HYDROMELC Electrostatic charge phenomena : hydrodynamic model and interface conditions.

F. Charles, Th. Goudon, I. Lacroix-Violet, L. Navoret, N. Vauchelet in collaboration with Thalès Alenia Space

25a
oût2010

25 août 2010

1 / 30

HYDROMELC ()

CEMRACS'10

Introduction

Outline

- Introduction
 - Motivation
 - Objective of the study
 - References
- 2 Linearized BGK equation and Euler system
 - Linearization
 - Boundary conditions for the Euler system
 - Numerical examples
- 3 Linearized BGK-Poisson equation and Euler-Poisson system
 - Linearization
 - Numerical examples
- Conclusion and futur prospects

- In magnetosphere, satellites are surrounded by a plasma : interaction between charged particles of the plasma (ion and electrons) and the spacecraft.
- Ions and electrons of the plasma modify the electrostatic charge of the external surfaces of the spacecraft.
- This leads to charging phenomena. An excessive charging induces the formation of electric arching which can destroy the experimental devices.

 \implies For the numerical simulation of the spacecraft charging, we need a complete description of the boundary conditions at the interface between the plasma and the spacecraft.

Kinetic description of a plasma

- $F_e = F_e(t, x, v)$ and F_i the densities functions of electrons and ions respectively.
- Boltzmann-Poisson system (for $\beta \in \{i, e\}$) :

$$\begin{split} \frac{\partial F_{\beta}}{\partial t} + v \cdot \nabla_x F_{\beta} &- \frac{q_{\beta}}{m_{\beta}} \nabla_x \Phi_{\beta} \cdot \nabla_v F_{\beta} = Q_{\beta}(F_i, F_e), \\ &- div_x(\epsilon_0 \nabla_x V_{\beta}) = q_i n_i + q_e n_e, \\ &n_{\beta} = \int F_{\beta} \, dv. \end{split}$$

• Boundary conditions on F_e and F_i at the boundary Γ of the satellite :

$$\gamma^{inc}F_{\beta} = \mathcal{R}(\gamma^{out}F_{\beta}) + S \text{ for } v \cdot \eta(x) < 0, \quad x \in \Gamma$$

- + Boundary conditions on V_{β}
- Initial conditions on V_{β} and F_{β} .

LEO (Low Earth Orbit) : plasma is dense
 ⇒ the use of hydrodynamical models is relevant.

- LEO (Low Earth Orbit) : plasma is dense
 ⇒ the use of hydrodynamical models is relevant.
- Hydrodynamic limit of Boltzmann-Poisson equations : Euler equation on $(n_{\beta}, u_{\beta}, \theta_{\beta})$ defined by

$$\begin{cases} n_{\beta} = \int F_{\beta} dv \\ n_{\beta} u_{\beta} = \int v F_{\beta}(v) dv \\ n_{\beta} u_{\beta}^{2} + N n_{\beta} \theta_{\beta} = \int |v|^{2} F_{\beta}(v) dv. \end{cases}$$

HYDROMELC ()

- LEO (Low Earth Orbit) : plasma is dense
 ⇒ the use of hydrodynamical models is relevant.
- Hydrodynamic limit of Boltzmann-Poisson equations : Euler equation on $(n_{\beta}, u_{\beta}, \theta_{\beta})$ defined by

$$\begin{cases} n_{\beta} = \int F_{\beta} dv \\ n_{\beta} u_{\beta} = \int v F_{\beta}(v) dv \\ n_{\beta} u_{\beta}^{2} + N n_{\beta} \theta_{\beta} = \int |v|^{2} F_{\beta}(v) dv. \end{cases}$$

• What are the boundary conditions to impose for n_{β} , u_{β} , and θ_{β} ?

