

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2

Virginie Grandgirard

CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. <u>email</u>: virginie.grandgirard@cea.fr

Acknowledgements: Yanick Sarazin

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Summary of Tutorial 1

Virginie Grandgirard

CEMRACS 2010

Understanding and predicting physics in ITER

Predicting density and temperature in magnetised plasma is a subject of utmost importance in view of understanding and optimizing experiments in the present fusion devices and also for designing future reactors.

- Certainty : Turbulence limit the maximal value reachable for n and T
 - Generate loss of heat and particles
 Confinement properties of the magnetic configuration

Turbulence study in tokamak plasmas

Virginie Grandgirard

CEMRACS 2010

Plasma turbulence

How to model plasma for turbulence study ? Kinetic turbulence is the best candidate Vlasov-Maxwell system

<u>A reduced electrostatic model:</u> Vlasov-Poisson system

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Some useful Vlasov equation properties

Virginie Grandgirard

CEMRACS 2010

Advective form of Vlasov equation

Advective form:

$$\frac{\partial}{\partial t}f(\mathbf{Z},t) + \mathbf{U}(\mathbf{Z},t) \cdot \nabla_{\mathbf{z}}f(\mathbf{Z},t) = 0$$
(1)

► Another equivalent writing of the equation (1) is

$$\frac{\partial f}{\partial t} + \frac{\mathrm{d}\mathbf{Z}}{\mathrm{d}t} \cdot \nabla_{\mathbf{z}} f = 0$$

because of the characteristic equation

$$\frac{\mathsf{d}\mathbf{Z}}{\mathsf{d}t} = \mathbf{U}(\mathbf{Z}(t), t)$$

f constant along characteristics

Which gives that the total time derivative of f

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \partial_t f + \frac{\mathrm{d}\mathbf{Z}}{\mathrm{d}t} \cdot \nabla_{\mathbf{z}} f$$

is equal to 0, i.e.

$$\frac{\mathrm{d}f}{\mathrm{d}t} = 0 \tag{2}$$

- Fundamental property of the Vlasov equation: the distribution function f is constant along its characteristics.
- As we will see later, this property is one of the foundation of the semi-Lagrangian numerical approach.

Conservative form of Vlasov equation

- For the Vlasov equation the phase space element is incompressible
- ▶ The Liouville theorem applies– $\nabla_z U = 0$

Then the previous advective form of the Vlasov equation (1) is equivalent to the following equation **conservative** form of the Vlasov equation:

$$\frac{\partial}{\partial t}f(\mathbf{Z},t) + \nabla_{\mathbf{z}} \cdot (\mathbf{U}(\mathbf{Z},t) f(\mathbf{Z},t)) = 0$$
(3)

because

$$\nabla_{\mathbf{z}} \cdot (\mathbf{U} f) = \mathbf{U} \cdot \nabla_{\mathbf{z}} f + f \cdot \nabla_{\mathbf{z}} \mathbf{U} = \mathbf{U} \cdot \nabla_{\mathbf{z}} f$$

- The Liouville theorem expresses therefore the fact that the advective form and the conservative form of the Vlasov equation are equivalent.
- We will see later that both forms are used depending on the numerical scheme which is chosen to solve the system.

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Kinetic theory

Gyrokinetic theory

Virginie Grandgirard

CEMRACS 2010

CEC From kinetics to gyro-kinetics

□ Fusion plasma turbulence is low frequency:

$$\omega_{turb} \sim \omega_{*i} \sim (k_{\theta}\rho_i) \frac{v_{th}}{L_p} \sim 10^5 s^{-1} \ll \omega_{ci} = \frac{eB}{m_i} \sim 10^8 s^{-1}$$

Phase space reduction: fast gyro-motion is averaged out

$$f(\mathbf{x}, v_{\parallel}, v_{\perp}, \varphi_c, t) \rightarrow \bar{f}(\mathbf{x}_G, v_{G\parallel}, \mu, t)$$

Gyrokinetic ordering in a small parameter ϵ_{g} (1/3)

- Besides, experimental observations in core plasmas of magnetic confinement fusion devices suggest that small scale turbulence, responsible for anomalous transport, obeys the following ordering in a small parameter ε_g
- Slow time variation as compared to the gyro-motion time scale

$$\omega/\omega_{ci}\sim\epsilon_{g}\ll 1$$
 $(\omega_{ci}=eB/m_{i})$

Spatial equilibrium scale much larger than the Larmor radius

$$ho/L_n \sim
ho/L_T \equiv \epsilon_g \ll 1$$

where $L_n = |\nabla \ln n_0|^{-1}$ and $L_T = |\nabla \ln T|^{-1}$ the characteristic lengths of n_0 and T.

