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Abstract. These notes constitute an introduction to the Landau
damping phenomenon in the linearized and perturbative nonlinear
regimes, following the recent work [74] by Mouhot & Villani.
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Foreword

In 1936, Lev Landau devised the basic collisional kinetic model
for plasma physics, now commonly called the Landau–Fokker–Planck
equation. With this model he was introducing the notion of relaxation
in plasma physics: relaxation à la Boltzmann, by increase of entropy,
or equivalently loss of information.

In 1946, Landau came back to this field with an astonishing concept:
relaxation without entropy increase, with preservation of information.
The revolutionary idea that conservative phenomena may exhibit ir-
reversible features has been extremely influential, and later led to the
concept of violent relaxation.

This idea has also been controversial and intriguing, triggering hun-
dreds of papers and many discussions. The basic model used by Landau
was the linearized Vlasov–Poisson equation, which is only a formal ap-
proximation of the Vlasov–Poisson equation. In the present notes I
shall present the recent work by Clément Mouhot and myself, extend-
ing Landau’s results to the nonlinear Vlasov–Poisson equation in the
perturbative regime. Although this extension is still far from handling
the mysterious fully nonlinear regime, it already turned out to be rich
and tricky, from both the mathematical and the physical points of view.

These notes start with basic reminders about classical particle sys-
tems and Vlasov equations, assuming no prerequisite from modeling
nor physics. Standard notation is used throughout the text, except
maybe for the Fourier transforms: if h = h(x, v) is a function on the

position-velocity phase space, then ĥ stands for the Fourier transform

in the x variable only, while h̃ stands for the Fourier transform in both
x and v variables. Precise conventions will be given later on.

This course was first taught in the summer of 2010 in Cotonou,
Benin, on the invitation of Wilfrid Gangbo; and in Luminy, France,
on the invitation of Éric Sonnendrücker. It is a pleasure to thank the
audience for their interest and enthusiasm. Typing was mostly per-
formed in the welcoming library of the gorgeous Domaine des Treilles
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of the Fondation Schlumberger, whose hospitality is gratefully acknowl-
edged, during a meeting on wave turbulence organized by Christophe
Josserand.



CHAPTER 1

Mean field approximation

The two main classes of kinetic equations are the collisional equa-
tions of Boltzmann type, modeling short-range interactions, and the
mean field equations of Vlasov type, modeling long-range interactions.
The disinction between short-range and long-range does not refer to
the decay of the microscopic interaction, but to the fact that the rele-
vant interaction takes place at distances which are much smaller than,
or comparable to, the macroscopic scale; in fact both types of interac-
tion may occur simultaneously. Collisional equations are discussed in
my survey [99]. In this chapter I will concisely present the archetypal
mean field equations.

1. The Newton equations

The collective interaction of a large population of “particles” arises
in a number of physical situations. The basic model consists in the
system of Newton equations in Rd (typically d = 3):

(1.1) mi ẍi(t) =
∑

j

Fj→i(t),

where mi is the mass of particle i, xi(t) ∈ Rd its position at time t, ẍi(t)
its acceleration, and Fj→i is the force exerted by particle j on particle
i. Even if this model does not take into account quantum or relativistic
effects, huge theoretical and practical problems remain dependent on
our understanding of (1.1).

The masses in (1.1) may differ my many orders of magnitude; ac-
tually this disparity of masses plays a key role in the study of the solar
system, or the Kolmogorov–Arnold–Moser theory [27], among other
things. But it also often happens that the situation where all masses
mi are equal is relevant, at least qualitatively. In the sequel, I shall
only consider this situation, so mi = m for all i.

If the interaction is translation invariant, it is often the case that the
the force derives from an interaction potential: there is W : Rd → R

such that

F = −∇W (x− y)

9



10 1. MEAN FIELD APPROXIMATION

is the force exterted at position x by a particle located at position y.
This formalism misses important classes of interaction such as magnetic
forces, but it will be sufficient for our purposes.

Examples 1.1. (a) W (x−y) = const. ρ ρ′/|x−y| is the electrostatic
interaction potential between particles with respective electric charges
ρ and ρ′, where |x− y| is the Euclidean distance in R3; (b) W (x− y) =
−const. mm′/|x− y| is the gravitational interaction potential between
particles with respective masses m and m′, also in R3; (c) Essentially
any potential W arises in some physical problem or the other, and even
a smooth (or analytic!) interaction potential W leads to relevant and
difficult problems.

As an example, let us write the basic equation governing the posi-
tions of stars in a galaxy:

ẍi(t) = G
∑

j 6=i

mj
xj − xi

|xj − xi|3
,

where G is the gravitational constant. Note that in this example, a star
is considered as a “particle”! There are similar equations describing
the behavior of ions and electrons in a plasma, involving the dielectric
constant, mass and electric charges.

In the sequel, I will assume that all masses are equal and work in
adimensional units, so masses will not explicitly appear in the equa-
tions.

But now there are as many equations as there are particles, and
this means a lot. A galaxy may be made of N ≃ 1013 stars, a plasma
of N ≃ 1020 particles... thus the equations are untractable in practice.
Computer simulations, available on Internet, give a flavor of the rich
and complex behavior displayed by large particle systems interacting
through gravity. It is very difficult to say anything intelligent in front
of these complex pictures. This complex behavior is partly due to the
fact that the gravitational potential is attractive and singular at the
origin; but even for a smooth interaction W would the large value of
N cause much trouble in the quantitative analysis.

The mean field limit will lead to another model, more amenable
to mathematical treatment.