- LEO (Low Earth Orbit) : plasma is dense
 ⇒ the use of hydrodynamical models is relevant.
- Hydrodynamic limit of Boltzmann-Poisson equations : Euler equation on $(n_{\beta}, u_{\beta}, \theta_{\beta})$ defined by

$$\begin{cases} n_{\beta} = \int F_{\beta} dv \\ n_{\beta} u_{\beta} = \int v F_{\beta}(v) dv \\ n_{\beta} u_{\beta}^{2} + N n_{\beta} \theta_{\beta} = \int |v|^{2} F_{\beta}(v) dv. \end{cases}$$

- What are the boundary conditions to impose for n_β, u_β, and θ_β?
 Difficulties :
 - imposing only the incoming flux,
 - taking into account the Knudsen layer.

Objective of the study

Hypothesis

- N=1, $\Omega = [-\omega, \omega]$
- Only one specie (ions or electrons)
- BGK operator :

$$Q(F) = M[F] - F, \quad \text{with} \quad M[F](v) = M_{\rho,u,\theta} = \frac{\rho}{\sqrt{2\pi\theta}} \exp\left(-\frac{|v-u|^2}{2\theta}\right)$$

BGK-Poisson model

$$\begin{split} \frac{\partial F}{\partial t} + v \cdot \nabla_x F - q \partial_x \, \Phi \partial_v F &= \frac{1}{\tau} \left(M[F] - F \right) \\ - \partial_x^2 V &= q(\rho - 1), \quad q \in \{-1, 1\} \\ V(-\omega) &= V^L, \quad V(\omega) = V^R. \end{split}$$

Boundary conditions

$$\begin{split} \gamma^{inc}F(t,-\omega,v) &= \mathcal{R}(\gamma^{out}F(t,-\omega,\cdot))(v) + \phi^{data,L}(t,v) \text{ for } v > 0\\ \gamma^{inc}F(t,\omega,v) &= \mathcal{R}(\gamma^{out}F(t,\omega,\cdot))(v) + \phi^{data,R}(t,v) \text{ for } v < 0 \end{split}$$

• Diffuse reflexion (for the boundary $x = -\omega$)

$$\mathcal{R}(\gamma^{out}F(t,-\omega,\cdot))(v) = \alpha \frac{M_w(v)}{Z_w} \int_{v'<0} |v'| \gamma^{out}F(t,-\omega,v') \, dv' \text{ for } v > 0,$$

where $\alpha \in [0, 1]$ and

$$M_w(v) = \frac{\rho_w}{\sqrt{2\pi\theta_w}} e^{-|v|^2/(2\theta_w)}, \quad Z_w = \int_{v>0} v M_w(v) \, dv.$$

• Specular reflexion (for the boundary $x = -\omega$)

$$\mathcal{R}(\gamma^{out}F(t,-\omega,\cdot))(v) = \alpha\gamma^{out}F(t,-\omega,-v) \text{ for } v > 0.$$
(1)

We follow the approach described in :

- F. Coron, F. Golse, C. Sulem, A classification of well-posed kinetic layer problems, Comm. Pure Appl. Math., **41** (4), 409–435 (1988).
- C. Bardos, F. Golse; Y. Sone, Half-space problems for the Boltzmann equation : a survey, Journal of Statistical Physics, **124**, (2)-(4), (2006).
- C. Besse, S. Borghol, T. Goudon, I. Lacroix-Violet, J.-P. Dudon, Hydrodynamic regimes, Knudsen layer, numerical schemes : definition of boundary fluxes, submitted.

Outline

- Introduction
 - Motivation
 - Objective of the study
 - References
- Linearized BGK equation and Euler system
 - Linearization
 - Boundary conditions for the Euler system
 - Numerical examples
- 3 Linearized BGK-Poisson equation and Euler-Poisson system
 - Linearization
 - Numerical examples
- Conclusion and futur prospects

