence limit the maximal
value reachable for n and T

à Generate loss of heat and particles
à ↘ Confinement properties of the

magnetic configuration

Turbulence study in tokamak plasmas

Virginie Grandgirard CEMRACS 2010



a
a
a

Gyrokinetic theory
GK vlasov equation
GK quasi-neutrality

Plasma turbulence

How to model plasma for turbulence study ?

⇓

Kinetic turbulence is the best candidate

⇓

Vlasov-Maxwell system

⇓
A reduced electrostatic model: Vlasov-Poisson system
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Some useful Vlasov equation
properties
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Advective form of Vlasov equation

I Advective form:

∂

∂t
f (Z, t) + U(Z, t) · ∇zf (Z, t) = 0 (1)

I Another equivalent writing of the equation (1) is

∂f

∂t
+

dZ

dt
· ∇zf = 0

because of the characteristic equation

dZ

dt
= U(Z(t), t)
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f constant along characteristics

I Which gives that the total time derivative of f

df

dt
= ∂tf +

dZ

dt
· ∇zf

is equal to 0, i.e:
df

dt
= 0 (2)

I Fundamental property of the Vlasov equation: the distribution
function f is constant along its characteristics.

I As we will see later, this property is one of the foundation of the
semi-Lagrangian numerical approach.
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Conservative form of Vlasov equation

I For the Vlasov equation the phase space element is
incompressible

I The Liouville theorem applies– ∇zU = 0

Then the previous advective form of the Vlasov equation (1) is
equivalent to the following equation à conservative form of the
Vlasov equation:

∂

∂t
f (Z, t) +∇z · (U(Z, t) f (Z, t)) = 0 (3)

because
∇z · (U f ) = U · ∇zf + f · ∇zU = U · ∇zf
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I The Liouville theorem expresses therefore the fact that the
advective form and the conservative form of the Vlasov equation
are equivalent.

I We will see later that both forms are used depending on the
numerical scheme which is chosen to solve the system.
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Kinetic theory

⇓
Gyrokinetic theory
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CEMRACS 2010, Marseille

From kinetics to gyroFrom kinetics to gyro--kineticskinetics Association
Euratom-Cea

 Fusion plasma turbulence is low frequency:

 Phase space reduction:  fast gyro-motion is averaged out
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Gyrokinetic ordering in a small parameter εg (1/3)

I Besides, experimental observations in core plasmas of magnetic
confinement fusion devices suggest that small scale turbulence,
responsible for anomalous transport, obeys the following ordering
in a small parameter εg

I Slow time variation as compared to the gyro-motion time scale

ω/ωci ∼ εg � 1 (ωci = eB/mi)

I Spatial equilibrium scale much larger than the Larmor radius

ρ/Ln ∼ ρ/LT ≡ εg � 1

where Ln = |∇ ln n0|−1 and LT = |∇ ln T |−1 the characteristic

lengths of n0 and T .
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Gyrokinetic ordering in a small parameter εg (2/3)
I Small perturbation of the magnetic field

B/δB ∼ εg � 1

where B and δB are respectively the equilibrium and the perturbed

magnetic field

I Strong anisotropy, i.e only perpendicular gradients of the
fluctuating quantities can be large (k⊥ρ ∼ 1, k‖ρ ∼ εg )

k‖/k⊥ ∼ εg � 1

where k‖ = k · b and k⊥ = |k× b| are parallel and perpendicular

components of the wave vector k with b = B/B

I Small amplitude perturbations, i.e energy of perturbation much
smaller than the thermal energy

eφ/Te ∼ εg � 1
Virginie Grandgirard CEMRACS 2010
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Gyrokinetic model: Reduction from 6D to 5D

I The gyrokinetic model is a Vlasov-Maxwell on which the
previous ordering is imposed

I Performed by eliminating high-frequency processes characterized
by ω > Ωs .

I The phase space is reduced from 6 to 5 dimensions, while
retaining crucial kinetic effects such as finite Larmor radius
effects.
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Numerical gain

I Numerically speaking, the computational cost is dramatically
reduced because the limitations on the time step and the grid
discretization are relaxed from

ωps ∆t < 1 and ∆x < λDs

to
ω∗s ∆t < 1 and ∆x < ρs

with ωps the plasma oscillation frequency and λDs the Debye length

I A gain of more than 2 order of magnitude in spatial and
temporal discretization
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Typical space and time range scales
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µ an adiabatic invariant
I It is also important to note that the magnetic moment,

µs = msv
2
⊥/(2B)

becomes an adiabatic invariant.

I In terms of simulation cost, this last point is convenient because
µs plays the role of a parameter.

I This means that the problem to treat is not a true 5D problem
but rather a 4D problem parametrized by µs .

I Note that µs looses its invariance property in the presence of
collisions.