2. Mean field limit

The limit N → ∞ allows to replace a very large number of simple
equations by just one complicated equation. Although we are trading
reassuring ordinary differential equations for dreaded partial differen-
tial equations, the result will be more tractable.
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From the theoretical point of view, the mean field approximation is
fundamental: not only because it establishes the basic limit equation,
but also because it shows that the qualitative behavior of the system
does not depend much on the exact value of the number of particles,
and then in numerical simulations for instance we can replace trillions
of particles by, say, millions or even thousands.

It is not a priori obvious how one can let the dimension of the phase
space go to infinity. As a first step, let us double variables to convert
the second-order Newton equations into a first-order system. So for
each position variable xi we introduce the velocity variable vi = ẋi

(time-derivative of the position), so that the whole state of the system
at time t is described by (x1, v1), . . . , (xN , vN). Let us write Xd for the
d-dimensional space of positions, which may be Rd, or a subset of Rd,
or the d-dimensional torus Td if we are considering periodic data; then
the space of velocities will be Rd.

Since all particles are identical, we do not really care about the state
of each particle individually: it is sufficient to know the state of the
system up to permutation of particles. In slightly pedantic terms, we are
taking the quotient of the phase space (Xd ×Rd)N by the permutation
group SN , thus obtaining a cloud of undistinguishable points.

There is a one-to-one correspondence between such a cloud C =
{(x1, v1), . . . , (xN , vN)} and the associated empirical measure

µ̂N =
1

N

N∑

i=1

δ(xi,vi),

where δ(x,v) is the Dirac mass in phase space at (x, v). From the physical
point of view, the empirical measure counts particles in phase space.

Now the empirical measure µ̂N belongs to the space P (Xd × Rd),
the space of probability measures on the single-particle phase space.
This space is infinite-dimensional, but it is independent of the number
of particles. So the plan is to re-express the Newton equations in terms
of the empirical measure, and then pass to the limit as N → ∞.

For simplicity I shall assume that Xd is either Rd or Td, and that
the force derives from an interaction potential W . The following propo-
sition, slightly informal, establishes the link between the Newton equa-
tions and the empirical measure equation.

Proposition 1.2. (i) Let W ∈ C1(Xd; R), and for each i let xi =
xi(t); then with the notation µ̂N = N−1

∑
δ(xi,ẋi) the following two
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statements are equivalent:

(1.2) ∀i, ẍi = −c
∑

j

∇W (xi − xj)

(1.3)
∂µ̂N

∂t
+ v · ∇xµ̂

N + FN(t, x) · ∇vµ̂
N = 0,

where

FN(t, x) = −c
∑

j

∇W (x− xj) = −cN
(
∇W ∗x,v µ̂

N
)
.

(ii) If ∇W is uniformly continuous and µ̂N
0 converges weakly to

some measure µ0 and c = c(N) satisfies cN → γ ≥ 0 as N → ∞,
then up to extraction of a subsequence, µ̂N converges as t → ∞ to a
time-dependent measure µ = µt(dx dv) solving the system

(1.4)





∂µ

∂t
+ v · ∇xµ+ F (t, x) · ∇vµ = 0

F = −γ∇W ∗x,v µ

Remark 1.3. Equations (1.3) and (1.4) are to be understood in
distributional sense, that is, after integrating on the phase space against
a nice test function ϕ(x, v), say smooth and compactly supported. To
rewrite these equations in distributional form, note that

v · ∇xµ = ∇x · (vµ), F (t, x) · ∇vµ = ∇v ·
(
F (t, x)µ

)
.

(To be rigorous one should also use a test function in time, but this is
not a serious issue and I shall leave it aside.)

Remark 1.4. The second formula in (1.4) can be made more ex-
plicit as

F (t, x) = −
∫∫

W (x− y)µt(dy dw);

of course the convolution in the velocity variable is trivial since ∇W
does not depend on it; so this is just an integration in velocity space.

Remark 1.5. By definition, a sequence of measures µN converges to
a measure µ in the weak sense if, for any bounded continuous function
ϕ(x, v),

∫∫
ϕ(x, v)µN(dx dv) −−−→

N→∞

∫∫
ϕ(x, v)µ(dx dv).

If µN and µ are probability measures, then weak convergence is equiv-
alent to convergence in the sense of distributions.



2. MEAN FIELD LIMIT 13

Sketch of proof of Proposition 1.2. Let us forget about is-
sues of regularity and well-posedness, and focus on the core compu-
tations, assuming that xi(t) is a smooth function of t. When we test
equation (1.3) against an arbitrary function ϕ = ϕ(x, v) we obtain

d

dt

[
1

N

∑

i

ϕ(xi, vi)

]
− 1

N

∑

i

(v · ∇xϕ)|(xi,vi)
− 1

N

∑

i

(FN · ∇vϕ)
∣∣
(xi,vi)

= 0,

where the time-dependence is implicit; by chain-rule this means

1

N

∑

i

(
∇xϕ · ẋi + ∇vϕ · v̇i −∇xϕ · vi −∇vϕ · FN(xi)

)
= 0,

where ϕ inside the summation is evaluated at (xi, vi). Since vi = ẋi,
this equation reduces to

(1.5)
1

N

∑

i

[
v̇i − FN(t, xi)

]
· ∇vϕ(xi, vi) = 0.

Now this should hold true for any test function ϕ(x, v). Choosing one
which takes the form e · v near (xi, vi) (with e an arbitrary vector) and
which vanishes near (xj, vj) for all j 6= i, we deduce that v̇i = FN(t, xi).
(This argument is not fully rigorous since it may happen that two
distinct particles occupy similar positions in phase space, but that is
not a big deal to fix.) Now (1.5) is just a way to rewrite (1.2); the
equivalence between (1.2) and (1.3) follows easily.