Outline

- Introduction
 - Motivation
 - Objective of the study
 - References

Linearized BGK equation and Euler system

- Linearization
- Boundary conditions for the Euler system
- Numerical examples

Linearized BGK-Poisson equation and Euler-Poisson system

- Linearization
- Numerical examples

Linearized BGK equation

We set $F = M_*(1 + \delta f)$, with $M_* := M_{(\rho_*, u_*, \theta_*)}$, and we obtain

$$\partial_t f + v \partial_x f = \frac{1}{\tau} L_*(f),$$

with $L_*(f) = \Pi f - f$:

$$\Pi f = \frac{\widetilde{\rho}}{\rho_*} + \frac{v - u_*}{\theta_*} \widetilde{u} + \left(\frac{|v - u_*|^2}{\theta_*} - 1\right) \frac{\widetilde{\theta}}{2\theta_*} =: m_{(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta})},$$

where $(\tilde{\rho}, \tilde{u}, \tilde{\theta})$ are such that

$$\begin{pmatrix} \widetilde{\rho} \\ \widetilde{\rho}u_* + \rho_*\widetilde{u} \\ \widetilde{\rho}(u_*^2 + \theta_*) + 2\rho_*u_*\widetilde{u} + \rho_*\widetilde{\theta} \end{pmatrix} = \int_{\mathbb{R}} \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} f(\cdot, \cdot, v) M_*(v) \, dv.$$

We have $Ker(L_*) = Span \{1, v, |v|^2\}.$

Linearized Euler system

• Substituting f by the infinitesimal Maxwellian $m_{(\tilde{\rho},\tilde{u},\tilde{\theta})}$ leads to the linearized Euler system :

$$\partial_t \begin{pmatrix} \widetilde{\rho} \\ \widetilde{u} \\ \widetilde{\theta} \end{pmatrix} + \begin{pmatrix} u_* & \rho_* & 0 \\ \frac{\theta_*}{\rho_*} & u_* & 1 \\ 0 & 2\theta_* & u_* \end{pmatrix} \partial_x \begin{pmatrix} \widetilde{\rho} \\ \widetilde{u} \\ \widetilde{\theta} \end{pmatrix} = 0.$$
(2)

• Eigenvalues : $\{u_* - \sqrt{3\theta_*}, u_*, u_* + \sqrt{3\theta_*}\}$.

• Entropy flux :

$$\mathbf{Q}: \widetilde{U} = (\widetilde{\rho}, \widetilde{u}, \widetilde{\theta}) \mapsto \int_{\mathbb{R}} v |m_{(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta})}|^2 M_* \, dv.$$

• We can split $Ker(L_*)$ according to the sign of the quadratic form ${\bf Q}$

$$Ker(L_*) = \Lambda^+ \oplus \Lambda^- \oplus \Lambda^0.$$

Half space problem

• Ansatz for f:

$$f(t,x,v) = m_{(\widetilde{\rho},\widetilde{u},\widetilde{\theta})} + G^L\left(t,\frac{x+\omega}{\tau}\right) + G^R\left(t,\frac{x-\omega}{\tau}\right) + o(\tau).$$

• G^R and G^L stand for boundary layers and are solution of the half space problem

$$\begin{cases} v\partial_z G = L_*G, & z > 0, \ v \in \mathbb{R} \\ G(0,v) = \Upsilon^{data} & \text{for } v > 0. \end{cases}$$
(3)

0

• Theorem : There exists a unique $G \in L^{\infty}(0, \infty; L^2(\mathbb{R}, M_*(v) dv))$ solution of (3) and a linear mapping (generalized Chandrasekhar functional)

$$\begin{aligned} \mathcal{C}_* : \quad L^2(\mathbb{R}, (1+|v|)M_*(v)\,dv) &\to \Lambda^+ \oplus \Lambda \\ & \Upsilon^{data} &\mapsto m_\infty, \end{aligned}$$

where $m_{\infty} = \lim_{z \to \infty} G(z)$. • For $x = -\omega$: G^L is defined by (3) with $\Upsilon^{data} = \gamma^{inc} f(\cdot, -\omega, \cdot) - m_{(\tilde{\rho}, \tilde{u}, \tilde{\theta})}$ 13 / 30 25 août 2010

Flux at the boundary (example of $x = -\omega$)

• Decomposition of $m_{(\tilde{\rho},\tilde{u},\tilde{\theta})}(t,-\omega,v) \in Ker(L_*) = \Lambda^+ \oplus \Lambda^0 \oplus \Lambda^-$:

$$m_{(\widetilde{\rho},\widetilde{u},\widetilde{\theta})} = m_+ + m_-,$$

with $m_+ = \lim_{z \to \infty} G^L(z) (= m_\infty)$.

m_− ∈ Λ[−] : outcoming flux
 → given by the fluid.

$$m_{-}(v) = \sum_{k \in I^{-}} \alpha_k \xi_k$$
, where $(\xi_k)_{k \in I^{-}}$ is a basis of Λ^- .

m₊ ∈ Λ⁺ ⊕ Λ⁰ : incoming flux
 → to be imposed as a boundary condition on the Euler system.