œ

Gyrokinetic ordering in a small parameter ϵ_g (2/3) Small perturbation of the magnetic field

 $B/\delta B \sim \epsilon_g \ll 1$

where B and δB are respectively the equilibrium and the perturbed magnetic field

Strong anisotropy, i.e only perpendicular gradients of the fluctuating quantities can be large $(k_{\perp}\rho \sim 1, k_{\parallel}\rho \sim \epsilon_g)$

$$k_\parallel/k_\perp\sim\epsilon_g\ll 1$$

where $k_{\parallel} = \mathbf{k} \cdot \mathbf{b}$ and $k_{\perp} = |\mathbf{k} \times \mathbf{b}|$ are parallel and perpendicular components of the wave vector \mathbf{k} with $\mathbf{b} = \mathbf{B}/B$

Small amplitude perturbations, i.e energy of perturbation much smaller than the thermal energy

$$e\phi/T_e\sim\epsilon_g\ll 1$$

Virginie Grandgirard

Gyrokinetic model: Reduction from 6D to 5D

- The gyrokinetic model is a Vlasov-Maxwell on which the previous ordering is imposed
- Performed by eliminating high-frequency processes characterized by ω > Ω_s.
- The phase space is reduced from 6 to 5 dimensions, while retaining crucial kinetic effects such as finite Larmor radius effects.

Numerical gain

Numerically speaking, the computational cost is dramatically reduced because the limitations on the time step and the grid discretization are relaxed from

$$\omega_{ extsf{ps}}\,\Delta t < 1$$
 and $\Delta x < \lambda_{ extsf{Ds}}$

to

$$\omega_s^* \Delta t < 1$$
 and $\Delta x <
ho_s$

with $\omega_{\it ps}$ the plasma oscillation frequency and $\lambda_{\it Ds}$ the Debye length

 A gain of more than 2 order of magnitude in spatial and temporal discretization

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Typical space and time range scales

Virginie Grandgirard

CEMRACS 2010

μ an adiabatic invariant

It is also important to note that the magnetic moment,

$$\mu_s=m_s v_\perp^2/(2B)$$

becomes an adiabatic invariant.

- ▶ In terms of simulation cost, this last point is convenient because μ_s plays the role of a parameter.
- > This means that the problem to treat is not a true 5D problem but rather a 4D problem parametrized by μ_s .
- Note that μ_s looses its invariance property in the presence of collisions.
- Such a numerical drawback can be overcome by considering reduced collisions operators acting in the v_{||} space only, while still recovering the results of the neoclassical theory [Garbet, PoP 2009].

CECI Road map of gyro-kinetic theory

- □ Two main challenges for the theory:
 - 1. To transform Vlasov eq. df/dt=0 into the gyro-kinetic eq. governing \bar{f} dynamics \Rightarrow gyro-center eqs. of motion
 - 2. To write Maxwell's eqs. in terms of \bar{f}

Modern formulation:

Lagrangian formalism & Lie perturbation theory

[Brizard-Hahm, Rev. Mod. Phys. (2007)]

Gyroaverage operator Scale separation

œ

Gyrokinetic equation

The resulting gyrokinetic equation is today the most advanced framework to describe plasma micro-turbulence.

$$B_{\parallel}^* \frac{\partial \bar{f}_s}{\partial t} + \boldsymbol{\nabla} \cdot \left(B_{\parallel}^* \frac{\mathrm{d} \mathbf{x}_G}{\mathrm{d} t} \, \bar{f}_s \right) + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel}^* \frac{\mathrm{d} v_{G\parallel}}{\mathrm{d} t} \, \bar{f}_s \right) = 0 \qquad (4)$$