Next we note that
∑

∇W (x− xj) = N∇W ∗ µ̂, where the convo-
lution is in both variables x and v. In retrospect, it is normal that the
force should be expressed in terms of the empirical measure, since this
is a symmetric expression of the positions of particles.

Now let us consider the limit N → ∞. Let us fix a finite time-
horizon T > 0 and work on the time-interval [−T, T ]. By assumption
the initial data µ̂N(0, ·) form a tight family; then from the differential
equation satisfied by the measures µ̂N(t, · ) it is not difficult to show
that µ̂N(t, · ) is also tight, uniformly in t ∈ [−T, T ]. Then, up to extrac-
tion of a subsequence, µ̂N(t, ·) will converge in C([−T, T ];D′(Xd×Rd))
for any T > 0, to some limit measure µ(t, dx dv). It only remains to
pass to the limit in the equation.

Being the convolution of a uniformly continuous function with a
probability measure, hte force field FN = −cN ∇W ∗ µ̂N is uniformly
continuous on [−T, T ] × Xd, and will converge uniformly as N → ∞
to −γ∇W ∗ µ. This easily implies that

FN µ̂N −→ F µ
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in distributional sense, whence ∇v · (FN µ̂N) −→ ∇v · (F µ). Similarly,
∇x · (vµ̂N) converges to ∇x · (vµ), and the proof is complete. �

The limit equation (1.4) is called the nonlinear Vlasov equation

associated with the interaction potential W . It makes sense just as
well for µt(dx dv) = N−1

∑
δ(xi(t),vi(t)) (in which case it reduces to the

Newton dynamics) as for µt(dx dv) = f(t, x, v) dx dv, that is, for a con-
tinuous distribution of matter. In fact the nonlinear Vlasov equation
is the completion, in the space of measures, of the system of Newton
equations.

It is customary and physically relevant to restrict to the case of a
continuous distribution function, and then focus on the equation satis-
fied by f(t, x, v). Since the Lebesgue measure dx dv is transparent to
the differential operators ∇x and ∇v, one easily obtains the nonlinear

Vlasov equation for the density function f = f(t, x, v):

(1.6)





∂f

∂t
+ v · ∇xf + F (t, x) · ∇vf = 0

F = −∇W ∗x ρ, ρ(t, x) =

∫
f(t, x, v) dv,

where the (x, v)-convolution has been explicitly replaced by a convolu-
tion in x and an integration in v.

Equation (1.6) is the single most important partial differential equa-
tions of mean field systems, and will be the object of study of this
course.

3. Precised results

In Proposition 1.2 it was assumed that W is continuously differen-
tiable. If W is smoother then one can prove more precise results of
quantitative convergence, involving distances on probability measures,
for instance the Wasserstein distances Wp. For the present section, it
will be sufficient to know the 1-Wasserstein distance, defined by the
formula

W1(µ, ν) := sup

{∫
ψ dµ−

∫
ψ dν; ‖ψ‖Lip ≤ 1

}
,

where the supremum is over all 1-Lipschitz functions ψ of (x, v), and
it is assumed that µ and ν possess a finite moment of order 1. (If one
imposes that ψ is also bounded in supremum norm, one obtains the
closely related “bounded Lipschitz” distance, which does not need any
moment assumption.)

Here is a typical estimate of convergence for the mean-field limit,
stated here without proof, going back to Dobrushin:
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Proposition 1.6. If µt(dx dv) and νt(dx dv) are two solutions of
the nonlinear Vlasov equation with interaction potential W , then for
any t ∈ R

(1.7) W1(µt, νt) ≤ e2C|t|W1(µ0, ν0), C = max
(
‖∇2W‖L∞, 1

)
.

It might not be obvious why this provides a convergence estimate
in the mean-field limit. To see this, choose µt(dx dv) = f(t, x, v) dx dv
and νt = µ̂N

t ; then (1.7) controls at time t the distance between the
limit mean-field behavior and the Newton equation for N particles, in
terms of how small this distance is at initial time t = 0. If the particles
at t = 0 are chosen randomly, then typically the W1 distance at t = 0
is O(1/

√
N), so W1(µt, νt) = O(e2C|t|/

√
N), which solves the problem.

(Note that this estimate requires crazy amounts of particles to get a
good precision in large time.)

Another type of estimates are large deviation bounds:

Proposition 1.7. If ∇2W is bounded, f0 = f0(x, v) is given with∫∫
f0(x, v) e

β(|x|2+|v|2) dx dv ≤ C0, (xi(0), ẋi(0)), 1 ≤ i ≤ N , are chosen
randomly and independently according to f0(x, v) dx dv, (xi(t)) solve
the Newton equations (1.2) with c = 1/N , and f(t, x, v) solves the
nonlinear Vlasov equation (1.6), then there is K > 0 such that for any
T ≥ 0 there is C = C(T ) such that

(1.8) N ≥ N0 max
(
ε−(2d+3), 1

)
=⇒

P

[
sup

0≤t≤T
W1

(
µ̂N

t , f(t, x, v) dx dv
)
> ε

]
≤ C

(
1 + ε−2

)
e−KNε2

,

where P stands for probability.

Many refinements are possible: for instance, one can estimate the
density error between f(t, x, v) and the empirical measure, after smooth-
ing by a peaked convolution kernel; study the evolution of (de)correlations
between particles which are initially randomly distributed; show that
trajectories of particles in the system of size N are well approximated
by trajectories of particles evolving in the limit mean-field force, etc.

4. Singular potentials

Fine. But eventually, more often than not, the interaction potential
is not smooth at all, instead it is rather singular. Then nobody has a
clue of why the mean-field limit should be true. The problem might be
just technical, but on the contrary it seems very deep.