I Such a numerical drawback can be overcome by considering
reduced collisions operators acting in the v‖ space only, while still
recovering the results of the neoclassical theory [Garbet, PoP 2009].
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Gyroaverage operator
Scale separation

CEMRACS 2010, Marseille

Particle

gyro-
center

Field
line B

Road map of gyroRoad map of gyro--kinetic theorykinetic theory

 Two main challenges for the theory:

1. To transform Vlasov eq. df/dt=0
into the gyro-kinetic eq. governing      dynamics
 gyro-center eqs. of motion

2. To write Maxwell's eqs. in terms of 

 Modern formulation: 
Lagrangian formalism & Lie perturbation theory
[Brizard-Hahm, Rev. Mod. Phys. (2007)]
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Gyrokinetic equation

The resulting gyrokinetic equation is today the most advanced
framework to describe plasma micro-turbulence.

B∗‖
∂ f̄s
∂t

+∇∇∇ ·
(

B∗‖
dxG

dt
f̄s

)
+

∂

∂vG‖

(
B∗‖

dvG‖

dt
f̄s

)
= 0 (4)

In the electrostatic limit, the equations of motion of the guiding
centers are given below:

B∗‖
dxG

dt
= vG‖B

∗
‖ +

b

es
×∇∇∇Ξ (5)

B∗‖
dvG‖

dt
= −

B∗‖
ms
· ∇∇∇Ξ (6)

with

∇∇∇Ξ = µs∇∇∇B + es∇∇∇φ̄ and B∗‖ = B + (ms/es) vG‖∇∇∇× b
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Gyroaverage operator
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References for modern gyrokinetic derivation

I For an overview and a modern formulation of the gyrokinetic
derivation, see the review paper by A.J. Brizard and T.S. Hahm,
Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys (2007).

I This new approach is based on Lagrangian formalism and Lie
perturbation theory (see e.g. J.R Cary [Physics Reports (1981)], J.R
Cary and Littlejohn [Annals of Physics (1983)]

I The advantage of this approach is to preserve the first principles
by construction, such as the symmetry and conservation
properties of the Vlasov equation – particle number, momentum,
energy and entropy.
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The gyroThe gyro--kinetic equationkinetic equation

 The gyro-kinetic eq. exhibits a conservative form:

 Notice:

 Similar structure as Vlasov eq. → conservation properties

 Magnetic moment has become
an (adiabatic) invariant    → parameter (if collisionless)

 Averaging process  velocity drifts of the gyro-center

with

Virginie Grandgirard CEMRACS 2010
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How to get drifts out of cyclotron motion?How to get drifts out of cyclotron motion?

Challenge: cutting the wings while preserving the motion

Virginie Grandgirard CEMRACS 2010
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How to get drifts out of cyclotron motion?How to get drifts out of cyclotron motion?
 Adiabatic limit framework:

Magnetic field evolves slowly w.r.t. 

 Scale separation:
average over fast time scale 

with

 Perturbation theory – Solving at leading orders the small 
parameter  
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Average over the cyclotron motion

I The gyro-radius ρs is transverse to b = B/B and depends on
the gyrophase angle ϕc :

ρs =
b× v

Ωs
= ρs [cosϕc e⊥1 + sinϕc e⊥2] (7)

where e⊥1 and e⊥2 are the unit vectors of a cartesian basis in the

plane perpendicular to the magnetic field direction b.

I Let xG be the guiding-center radial coordinate and x the position
of the particle in the real space.

I These two quantities differ by a Larmor radius ρs :

x = xG + ρs

Virginie Grandgirard CEMRACS 2010
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Gyroaverage operator
I The gyro-average ḡ of any function g depending on the spatial

coordinates corresponds to the following operation:

ḡ(xG , v⊥) =

∮ 2π

0

dϕc

2π
g(x) =

{∮ 2π

0

dϕc

2π
exp(ρρρs · ∇∇∇)

}
g(xG )

I The operator eρρρs ·∇∇∇ corresponds to the change of coordinates
(x,p)→ (xG ,pG ).

I The inverse operator governing the transformation
(xG ,pG )→ (x,p) simply reads e−ρρρs ·∇∇∇.

I This gyro-average process consists in computing an average on
the Larmor circle. It tends to damp any fluctuation which
develops at sub-Larmor scales.

Virginie Grandgirard CEMRACS 2010



a
a
a

Gyrokinetic theory
GK vlasov equation
GK quasi-neutrality

Gyroaverage operator
Scale separation

In Fourier space à Bessel operator
I Introducing ĝ(k) the Fourier transform of g , with k the wave

vector, then the operation of gyro-average reads:

ḡ(xG , v⊥) =

∫ 2π

0

dϕc

2π

∫ +∞

−∞

d3k

(2π)3
ĝ(k) exp{ik · (xG + ρs)}

=

∫ +∞

−∞

d3k

(2π)3

[∫ 2π

0

dϕc

2π
exp(ik⊥ρs cosϕc)

]
ĝ(k) exp(ik · xG )