In the electrostatic limit, the equations of motion of the guiding centers are given below:

$$B_{\parallel}^{*} \frac{\mathrm{d}\mathbf{x}_{G}}{\mathrm{d}t} = v_{G\parallel} \mathbf{B}_{\parallel}^{*} + \frac{\mathbf{b}}{e_{s}} \times \nabla \Xi \qquad (5)$$
$$B_{\parallel}^{*} \frac{\mathrm{d}v_{G\parallel}}{\mathrm{d}t} = -\frac{\mathbf{B}_{\parallel}^{*}}{m_{s}} \cdot \nabla \Xi \qquad (6)$$

with

$${f
abla} \Xi = \mu_s {f
abla} B + e_s {f
abla} ar \phi \quad ext{and} \quad {f B}^*_{\parallel} = {f B} + (m_s/e_s) \, v_{G\parallel} {f
abla} imes {f b}$$

1

References for modern gyrokinetic derivation

- For an overview and a modern formulation of the gyrokinetic derivation, see the review paper by A.J. Brizard and T.S. Hahm, *Foundations of nonlinear gyrokinetic theory*, Rev. Mod. Phys (2007).
- This new approach is based on Lagrangian formalism and Lie perturbation theory (see *e.g.* J.R Cary [*Physics Reports (1981)*], J.R Cary and Littlejohn [*Annals of Physics (1983)*]
- The advantage of this approach is to preserve the first principles by construction, such as the symmetry and conservation properties of the Vlasov equation – particle number, momentum, energy and entropy.

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Gyroaverage operator Scale separation

The gyro-kinetic equation

□ The gyro-kinetic eq. exhibits a conservative form:

$$B_{\parallel}^* \frac{\partial \bar{f}_s}{\partial t} + \boldsymbol{\nabla} \cdot \left(B_{\parallel}^* \dot{\mathbf{x}}_G \ \bar{f}_s \right) + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel}^* \dot{v}_{G\parallel} \ \bar{f}_s \right) = 0$$
with $B_{\parallel}^* \sim B$

Notice:

- Similar structure as Vlasov eq. → conservation properties
- Magnetic moment $\mu = \frac{mv_{\perp}^2}{2B}$ has become an (adiabatic) invariant \rightarrow parameter (if collisionless)
- Averaging process \Rightarrow velocity drifts $\dot{\mathbf{x}}_G$ of the gyro-center

How to get drifts out of cyclotron motion?

Challenge: cutting the wings while preserving the motion

CEMRACS 2010, Marseille

Virginie Grandgirard

CEMRACS 2010

How to get drifts out of cyclotron motion?

Adiabatic limit framework:

Magnetic field evolves slowly w.r.t. ω_{ci}

$$\partial_t \log B \sim \mathbf{v} \cdot \nabla \log B \ll \omega_c \quad \Rightarrow \quad \frac{\rho_s}{R} \sim \frac{mv_{\parallel}}{eBR} \sim \frac{mv_{\perp}}{eBR} \ll 1$$

□ Scale separation:

average over fast time scale

$$\begin{cases} \mathbf{v} = \mathbf{v}_G + \tilde{\mathbf{v}} \\ \mathbf{B} = \mathbf{B}_G + \tilde{\mathbf{B}} \\ \mathbf{E} = \mathbf{E}_G + \tilde{\mathbf{E}} \end{cases} \quad \text{with} \quad \langle \tilde{\mathbf{y}} \rangle \doteq \oint \frac{\mathrm{d}\varphi_c}{2\pi} \tilde{\mathbf{y}} = 0$$

 \square Perturbation theory – Solving at leading orders the small parameter $\,\epsilon=\rho_s/R\ll 1$

Average over the cyclotron motion

▶ The gyro-radius ρ_s is transverse to $\mathbf{b} = \mathbf{B}/B$ and depends on the gyrophase angle φ_c :

$$\boldsymbol{\rho}_{s} = \frac{\mathbf{b} \times \mathbf{v}}{\Omega_{s}} = \rho_{s} \left[\cos \varphi_{c} \, \mathbf{e}_{\perp 1} + \sin \varphi_{c} \, \mathbf{e}_{\perp 2} \right] \tag{7}$$

where $\mathbf{e}_{\perp 1}$ and $\mathbf{e}_{\perp 2}$ are the unit vectors of a cartesian basis in the plane perpendicular to the magnetic field direction \mathbf{b} .

