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GYSELA : a 5D gyrokinetic code

Tokamak kinetic model:

6D phase space

3D in space:

↪→ toric geometry (r , θ, ϕ)

3D in velocity: (v⊥, α, v‖)

Gyrokinetic theory:

Adiabatic invariant µ =
mv2⊥
2B

replaces variables (v⊥,α)

↪→ gyrokinetic model 5D+t : Data f̄ (r , θ, ϕ, v‖, µ, t)

Vlasov equation to solve at each time step t

GYSELA 5D:

Semi-Lagrangian method

Strang splitting:

1D advections in ϕ and v‖
2D advection in (r , θ)
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CEMRACS'10: GYRONURBS project

Up to now
in the poloidal plane:

polar system (r , θ)
disc geometry
(hole in the center)
r ∈ [rmin, rmax ]
rmin > 0

Aim: use NURBS in the poloidal plane

complex shapes accessible:
ellipse, X-point, ...
avoid the hole in the center
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Non-Uniform Rational B-Splines (NURBS)

Developed for applications in CAD

Extension of B-splines (polynomials:rational functions)

Provide an exact representation of geometrical shapes

(including conic sections)

A NURBS curve is de�ned by

its order p
a set of control points
a weight associated to each control point
a knot vector (:where the control points a�ect the curve)
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Example of a 1D NURBS curve

Order p = 2 (i.e. fractions of second degree polynomials)

N = 9 control points Pi with weights ωi
i 1 2 3 4 5 6 7 8 9

Pi 1;0 1;1 0;1 -1;1 -1;0 -1;-1 0;-1 1;-1 1;0

ωi 1 1√
2

1 1√
2

1 1√
2

1 1√
2

1

Knot vector: T =
(
0, 0, 0, 1

4
, 1
4
, 1
2
, 1
2
, 3
4
, 3
4
, 1, 1, 1

)
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Example of a 2D NURBS grid

Tensor product of two NURBS curves

N(1) = 3, p(1) = 2

N(2) = 3, p(2) = 2

9 control points

N(1) = 5, p(1) = 2

N(2) = 5, p(2) = 2

25 control points
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The Semi-Lagrangian method

Fixed grid in phase space (∼Eulerian method)

Follow characteristics back in time (∼PIC method)

Interpolate foot of characteristic on the �xed grid
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Generating a grid using NURBS

Using the ISOBOX library developed by A. Ratnani

Input

N(1), p(1), N(2), p(2)

Knot vectors T (1), T (2)

Control points

Generates a 2D mesh parametrized by (ξ, η) ∈ [0, 1]2

Direct mapping (ξ, η)→ (x , y) is explicit

(analytical expression)

Inverse mapping (x , y)→ (ξ, η) is not trivial
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Modi�ed Semi-Lagrangian method

2 possible approaches

Rewrite the advections in the (ξ, η) coordinates : ISOPIC

Compute the advections in real space (x , y): GYRONURBS

⇒ adds 2 steps to the usual SL method

(1) Direct mapping

(ξ, η)→ (x , y)

Follow the characteristic

backward

(x , y)→ (x∗, y∗)

(2) Inverse mapping

(x∗, y∗)→ (ξ∗, η∗)

Interpolate (ξ∗, η∗) on the

�xed grid
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Importance of describing phase-space �lamentation

What happens in the poloidal plane during a GYSELA run?

GYSELA 4D slab test case (cylinder geometry): one µ value

Grid size is Nr = 128,Nθ = 256,Nϕ = 32,Nv‖ = 64

Diagnostic shown (ϕ, v‖ are �xed):
slice (ft − f0), abcissa θ, ordinate r
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The paraxial beam test case

Propagation of intense laser beam (accelerator physics)

Vlasov-Poisson in cylindrical coordinates

Constant propagation velocity along the optical axis

⇒ distribution function in (r , vr )

System of equations

∂t f + vr∂r f − Etot(t, r)∂vr f (t, r , vr ) = 0

1

r
∂r (rEbeam(t, r)) = ρ(t, r) = 1−

∫
Vm

−Vm
f (t, r , v) dv

Periodic focusing by an external electric �eld

Eext = −1
2
{1 + cos (2πt)} r
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The ISOLOSS code

based on LOcal Spline Simulator code (Crouseilles-Latu 2006)

1D-1D Vlasov-Poisson solver

Semi-Lagrangian method

Local Cubic Spline interpolation

Predictor-corrector scheme

Strang splitting between spatial and velocity direction

Describes Landau damping and two-stream instability

ISOLOSS (this project):

replace Strang splitting by 2D advection

(closer to the situation in GYSELA )

Implement the paraxial beam test case : �lm

Create a non-cartesian grid using NURBS

Adapt the Vlasov-Poisson solver to the NURBS formulation
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Vlasov solver

Input : f n on (ξ, η) grid, En

Output : f n+1 on (ξ, η) grid

for each grid point (ξ, η) ∈ [0, 1]2 do
direct mapping (ξ, η)→ (r , vr );
Compute 2D advection (r , vr )→ (r∗, v∗r );
Inverse mapping (r∗, v∗r )→ (ξ∗, η∗);

Interpolate (ξ∗, η∗) on the [0, 1]2 grid (using local cubic splines);

Algorithm 1: Vlasov solver using NURBS grid
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Inverse mapping

In general, no analytical expression for (r , vr )→ (ξ, η)

surfaces de�ned by rational functions of 2 variables

↪→ high degree polynomials (> 4 even for simple surfaces)

Standard solution: iterative method (e.g. Newton scheme)

⇒possibly high numerical cost

Less costly solutions available for speci�c grids

Polar grid: (r , vr )→ (ξ, η) ∼ (
√

r2 + v2r , arctan(vr/r))

for Bezier surfaces (speci�c category of NURBS): e�cient

inverse mapping using Bezier clipping + deCasteljau

algorithm. (work in progress)

⇒possible extension to the general case?
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Poisson solver

We need to compute ρ(r) =
∫
f (r , vr )dvr from f (ξ, η)

→ a grid in the spatial coordinate r is required

Naive approach: for each grid point in (ξ, η), �deposit�
f (ξ, η) at the closest radial grid point:bad accuracy

Method adopted: create a grid in velocity space as well

Input : f on (ξ, η) grid
Output : E (r)

for each grid point in r do
ρ(r) = 0;
for each grid point in vr do

Inverse mapping (r , vr )→ (ξ, η);

Interpolate on the [0, 1]2 grid to �nd f (ξ, η);
ρ(r) = ρ(r) + f (ξ, η)

Compute E on radial grid points (∂r (rE )/r = ρ)

Algorithm 2: Poisson solver using NURBS grid
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Results

Quarter-ring grid de�ned by a polar parameterization

↪→ Simple analytical inverse mapping

⇒ Filamentation in phase-space is well-described (: �lm)

No extra numerical cost

We also considered a �tokamak-like� surface
Mesh generated using Bezier curves

in progress: inverse mapping with Bezier clipping algorithm
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Conclusions and perspectives

Results on the 2D test case

Generation of a NURBS grid using the ISOBOX library

Vlasov-Poisson solver for this non-cartesian grid

⇒ Correct description of �lamentation in phase-space

in progress: inverse mapping for non-analytical case

Perspectives for GYSELA 5D

The ISOBOX interface has been modi�ed and is now

adaptable to the GYSELA code

Next step: solve the 2D advection in GYSELA using NURBS

Further perspective: solve the quasi-neutrality equation in

GYSELA using NURBS
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