Such is the case in particular for the most important nonlinear
Vlasov equations, namely the Vlasov–Poisson equations, where W
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is the fundamental solution of ±∆. In dimension d = 3, writing r =
|x− y|, we have

• the Coulomb interaction (repulsive) W =
1

4πr
;

• the Newton interaction (attractive) W = − 1

4πr
.

Then the equation F = −∇W ∗ ρ becomes F = ±∇∆−1ρ.

It is remarkable that, up to a change of sign in the interaction, the
very same equation describes systems of such various scales as a plasma
and a galaxy, in which each star counts as one particle! In fact to be
more precise, we should slightly change the equation for plasmas, by
taking into account the contribution of heavy ions, which is usually
considered in the form of a fixed density of positive charges, say ρI(x),
and by considering magnetic effects, which in some situations play an
important role. Things become much more messy when irreversible
phenomena are taken into account, but these phenomena occur only as
corrections to the mean-field limit, due to the fact that N is finite.

While the mean-field limit for smooth potential has been well-
understood for more than three decades, in the case of singular po-
tentials the only available results are those obtained a few years ago
by Hauray and Jabin: they assume that (a) the interaction is no too
singular: essentially |∇W | = O(r−s) with 0 < s < 1 (independently of
the dimension d); and (b) particles are well-separated in phase space
initially, so

(1.9) inf
j 6=i

(
|xi − xj | + |vi − vj|

)
≥ c

N
1
2d

,

where c is of course independent of N .
Both conditions are not so satisfactory: assumption (a) misses the

Coulomb/Newton singularity by an order 1 + 0, while assumption (b)
cannot be true in the simplest case when particles are chosen randomly
and idependently of each other. It might be that assumption (b) can be
given a physical justification, though, based on the ionization process
for instance; but that remains to be done. For numerical purpose, as-
sumption (b) is more satisfactory since we can choose the discretization
as we wish.

In any case, a key ingredient in the proof of the Hauray–Jabin
theorem consists in showing that the separation (1.9) property is prop-
agated in time: if true at t = 0, it remains true for later times, up
to a deterioration of constants. This implies that the proportion of
particles located in a box of side ε in phase space remains bounded like
O(ε2d) as time goes by, uniformly in N . (This is a discrete analogue
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of the property of propagation of L∞ bounds for the nonlinear Vlasov
equation, which will be examined in the next chapter)

What about the theory of the nonlinear Vlasov equation? Is the
system well-posed for a given initial datum? For smooth interactions
this does not pose any problem, but when the interaction potential
is singular, this becomes highly nontrivial. Most efforts have been
focused on the Poisson coupling in dimension 3. Although this may
not have been considered carefully, the theory would probably work
just the same in arbitrary dimensions and with a coupling that is no
more singular than Poisson. There are two famous theories for the
Vlasov–Poisson equation with large data:

• The Pfaffelmoser theory, developed and simplified in particular
by Batt, Rein, Glassey, Scheffer, construct smooth solutions assuming
essentially that fi is C1 and compactly supported in (x, v).

• The Lions–Perthame theory constructs a unique solution for an
initial datum fi on R3

x × R3
v which satisfies, say,

(1.10) |fi(x, v)| + |∇f(x, v)| ≤ C

(1 + |x| + |v|)10
.

(The exponent 10 depends on the fact that dimension is 3, and anyway
should not be taken seriously.) Besides velocity averaging phenomena,
the key insight of the analysis is the propagation of bounds on velocity
moments of order greater than 3. Then one can show that the spatial
density is uniformly bounded, and the smoothness is propagated too.

Both theories are still incomplete. The Lions–Perthame theory
takes advantage of the dispersion at large positions to control velocity-
moments; it has never been checked that it can be adapted in bounded
geometries, like the torus T3. As for the Pfaffelmoser theory, it does
adapt to bounded geometries, but the assumption of compact support
in the velocity space, is a heresy, since it does not include even the sin-
gle most important distribution in kinetic theory, namely the Gaussian
distribution.

Perturbative theories of the nonlinear Vlasov equation near an equi-
librium are in better shape. We shall see an example in this course.
This suggests that the problem of the mean-field limit in a perturbative
setting could be attacked.

Bibliographical notes

Impressive particle simulations of large systems, performed by John
Dubinski, can be found online at www.galaxydynamics.org
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The kinetic theory of plasmas was born in Soviet Union in the thir-
ties, when Landau adapted the Boltzmann collision operator to the
Coulomb interaction [55] and Vlasov argued that long-range interac-
tions should be taken into account by a conceptually simpler mean-field
term [103]. The collisional kinetic theory of plasmas is described in
a number of physics textbooks [1, 54, 61] and in the mathematical
review [99]; see also [2, Sections 1 and 2].

The mean field limit however did not become a mathematical sub-
ject until the classical works by Dobrushin [31], Braun & Hepp [20],
and Neunzert [77]. Braun & Hepp were also interested in the propaga-
tion of chaos and the study of fluctuations; these topics are addressed
again in Sznitman’s Saint-Flour lecture notes [95]. Other synthetic
sources are the book by Spohn [92] and my incomplete lecture notes
on the mean field limit [102], which both contain a recast of the proof
of Proposition 1.6. Quantitative estimates of the mean field limit for
simple (stochastic) models and smooth interaction are found in my
work [15] joint with Bolley and Guillin; the proof of Proposition 1.7
can be obtained by adapting the estimates therein.

The mean-field limit for mildly singular interactions was considered
by Hauray and Jabin [42] in a pioneering work that still needs to be
digested and simplified by the mathematical community.