- Let x_G be the guiding-center radial coordinate and x the position of the particle in the real space.
- > These two quantities differ by a Larmor radius ρ_s :

$$\mathbf{x} = \mathbf{x}_G + \boldsymbol{
ho}_s$$

Gyroaverage operator Scale separation

œ

Gyroaverage operator

► The gyro-average \bar{g} of any function g depending on the spatial coordinates corresponds to the following operation:

$$\bar{g}(\mathbf{x}_{G}, \mathbf{v}_{\perp}) = \oint_{0}^{2\pi} \frac{\mathrm{d}\varphi_{c}}{2\pi} g(\mathbf{x}) = \left\{ \oint_{0}^{2\pi} \frac{\mathrm{d}\varphi_{c}}{2\pi} \exp(\boldsymbol{\rho}_{s} \cdot \boldsymbol{\nabla}) \right\} g(\mathbf{x}_{G})$$

- ► The operator $e^{\rho_s \cdot \nabla}$ corresponds to the change of coordinates $(\mathbf{x}, \mathbf{p}) \rightarrow (\mathbf{x}_G, \mathbf{p}_G)$.
- ► The inverse operator governing the transformation $(\mathbf{x}_G, \mathbf{p}_G) \rightarrow (\mathbf{x}, \mathbf{p})$ simply reads $e^{-\boldsymbol{\rho}_s \cdot \nabla}$.
- This gyro-average process consists in computing an average on the Larmor circle. It tends to damp any fluctuation which develops at sub-Larmor scales.

In Fourier space 🗯 Bessel operator

Introducing $\hat{g}(\mathbf{k})$ the Fourier transform of g, with \mathbf{k} the wave vector, then the operation of gyro-average reads:

$$\begin{split} \bar{g}(\mathbf{x}_{G}, \mathbf{v}_{\perp}) &= \int_{0}^{2\pi} \frac{\mathrm{d}\varphi_{c}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \,\hat{g}(\mathbf{k}) \exp\{i\mathbf{k} \cdot (\mathbf{x}_{G} + \boldsymbol{\rho}_{s})\} \\ &= \int_{-\infty}^{+\infty} \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \left[\int_{0}^{2\pi} \frac{\mathrm{d}\varphi_{c}}{2\pi} \exp(ik_{\perp}\rho_{s}\cos\varphi_{c}) \right] \hat{g}(\mathbf{k}) \exp(i\mathbf{k} \cdot \mathbf{x}_{G}) \\ &= \int_{-\infty}^{+\infty} \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \, J_{0}(k_{\perp}\rho_{s}) \hat{g}(\mathbf{k}) \mathrm{e}^{i\mathbf{k}\cdot\mathbf{x}_{G}} \end{split}$$

where, k_⊥ is the norm of the transverse component of the wave vector k_⊥ = k - (b.k)b, and J₀ is the Bessel function of first order.

Scale separation: gyro-motion + drifts

The dynamics of a non relativistic charged particle s in an electromagnetic field obeys the following equation:

$$m_s rac{\mathrm{d} \mathbf{v}_s}{\mathrm{d} t} = e_s \{ \mathbf{E}(\mathbf{x}, t) + \mathbf{v}_s imes \mathbf{B}(\mathbf{x}, t) \}$$

- Main idea: considering the fast time average of Newton's equations in the adiabatic limit
 - At leading order, $\langle \mathbf{B} \rangle$ can be approximated by its value at the position of the guiding-center \mathbf{B}_G
 - Conversely, there is no such a hierarchy for the velocities, $\tilde{\mathbf{v}}$ and \mathbf{v}_G being of the same order of magnitude a priori.