• Determination of m_+ : by integration of (3), we get

$$\frac{d}{dz} \int_{\mathbb{R}} v \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} G(z, v) M_*(v) dv = 0$$

• Maxwell approximation : $\gamma^{out}G(0, v) = G(\infty, v)$.

• We obtain :

$$\int_{v>0} v \begin{pmatrix} 1\\v\\|v|^2 \end{pmatrix} \left[\gamma^{inc}(f) - m_{-}\right] M_* dv = \int_{v>0} v \begin{pmatrix} 1\\v\\|v|^2 \end{pmatrix} m_+ M_* dv$$

 with

$$\gamma^{inc}(f)(v) = \frac{1}{M_*(v)} \mathcal{R}(\gamma^{out}(fM_*)(t, -\omega, \cdot))(v) + \Psi^{data, L}(t, v) \text{ for } v > 0.$$

HYDROMELC ()

Numerical examples

We compare

• $(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta})$ given by

$$\begin{pmatrix} \widetilde{\rho} \\ \widetilde{\rho}u_* + \rho_*\widetilde{u} \\ \widetilde{\rho}(u_*^2 + \theta_*) + 2\rho_*u_*\widetilde{u} + \rho_*\widetilde{\theta} \end{pmatrix} = \int_{\mathbb{R}} \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} fM_* \, dv.$$

where f is the solution of the BGK equation :

$$\partial_t f + v \partial_x f = \frac{1}{\tau} L_*(f)$$
 (+B.C),

• and $(\tilde{\rho}, \tilde{u}, \tilde{\theta})$ solution of the linearized Euler system :

$$\partial_t \begin{pmatrix} \widetilde{\rho} \\ \widetilde{u} \\ \widetilde{\theta} \end{pmatrix} + \begin{pmatrix} u_* & \rho_* & 0 \\ \frac{\theta_*}{\rho_*} & u_* & 1 \\ 0 & 2\theta_* & u_* \end{pmatrix} \partial_x \begin{pmatrix} \widetilde{\rho} \\ \widetilde{u} \\ \widetilde{\theta} \end{pmatrix} = 0 \quad (+B.C).$$

HYDROMELC ()

FIG.: Density at t=0.1 s

Example 1

- $(\rho_*, u_*, \theta_*) = (1, -0.1, 1)$ \rightarrow signature of Q : (1, 2)
- specular reflexion
- $\alpha = 0.1$

FIG.: Temperature at t=0.1 s

FIG.: Macroscopic velocity at t=0.1 s

CEMRACS'10

- $(\rho_*, u_*, \theta_*) = (1, 0, 1)$ \rightarrow signature of Q : (1, 1)
- diffuse reflexion
- $(\rho_w, \theta_w) = (1, 1)$
- $\alpha = 0.8$

Fig.: Density at t=0.1 s

FIG.: Temperature at t=0.1 s

FIG.: Macroscopic velocity at t=0.1 s

Outline

- Introduction
 - Motivation
 - Objective of the study
 - References
- 2 Linearized BGK equation and Euler system
 - Linearization
 - Boundary conditions for the Euler system
 - Numerical examples
- 3 Linearized BGK-Poisson equation and Euler-Poisson system
 - Linearization
 - Numerical examples

Linearization

• We set for equilibrium state : $\mathcal{M}_*(x,v) = M_{(\rho_*,0,\theta_*)}(v) \frac{e^{-qV_*(x)/\theta_*}}{\int_{-\omega}^{\omega} e^{-qV_*(y)/\theta_*} dy}$. where $V_* \in C^2(-\omega,\omega)$ is the (unique) solution of the problem