Early contributions to the Cauchy problem for the Vlasov–Poisson
equation, working either in short time, or with weak solutions, or in
small dimension, are due to Arsen’ev, Horst, Bardos, Degond, Bena-
chour, DiPerna & Lions in the seventies and eighties [6, 7, 9, 12, 28,

46, 47]. The theory reached a more mature stage with the ground-
breaking works by Pfaffelmoser [83] and Lions & Perthame [60] at
the dawn of the nineties. Pfaffelmoser’s approach was simplified by
Schaeffer [90] and Horst [48], and is well exposed by Glassey [35]; the
adaptation to periodic data was performed by Batt & Rein [10]. The
alternative Lions–Perthame approach is presented by Bouchut [17].



CHAPTER 2

Qualitative behavior of the Vlasov equation

In the previous chapter we were interested in the derivation and
well-posedness of the Vlasov equation

(2.1)





∂f

∂t
+ v · ∇xf + F (t, x) · ∇vf = 0

F = −∇W ∗x ρ ρ(t, x) =

∫
f(t, x, v) dv.

But now the emphasis will be different: starting from the Vlasov equa-
tion, we shall enquire about its qualitative behavior. This problem fills
up textbooks in physics, and has been the subject of an enormous
amount of literature.

1. Boundary conditions

There is a zoology of boundary conditions for the Vlasov equation.
To avoid discussing them, I shall continue to assume that the position
space is either Xd = Rd, the whole space, or Xd = Td/Zd, the d-
dimensional torus. The latter case deserves some comments.

If W is a given potential in Rd, then in the periodic setting, formally
W should be replaced by its periodic version W per:

W per(x) =
∑

k∈Zd

W (x− k).

If W decays fast enough, this is well-defined, but if W has slow decay,
like in the case of Poisson interaction, this will not converge! Then
the justification requires some argument. In fact, it is clear that for
Poisson coupling the potential cannot converge: in the case of the
Poisson coupling, the total potential W ∗ ρ should formally be equal to
±∆−1ρ, which does not make sense since ρ does not have zero mean...
To get around this problem, we would like to take out the mean of ρ.

In the plasma case, one can justify this by going back to the model:
indeed, one may argue that the density of ions should be taken into
account, that it can be modelled as a uniform background because ions
are much heavier and move on longer time scales than electrons, and
that the density of ion charges should be equal to the mean density of
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electrons because the plasma should be globally neutral. This amounts
to replace the potential W ∗ ρ by W ∗ (ρ− 〈ρ〉), where 〈ρ〉 =

∫
ρ dx.

The preceding reasoning is based on the existence of two different
species of particles. But even if there is just one species of particles, as
is the case for gravitational interaction, it is still possible to argue that
the mean should be removed. Indeed, in (2.1) W only appears through
its gradient, and, whenever c is a constant,

∇W ∗ (ρ− c) = ∇W ∗ ρ−∇W ∗ c = ∇W ∗ ρ.
Thus, if W decays fast enough at infinity and ρ is periodic,

∇W ∗ ρ = ∇W per ∗ ρ = ∇W per ∗ (ρ− 〈ρ〉).
If W does not decay fast enough at infinity, then at least we can write
W = limε→0Wε, where Wε is an approximation decaying fast at infinity
(say ±e−r/ε/(4πr), then ∇Wε ∗ ρ = ∇W per

ε ∗ (ρ − 〈ρ〉), which in the
limit ε → 0 converges to ∇W per ∗ (ρ − 〈ρ〉). Of course this might not
be so convincing in the absence of a clear discussion of the meaning of
the parameter ε, but at least makes sense in some regime and allows
to take out the mean 〈ρ〉 from the density in (2.1). This operation is
similar to the so-called Jeans swindle in astrophysics.

Having warned the reader that there is a subtle point here, from now
on in the periodic setting I shall always write ∇W ∗ρ for ∇W ∗(ρ−〈ρ〉).
As a final comment, one may argue against the relevance of periodic
boundary conditions, especially in view of the above discussion; but this
is still by far the simplest way to have access to a confined geometry,
avoiding effects such as dispersion at infinity which completely change
the qualitative behavior of the nonlinear Vlasov equation.

2. Structure

The nonlinear Vlasov equation is a transport equation, and can
therefore be solved by the well-known method of characteristics: if
f solves the equation, then the measure f(t, x, v) dx dv is the push-

forward of the initial measure fi(x, v) dx dv by the flow S0,t = (Xt, Vt)
in phase space, solving the characteristic equations




Ẋt = Vt, V̇t = F (t, Xt), F = −∇W ∗ ρ,

(X0, V0) = (x, v).

Of course this does not solve the problem “explicitly”, since the force F
at time t depends on the whole distribution of particles via the formula
F = −∇W ∗ (

∫
f dv).
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Recall that the push-forward of a measure µ0 by a map S is defined
by S#µ0[A] = µ0[S

−1(A)]. The resulting equation on the densities gen-
erally involves the Jacobian determinant of the flow at time t. However
in the present case, the flow St induced by F (t, x) preserves the Liou-
ville measure dx dv (that is a consequence from its Hamiltonian nature),
so the push-forward equation can be simplified in a pull-back equation
for densities. In other words, the solution f(t, x, v) will satisfy

(2.2) f(t, S0,t(x, v)) = f(0, x, v).

Thus, to get the distribution function at time t we should invert the
map St, in other words solve the characteristics backwards. If St,0

stands for the inverse of S0,t, then (2.2) becomes

(2.3) f(t, x, v, ) = f(0, St,0(x, v)).