CEC Scale separation: gyro-motion + drifts

□ Fast motion = cyclotron motion:

$$\frac{\mathrm{d}\tilde{\mathbf{v}}}{\mathrm{d}t} = \frac{e}{m}\tilde{\mathbf{v}}\times\mathbf{B}_G \longrightarrow \tilde{\mathbf{v}} = \frac{e}{m}\boldsymbol{\rho}_s\times\mathbf{B}_G$$

□ Slow motion = drifts:

$$\begin{array}{rcl} & \displaystyle \frac{\mathrm{d}\mathbf{v}_{G}}{\mathrm{d}t} & = & \displaystyle \frac{e}{m} \left\{ \mathbf{E}_{G} + \mathbf{v}_{G} \times \mathbf{B}_{G} + \langle \tilde{\mathbf{v}} \times \tilde{\mathbf{B}} \rangle \right\} \\ & & & & & \\ & & & & \\ & & & & \\ \mathbf{E}_{G} = \langle \mathrm{e}^{\boldsymbol{\rho}_{s} \cdot \boldsymbol{\nabla}} \rangle \mathbf{E} & & \tilde{\mathbf{B}} \simeq (\boldsymbol{\rho}_{s} \cdot \boldsymbol{\nabla}) \mathbf{B}_{G} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \\ \Rightarrow & \langle \tilde{\mathbf{v}} \times \tilde{\mathbf{B}} \rangle = -\frac{\mu}{e} \, \boldsymbol{\nabla} B_{G} & \text{at leading order in } \epsilon \end{array}$$

Gyrokinetic theory GK vlasov equation GK quasi-neutrality

Gyroaverage operator Scale separation

CEC Transverse drifts

Transverse & parallel dynamics:

$$\mathbf{v}_{G}\equiv v_{G\parallel}\mathbf{b}+\mathbf{v}_{G\perp}$$
 (with $\mathbf{b}=rac{\mathbf{B}}{B}$)

 \square Projection on the transverse plane ($~\mathbb{I}_\perp = \mathbb{I} - \mathbf{b} \otimes \mathbf{b}$):

$$\frac{\left.\frac{\mathrm{d}\mathbf{v}_{G\perp}}{\mathrm{d}t}\right|_{\perp} + \frac{\left.\frac{\mathrm{d}\mathbf{v}_{\parallel}}{\mathrm{d}t}\right|_{\perp}}{\left.\frac{\mathrm{d}\mathbf{v}_{\parallel}}{\mathrm{d}t}\right|_{\perp}} = \frac{e}{m} \left(\mathbf{E}_{G\perp} + \mathbf{v}_{G} \times \mathbf{B}\right) - \frac{\mu}{m} \, \boldsymbol{\nabla}_{\perp} B$$

$$\sim \epsilon^{2} \qquad v_{G\parallel}^{2} \frac{\mathbf{N}}{R}$$

$$\mathbf{v}_{G\perp} \simeq \underbrace{\frac{\mathbf{B} \times \boldsymbol{\nabla} \langle \phi \rangle}{B^{2}}}_{\text{electric drift}} + \underbrace{\frac{m v_{G\parallel}^{2} + \mu B}{eB}}_{\text{curvature} + \boldsymbol{\nabla} \mathbf{B}} \frac{\mathbf{B} \times \boldsymbol{\nabla} B}{B^{2}} + o(\beta)$$

Ceci Physics of electric drift

Electric drift $\mathbf{V}_E \Rightarrow$ Turbulent transport:

- φ ~ analogous to stream function in neutral fluid dynamics
- □ At leading order, particles move at φ=cst (motion invariant if B=cst and ∂_tφ=0)
- □ Larger ⊥ excursion than Larmor radius
- Heat transport requires non vanishing phase shift between δp and δφ

iso-contours of electric potential $\boldsymbol{\varphi}$

Gyroaverage operator Scale separation

œ

Ce⊃ Physics of curvature+⊽B drifts

□ Curvature+ ∇ B drifts $\mathbf{v}_d \Rightarrow$ Vertical charge separation:

 Return current : parallel (electron) current (Pfirsch-Schlüter) polarization (ion) current

CECI Parallel dynamics

Derived Parallel projection of Newton's eq.