 $\begin{cases} -\partial_x^2 V_* = q \left(\rho_* \frac{e^{-qV_*(x)/\theta_*}}{\int_{-\omega}^{\omega} e^{-qV_*(y)/\theta_*} dy} - 1 \right), \\ V_*(-\omega) = V^L, \quad V_*(\omega) = V^R. \end{cases}$ (4)

• The linearization $F = \mathcal{M}_*(1 + \delta f)$ and $V = V_* + \delta \widetilde{V}$ lead to the linearized Boltzmann-Poisson problem :

$$\begin{cases} \partial_t f + v \partial_x f - q \partial_x V_* \partial_v f + q \frac{v}{\theta_*} \partial_x \widetilde{V} = \frac{1}{\tau} L_* f, \\ -\partial_x^2 \widetilde{V} = q \int_{\mathbb{R}} f \mathcal{M}_* \, dv, \quad \widetilde{V}(-\omega) = \widetilde{V}(\omega) = 0. \end{cases}$$

HYDROMELC ()

22 / 30

Linearized Euler-Poisson system

Substituting f by the infinitesimal Maxwellian $m_{(\tilde{\rho},\tilde{u},\tilde{\theta})}$ leads to :

$$\partial_t \begin{pmatrix} \widetilde{\rho} \\ \widetilde{u} \\ \widetilde{\theta} \end{pmatrix} + \begin{pmatrix} 0 & \rho_* & 0 \\ \frac{\theta_*}{\rho_*} & 0 & 1 \\ 0 & 2\theta_* & 0 \end{pmatrix} \partial_x \begin{pmatrix} \widetilde{\rho} \\ \widetilde{u} \\ \widetilde{\theta} \end{pmatrix} = q \partial_x V_* \begin{pmatrix} \frac{\rho_* \widetilde{u}}{\theta_*} \\ \frac{\widetilde{\theta}}{\theta_*} \\ 0 \end{pmatrix} - q \partial_x \widetilde{V} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

with

$$-\partial_x^2 \widetilde{V} = q \,\widetilde{\rho} \frac{e^{-qV_*(x)/\theta_*}}{\int_{-\omega}^{\omega} e^{-qV_*(y)/\theta_*} \, dy}, \qquad \widetilde{V}(-\omega) = \widetilde{V}(\omega) = 0.$$

Numerical examples

Example 3

- $(\rho_*, u_*, \theta_*) = (1, 0, 0.5)$
- Source term at the left boundary : $\phi^{data,L} = m_{(\rho_w^L, 0, \theta_w^L)}$, with

$$(\rho^L_w, \theta^L_w) = (2/1.2, 1.2/2)$$

• Boundary condition at the right side : $\phi^{data,L} = m_{(\rho_*,0,\theta_*)}$

•
$$q = -1$$

•
$$V^R = 1, V^L = 1.$$

Fig.: Density at t=0.1 s

FIG.: Temperature at t=0.1 s

FIG.: Macroscopic velocity at t=0.1 s

CEMRACS'10

Example 4

- $(\rho_*, u_*, \theta_*) = (1, 0, 0.5)$
- specular reflexion
- $\alpha = 0.4$
- *q* = 1
- $V^R = 0, V^L = 1.$

Fig.: Density at t=0.1 s

FIG.: Temperature at t=0.1 s

FIG.: Macroscopic velocity at t=0.1 s

Fig.: Potential V at t=0.1 s

Outline

- Introduction
 - Motivation
 - Objective of the study
 - References
- 2 Linearized BGK equation and Euler system
 - Linearization
 - Boundary conditions for the Euler system
 - Numerical examples
- 3 Linearized BGK-Poisson equation and Euler-Poisson system
 - Linearization
 - Numerical examples

Conclusion and futur prospects

Conclusion

- Comparison between linearized BGK-Poisson equation and linearized Euler system.
- In most of situation, comparisons are quite good !
- Successful addition of the Poisson potential.

Work in progress

- Improvment of the case with diffuse reflexion and α close to 1.
- Implementation of the full Euler-Poisson system and comparison with the BGK-Poisson equation.

Perspectives

• The full ions-electrons system.