Depending on situation, taste and theory, one considers the nonlin-
ear Vlasov equation either from the Eulerian point of view (focus on
f(t, x, v)), or from the Lagrangian point of view (focus on particle tra-
jectories in a force field reconstructed from the particle distribution).
This affects not only the theory, but also the numerics, since numer-
ical methods may be Eulerian (look at values of f on a grid, say),
or Lagrangian (consider particles moving), or semi-Lagrangian (make
particles move and interpolate at each step to reconstruct values of f
on a grid).

Apart from that, equation (2.1) is a limit of Hamiltonian equations
(the Newton equations), and actually has a Hamiltonian structure in
a certain sense, in relation with optimal transport theory; this link
was explored in particular by Ambrosio, Gangbo and Lott. For the
moment it is not clear whether this striking structure has physically
relevant implications beyond what is already known.

3. Invariants and identities

In this section I shall review the four main invariances and iden-
tities associated with the nonlinear Vlasov equation, assuming that
everything is well-defined and being content with formal identities.

• The nonlinear Vlasov equation preserves the total energy
∫∫

f(x, v)
|v|2
2
dx dv +

1

2

∫∫
W (x− y) ρ(x) ρ(y) dx dy =: T + U

is constant in time along solutions. The total energy is the sum of the
kinetic energy T and the potential energy U . (The factor 1/2 in the
definition of U comes from the fact that we should count unordered
pairs of particles.)
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• The nonlinear Vlasov equation preserves all the nonlinear inte-

grals of the density: often called the Casimirs of the equation, they
take the form ∫∫

A(f(x, v)) dx dv,

where A is arbitrary. These millions of conservation laws are imme-
diately deduced from (2.3); in other words, they express the fact that
the Vlasov equation induces a transport by a measure-preserving (in
fact Hamiltonian) flow. In particular, all Lp norms are preserved, the
supremum is preserved... and so is the entropy:

S = −
∫∫

f log f dx dv.

The latter property is in sharp contrast with the Boltzmann equation,
for which the entropy can only increase in time, unless it is at equilib-
rium. Physically speaking, it reflects the preservation of information:
whatever information we have about the distribution of particles at
initial time, is preserved at later times.

• The equation is time-reversible: choose an initial datum fi, let
it evolve by the nonlinear Vlasov equation from time 0 to time T ,
then reverse velocities (that is replace f(T, x, v) by f(T, x,−v)) let it
evolve again for an additional time T , reverse velocities again, and you
are back to the initial datum fi. This again is in contrast with the
time-irreversibility of the Boltzmann equation. As a consequence, the
nonlinear Vlasov equation does not have any regularizing effect, at least
in the usual sense.

• The last identity is called the virial theorem; it only holds in
the whole space and for specific classes of interaction. The virial1 is
defined as

V =

∫∫
f(x, v) x · v dx dv

is the time-derivative of the inertia

I =

∫∫
f(x, v)

|x|2
2
dx dv.

If the potential W is even and λ-homogeneous, that is, for any z ∈ Rd

and α 6= 0,

W (−z) = W (z), W (αz) = |α|λW (z),

1This word was made up by Clausius using the latine root for “force”.
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then one has the virial identity

dV
dt

= 2T − λU.

The most famous case of application is of course the case of Coulomb/Newton
equation, for which λ = −1, which yields

dV
dt

= 2T + U.

When one takes a time-average and looks over large times, the
contribution of the time-derivative is likely to disappear, and we are
left with the plausible guess

(2.4) 2〈T 〉 + 〈U〉 = 0,

where 〈u〉 = limT→∞ T−1
∫ T

0
u(t) dt. Identity (2.4) suggests some kind

of biased, but universal partition between the kinetic and potential
energies.

4. Equilibria

A famous property of the Boltzmann equation is that it only has
Gaussian equilibria. In contrast, the Vlasov equation has infinitely
many shapes of equilibria.

First of all, any distribution f(x, v) = f 0(v) defines a spatially

homogeneous equilibrium. Indeed, v · ∇xf
0 = 0, and the density

ρ0 associated to f 0 is constant, so the corresponding force vanishes
(∇W ∗ ρ0 = W ∗ (∇ρ0) = 0).

The construction of other classes of equilibria is easy by means
of the so-called Jeans theorem: any function of the invariants of the
flow is an equilibrium. As the most basic example, let us search for a
stationary f in the form of a function of the microscopic energy

E(x, v) =
|v|2
2

+ Φ(x), Φ = W ∗ ρ,

where ρ =
∫
f dv. Using the ansatz f(x, v) = f(E), where f is an

arbitrary function R → R+, we get by chain-rule

v · ∇xf −∇Φ · ∇vf = (f)′(E)
[
v · ∇Φ −∇Φ · v

]
= 0,

so f is an equilibrium.
Of course this works only if the potential Φ is indeed induced by f ,

which leads to the compatibility condition
∫
f

( |v|2
2

+ Φ(y)

)
W (x− y) dy dv = Φ(x).



24 2. QUALITATIVE BEHAVIOR OF THE VLASOV EQUATION

For a given f this is a nonlinear integral equation on the unknown Φ;
in the general case it is certainly too hard to solve, but if we are looking
for solutions with symmetries, depending on just one parameter, this
can often be done in practice.

If W is the Coulomb or Newton potential, the integral equation
transforms into a differential equation; as a typical situation, consider
the three-dimensional gravitational case with radial symmetry, then ρ
and Φ are functions of r, and we have after a few computations

ρ(r) = 4π

∫ 0

Φ(r)

√
2(E − Φ(r)) f(E) dE.