$$\frac{\mathrm{d}v_{G\parallel}}{\mathrm{d}t} + \underbrace{\frac{\mathrm{d}\mathbf{v}_{G\perp}}{\mathrm{d}t}}_{V_{G\parallel}} \cdot \mathbf{b} = -\frac{e}{m}\nabla_{\parallel}\langle\phi\rangle - \frac{\mu}{m}\nabla_{\parallel}B$$
$$v_{G\parallel}\left(\nabla_{\parallel}\mathbf{v}_{G\perp}\right) \cdot \mathbf{b} + o\left(\epsilon^{2}\right) \quad \begin{array}{c} \text{non-vanishing contribution} \\ \text{from } \perp \text{ dynamics} \end{array}$$

 \square Parallel trapping & coupling $\boldsymbol{v}_{d}.\boldsymbol{E}_{G}$

$$\begin{split} \frac{\mathrm{d} v_{G\parallel}}{\mathrm{d} t} &= -\frac{e}{m} \nabla_{\parallel} \langle \phi \rangle - \frac{\mu}{m} \nabla_{\parallel} B - \underbrace{v_{G\parallel}}_{B^3} \frac{\mathbf{B} \times \nabla B}{B^3} \cdot \nabla \langle \phi \rangle + o(\beta) \\ & | \\ & | \\ \text{Trapping in electric} \\ \text{potential wells} \\ (\text{turbulence}) \\ \end{split}$$

Ceci Poisson vs. quasi-neutrality

Poisson equation:

- $\begin{array}{c|c} \sim ({\rm few}\;\rho_{\rm i})^{-2} & \sim {\rm few}\;\%\; {\rm in\;the\;core} \\ \sim ({\rm few}\;4.10^{-3})^{-2} & | \\ & & | \\ \lambda_D^2\;\nabla^2\left(\frac{e\phi}{T_0}\right) = \frac{n_e-n_i}{n_0} \\ | \\ \lambda_D \approx 2.35\;10^{-5}(T_{[keV]}/n_{10^{20}m^{-3}})^{1/2}\;m \\ \approx 10^{-4}\;m \ \, {\rm for\;Deuterium\;ions\;in\;ITER} \end{array}$
- □ Safely replaced by quasi-neutrality (for ion turb.): $n_e(\mathbf{x},t) = n_i(\mathbf{x},t)$ with $n_s(\mathbf{x},t) \doteq \int d^3 \mathbf{v} (f_s(\mathbf{x},\mathbf{v},t))$ Pb: unknown function in GK theory (n≠n_G)

Fluctuation level of few % in the core

Fluctuation level increases at the edge

P. Hennequin

Cerror Relation between $f(\mathbf{x}, v_{\parallel}, v_{\perp}, \varphi_c, t)$ and $\bar{f}(\mathbf{x}_G, v_{G\parallel}, \mu, t)$

Infinitesimal canonical transformation theory:

$$\mathbf{x} = \mathbf{x}_G + \partial_{\mathbf{p}_G} S$$
$$\mathbf{p} = \mathbf{p}_G - \partial_{\mathbf{x}_G} S$$

with $S \sim$ generating function

- \Box Transformation rule: $f(\mathbf{x}, \mathbf{p}) = f(\mathbf{x}_G, \mathbf{p}_G) + [f, S]_{\mathbf{x}_G, \mathbf{p}_G}$
- $\hfill\square$ S obtained via the constraint imposed by gyro-kinetic framework:

$$\frac{\partial \bar{H}}{\partial \varphi_s} = 0 \quad \Rightarrow \quad S(\mathbf{x}, \mathbf{p}) = \int \frac{m \, \mathrm{d}\varphi_c}{B} \, \left\{ \phi(\mathbf{x}) - \langle \phi(\mathbf{x}_G, \mathbf{p}_G) \rangle \right\}$$

It follows:

$$f(\mathbf{x}, \mathbf{v}, t) = \bar{f}(\mathbf{x}_G, \mathbf{v}_G, t) + \frac{e}{B} \{\phi(\mathbf{x}, t) - \langle \phi(\mathbf{x}_G, \mathbf{v}_G) \rangle \} \partial_\mu \bar{f}_{eq}(\mathbf{x}_G, \mathbf{v}_G)$$