=

∫ +∞

−∞

d3k

(2π)3
J0(k⊥ρs)ĝ(k)eik·xG

I where, k⊥ is the norm of the transverse component of the wave
vector k⊥ = k− (b.k)b, and J0 is the Bessel function of first
order.
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Scale separation: gyro-motion + drifts

I The dynamics of a non relativistic charged particle s in an
electromagnetic field obeys the following equation:

ms
dvs

dt
= es{E(x, t) + vs × B(x, t)}

I Main idea: considering the fast time average of Newton’s
equations in the adiabatic limit

I At leading order, 〈B〉 can be approximated by its value at the
position of the guiding-center BG

I Conversely, there is no such a hierarchy for the velocities, ṽ and
vG being of the same order of magnitude a priori.
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Scale separation: gyroScale separation: gyro--motion + driftsmotion + drifts

 Fast motion = cyclotron motion:

 Slow motion = drifts:

(adiabatic limit)

at leading order in

Virginie Grandgirard CEMRACS 2010
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Transverse driftsTransverse drifts
 Transverse & parallel dynamics:

 Projection on the transverse plane (                            ):

(with              )

electric drift curvature + ∇B  drifts

vG//

vG⊥B

Virginie Grandgirard CEMRACS 2010
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Physics of electric driftPhysics of electric drift

Electric drift             Turbulent transport:

 φ ~ analogous to stream function 
in neutral fluid dynamics

 At leading order, particles move
at φ=cst (motion invariant if B=cst

and tφ=0)

 Larger ⊥ excursion than Larmor
radius

 Heat transport requires non
vanishing phase shift between
δp and δφ

Test particle
trajectory

Typical thermal
Larmor radius

iso-contours of electric potential φ

Virginie Grandgirard CEMRACS 2010
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Physics of curvature+Physics of curvature+∇∇∇∇∇∇∇∇B  driftsB  drifts

 Curvature+∇B drifts             Vertical charge separation:

Ion        electron

magnetic field

 Return current : parallel (electron) current (Pfirsch-Schlüter)
polarization (ion) current

Virginie Grandgirard CEMRACS 2010



a
a
a

Gyrokinetic theory
GK vlasov equation
GK quasi-neutrality

Gyroaverage operator
Scale separation

CEMRACS 2010, Marseille

Parallel dynamicsParallel dynamics
 Parallel projection of Newton's eq.

non-vanishing contribution 
from ⊥ dynamics

 Parallel trapping  &  coupling  vd.EG

Trapping in electric 
potential wells 

(turbulence)

Trapping in magnetic 
wells (magnetic 
equilibrium)

Coupling vd.EG
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Poisson vs. quasiPoisson vs. quasi--neutralityneutrality
 Poisson equation:

for Deuterium ions in ITER

~ few % in the core

 Safely replaced by quasi-neutrality (for ion turb.):

ne(x,t) = ni(x,t)

with Pb: unknown function
in GK theory (n≠nG)

+ +

~ (few ρi)−2

~ (few 4.10−3)−2
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Fluctuation level of few % in the core
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Relation between                        Relation between                        and

 Infinitesimal canonical transformation theory:

with      ~ generating function

 Transformation rule:

 obtained via the constraint imposed by gyro-kinetic framework:



 It follows:

Virginie Grandgirard CEMRACS 2010
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QuasiQuasi--neutrality within GK frameworkneutrality within GK framework

 Two contributions to ns(x,t) when replacing      by      :

Gyro-center density nGs(x,t)

Polarization density npol,s(x,t)

 In the  k⊥ρs<<1 limit only:

 If electrons taken adiabatic:

Virginie Grandgirard CEMRACS 2010
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Global Gyrokinetic system (1/2)
I The time evolution of the gyro-center distribution function f̄i is

given by the gyrokinetic Vlasov equation

∂B∗‖ f̄s

∂t
+∇∇∇ ·

(
B∗‖

dxG

dt
f̄s

)
+

∂

∂vG‖

(
B∗‖

dvG‖

dt
f̄s

)
= 0 (8)

I where the equations of motion of the guiding centers are given
below

B∗‖
dxG

dt
= vG‖B

∗
‖ +

b

es
×∇∇∇Ξ (9)

B∗‖
dvG‖

dt
= −

B∗‖
ms
· ∇∇∇Ξ (10)

with

∇∇∇Ξ = µs∇∇∇B + es∇∇∇φ̄ and B∗‖ = B + (ms/es) vG‖∇∇∇× b
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Global Gyrokinetic system (2/2)

I Self-consistently coupled to the quasi-neutrality equation

e

Te
(φ− 〈φ〉FS)− 1

neq
∇∇∇⊥·

(
msneq

esB2
∇∇∇⊥φ

)
=

1

neq

∫
JvdµdvG‖J .f̄i−1

(11)
with 〈φ〉FS the flux surface average of φ

I This system of equations (8)-(11) is the basis of the gyrokinetic
codes.

I GK codes require state-of-the-art HPC techniques and must run
efficiently on more than thousands processors.
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