This gives ρ as a function of Φ, and then the formulas for spherical
Laplace operator applied to radial functions yield

1

r2

d

dr
(r2 Φ′(r)) = 4π ρ(Φ),

whence f(x, v) = f(|v|2/2 + Φ(r)) can be reconstructed.
Another typical situation is the one-dimensional Coulomb interac-

tion with periodic data: then the equation is

−Φ′′(x) =

∫
f

(
v2

2
+ Φ(x)

)
− 1,

subject to the condition
∫
f(v2/2 + Φ(x)) dv = 1. Such a solution is

called a BGK equilibrium, after Bernstein, Greene and Kruzkal; or
BGK wave, to emphasize the periodic nature of the solution. Such
waves exist as soon as f is smooth and decays fast enough at infinity,
and satisfies

∫
f(v2/2) dv = 1.

5. Speculations

The general concern by physicists is about the large time asymp-
totics, t→ ∞. Can one somehow draw a picture of the possible quali-
tative behavior of solutions to the nonlinear Vlasov equations?

Usually a first step in the understanding of the large-time behav-
ior is the identification of stable structures such as equilibria. In the
present case, the abundance of equilibria is a bit disorienting, and we
would like to find selection criteria allowing to make predictions in large
time.

Are equilibria stable? There is a convincing stability criterion for
homogeneous equilibria, due to Penrose, which will be studied in Chap-
ter 3. But no such thing exists for BGK waves, and nobody has a clue
whether these equilibria should be stable or unstable.
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Having no convincing answer to the previous question, we may turn
to an even more difficult question, that is, which equilibria are attrac-
tive? Can one witness convergence to equilibrium even in the absence
of dissipative features in the equation? Does the Vlasov equation ex-
hibit non-entropic relaxation, that is, relaxation without increase
of entropy? This has been the object of considerable debate, and sug-
gested by numerical experiments on the one hand, observation on the
other hand: as pointed out by the astrophysicist Lynden-Bell in the six-
ties, galaxies, roughly speaking, seem to be in equilibrium at relevant
scales, although the relaxation times associated with entropy produc-
tion in galaxies exceed by far the age of the universe. Lynden-Bell
argued that there should be a mechanism of violent relaxation, of
which nobody has a decent understanding.

If the final state is impossible to predict, maybe this problem can
be attacked in a statistical way: Lynden-Bell and followers argued that
some equilibria, in particular those having high entropy, may be favored
by statistical considerations. Maybe there are invariant measures on
the space of solutions of the nonlinear Vlasov equation, which can be
used to statistically predict the large-time behavior of solutions??

In all this maze of speculations, questions and religions, the only
tiny island on which we can stand on our feet is the Landau damp-

ing phenomenon: a relaxation property near stable equilibria, which
is driven by conservative phenomena. In the sequel I shall describe
this phenomenon in great detail; for the moment let me emphasize
that besides its theoretical and practical importance by itself, it is the
only serious theoretical hint of the possibility of dissipation-free relax-
ation in confined systems, without appealing to an extra randomness
assumption.

Bibliographical notes

I am not aware of any good synthetic introductory source for bound-
ary conditions of the nonlinear Vlasov equations; but this topic is dis-
cussed for instance in the research paper [40]. Boundary conditions
for kinetic equations are also evoked in [23, Chapter 8] or [99, Section
1.5]. The Cauchy problem for Vlasov–Poisson in a bounded convex
domain is studied in [49]; for nonconvex domain it is expected that
serious issues arise about the regularity.

The Jeans swindle appears in many textbooks in astrophysics to
justify asymptotic expansions when the density is a perturbation of
a uniform constant in the whole space, see e.g. [14]. The underlying
mathematical meaning of the procedure is neatly explained by Kiessling
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[52]. The explanations given in Section 1 are just an adaptation of the
argument to the periodic situation.

The Hamiltonian nature of the nonlinear Vlasov equation, in re-
lation with optimal transport theory, is discussed informally in my
introductory book on optimal transport [100, Section 8.3.2], and more
rigorously by Ambrosio & Gangbo [4], and Lott [62, Section 6]. Some of
these features are shared by other partial differential equations, in par-
ticular the two-dimensional incompressible Euler equation, for which a
good concise source is [68]. The similarity between the one-dimensional
Vlasov equation and the two-dimensional Euler equation with nonneg-
ative vorticity is well-known; physicists have systematically tried to
adapt tools and theories from one equation to the other.

The statistical meaning of the entropy, and its relation to the Boltz-
mann formula S = k logW is discussed in many sources; a concise
account can be found in my tribute to Boltzmann [101].

Formal properties of the Vlasov equation, including the virial the-
orem, are covered in many textbooks such as Binney & Tremaine [14].
This reference also discusses the procedure for constructing inhomoge-
neous equilibria.

BGK waves were introduced in the seminal paper [13] and have
been the object of many speculations in the literature; see [57, 58] for
a recent treatment. No BGK wave has been proven to be stable with
respect to periodic perturbations (that is, whose period is equal to the
period of the wave). The only known related statement is the instability
against perturbations with period twice as long [57, 58]. (This holds
in dimension 1, but can probably be translated into a multidimensional
result.) At least this means that a BGK wave f on T × R cannot be
hoped to be stable if f is 1/2-periodic in x.

The idea of violent relaxation was introduced in the sixties by
Lynden-Bell [63, 64], who at the same time founded the statistical
theory of the Vlasov equation. The theory has been pushed by several
authors, and also adapted to the two-dimensional incompressible Euler
equation [24, 70, 87, 96, 97, 104]. Since it is based on purely heuris-
tic grounds and on just the conservation laws satisfied by the Vlasov
equation (not on the equation itself), the statistical theory has been
the object of criticism, see e.g. [51].