Quasi-neutrality within GK framework

\Box Two contributions to $n_s(\mathbf{x},t)$ when replacing f by \bar{f}

$$n_{s}(\mathbf{x},t) = \underbrace{\int \mathrm{d}^{3}\mathbf{v}\bar{f}_{s}(\mathbf{x}_{G},\mathbf{v}_{G},t)}_{\int \mathcal{J}_{v}\,\mathrm{d}\mu\,\mathrm{d}v_{G\parallel}\,\langle\bar{f}_{s}(\mathbf{x},\mathbf{v},t)\rangle} + \underbrace{\int \mathrm{d}^{3}\mathbf{v}\frac{e_{s}}{B}\bar{f}_{eq,s}(\mathbf{x}_{G},\mathbf{v}_{G})\,\partial_{\mu}\bar{\phi}(\mathbf{x}_{G},\mathbf{v}_{G},t)}_{\text{Polarization density }n_{\text{pol},s}(\mathbf{x},t)}$$

$$\underbrace{\text{Polarization density }n_{\text{pol},s}(\mathbf{x},t)}_{\text{Gyro-center density }n_{\text{Gs}}(\mathbf{x},t)}$$

□ If electrons taken adiabatic:

$$\frac{e}{T_e} \left(\phi - \langle \phi \rangle_{FS} \right) - \frac{1}{n_{eq}} \nabla_\perp \cdot \left(\frac{m_s n_{eq}}{e_s B^2} \nabla_\perp \phi \right) = \frac{1}{n_{eq}} \int \mathcal{J}_v \mathrm{d}\mu \mathrm{d}v_{G\parallel} J. \bar{f}_i - 1$$

Global Gyrokinetic system (1/2)

► The time evolution of the gyro-center distribution function \overline{f}_i is given by the gyrokinetic Vlasov equation

$$\frac{\partial B_{\parallel}^* \bar{f}_s}{\partial t} + \boldsymbol{\nabla} \cdot \left(B_{\parallel}^* \frac{\mathrm{d} \mathbf{x}_G}{\mathrm{d} t} \; \bar{f}_s \right) + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel}^* \frac{\mathrm{d} v_{G\parallel}}{\mathrm{d} t} \; \bar{f}_s \right) = 0 \qquad (8)$$

where the equations of motion of the guiding centers are given below

$$B_{\parallel}^* \frac{\mathrm{d}\mathbf{x}_G}{\mathrm{d}t} = v_{G\parallel} \mathbf{B}_{\parallel}^* + \frac{\mathbf{b}}{e_{\mathrm{s}}} \times \nabla \Xi$$
(9)

$$B_{\parallel}^* \frac{\mathrm{d} v_{G\parallel}}{\mathrm{d} t} = -\frac{\mathbf{B}_{\parallel}^*}{m_s} \cdot \boldsymbol{\nabla} \Xi$$
(10)

with

$$abla \Xi = \mu_s
abla B + e_s
abla ar \phi$$
 and $\mathbf{B}^*_{\parallel} = \mathbf{B} + (m_s/e_s) \, v_{G\parallel} \mathbf{
abla} imes \mathbf{b}$

Global Gyrokinetic system (2/2)

Self-consistently coupled to the quasi-neutrality equation

$$\frac{e}{T_e} \left(\phi - \langle \phi \rangle_{FS} \right) - \frac{1}{n_{eq}} \nabla_{\perp} \cdot \left(\frac{m_s n_{eq}}{e_s B^2} \nabla_{\perp} \phi \right) = \frac{1}{n_{eq}} \int \mathcal{J}_v \mathrm{d}\mu \mathrm{d}\nu_{G\parallel} \mathcal{J}_i \overline{f}_i - 1$$
(11)

with $\langle \phi \rangle_{\textit{FS}}$ the flux surface average of ϕ

- This system of equations (8)-(11) is the basis of the gyrokinetic codes.
- GK codes require state-of-the-art HPC techniques and must run efficiently on more than thousands processors.