The construction of invariant measures on infinite-dimensional Hamil-
tonian systems has failed for classical equations such as the Vlasov or
(two-dimensional, positive vorticity, incompressible) Euler equations
[85]; but it was solved for certain dispersive equations, such as the
cubic nonlinear Schrödinger equations, treated by Bourgain [19]. As
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far as the Vlasov or Euler equations are concerned, there is no canon-
ical choice of what could be a Gibbs measure, but now there might
be hope with Sturm’s construction of a fascinating canonical “entropic
measure” on the space of probability measures [94], coming from the
theory of optimal transport. But for the moment very little is known
about Sturm’s measure, and measures drawn according to this measure
are not even absolutely continuous.





CHAPTER 3

Linearized Vlasov equation near homogeneity

Vlasov, Landau and other pioneers of kinetic theory of plasmas
discovered a fundamental property: when one linearizes the Vlasov
equation around a homogeneous equilibrium, the resulting linear equa-
tion is “explicitly” solvable; in a way this is a completely integrable

system. This allowed Landau to solve the stability and asymptotic be-
havior for the linearized equation — two problems which seem out of
reach now for inhomogeneous equilibria.

0. Free transport

As a preliminary, let us study the properties of free transport, that
is, when there is no interaction (W = 0):

(3.1)
∂f

∂t
+ v · ∇xf = 0.

The properties of this equation differ much in the whole space Rd

and in the confined periodic space Td. In the former case, dispersion
at infinity dominates the large-time behavior, while in the latter case
one observes homogenization phenomena due to phase mixing as
illustrated in Fig. 3.1.

v

t = 0 t = 1
t = 10

x

Figure 3.1. Put an initial disturbance along a line at
t = 0. As time goes by, the free transport evolution
makes this line twist and homogenize very fast.

Phase mixing occurs for mechanical systems expressed in action-
angle variables when the angular velocity genuinely changes with the
action variable. In the present case, the angular variable is the position,

29
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so the angular velocity is the plain velocity, which coincides precisely
with the action variable.

t = 100

t = 0

t = 1

Figure 3.2. An example of a system which is not mix-
ing: for the harmonic oscillator (linearized pendulum)
the angular velocity is independent of the action vari-
able, so a disturbance in phase space keeps the same
shape as time goes by.

The free transport equation can be solved explicitly (which should
not prevent us from keeping the qualitative picture in mind): if fi is
the datum at t = 0, then

(3.2) f(t, x, v) = fi(x− vt, v)

To study fine properties of this solution, it is most convenient to
use the Fourier transform. Let us introduce the position-velocity
Fourier transform

f̃(k, η) =

∫∫
f(x, v) e−2iπk·x e−2iπη·v dx dv,

where k ∈ Zd is dual to x ∈ Td, and η ∈ Rd is dual to v ∈ Rd. Then
(3.2) implies

f̃(t, k, η) =

∫∫
fi(x− vt, v) e−2iπk·x e−2iπη·v dx dv(3.3)

=

∫∫
fi(x, v) e

−2iπk·(x+vt) e−2iπη·v dx dv(3.4)

= f̃i(k, η + kt).(3.5)

We deduce that

• f̃(t, 0, η) = f̃i(0, η): the zero spatial mode of f is preserved;
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• for fixed η and k 6= 0, f̃i(k, η + kt) −→ 0 as t → ∞, at a
rate which is (a) determined by the smoothness of fi in v(Riemann–
Lebesgue lemma), (b) faster when k is large. In fact, the relevant time
scale for the mode k is |k|t.

In particular, if fi is analytic in v then f̃i decays exponentially
fast in η, so the mode k of the solution of the free transport equation
will decay like O(e−2πλ|k|t). Also, if f is only assumed to be Sobolev
regular, say W s,1 in the velocity variable for some s > 0, then the
Fourier transform will decay like O(|η|−s) at large values of |η|, so the
mode of order k will decay like O((|k|t)−s).

We can represent this behavior of the free transport equation, in
Fourier space, as a cascade from low to high velocity modes, the cascade
being faster for higher spatial modes.

k

(kinetic modes)

initial configuration
(t = 0)

(spatial modes) t = t1 t = t2 t = t3

−η

Figure 3.3. Schematic picture of the evolution of en-
ergy by free transport, or perturbation thereof; marks
indicate localization of energy in phase space.

Remark 3.1. In view of this discussion, the free transport equation
appears to be a natural way to convert regularity into a time decay,
which can in principle be measured from a physical experiment!

Remark 3.2. Even though the free transport equation is reversible,

there is a definite behavior as t→ ±∞: f̃(t, k, η) converges to 0 for all

k 6= 0, and to f̃i(0, η) for k = 0. This means that

f(t, x, v)
weakly−−−→
t→∞

〈fi〉,
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where the brackets stand for spatial average:

〈h〉(v) =

∫
h(x, v) dx.

The convergence holds as long as the initial measure does have a den-
sity, that is, fi is well-defined as an integrable function; and it is faster
if fi is smooth.

Remark 3.3. Why don’t we see such phenomena as recurrence,
which are associated with confined mechanical systems? The answer
is that as soon as the distribution is spread out and has a density,
we do not expect such phenomena because the system truly is infinite-
dimensional. Recurrence would occur with a singular distribution func-
tion, say Dirac masses, but we ruled out this situation.

1. Linearization

Now let us go back to the Vlasov equation. Let f 0 = f 0(v) be
a homogeneous equilibrium. We write f(t, x, v) = f 0(v) + h(t, x, v),
where ‖h‖ ≪ 1 in some sense. Since f 0 does not contribute to the
force field, the nonlinear Vlasov equation becomes

∂h

∂t
+ v · ∇xh+ F [h] · ∇v(f

0 + h) = 0,

where

F [h](t, x) = −
∫∫

∇W (x− y) h(t, y, w) dy dw = −∇xW ∗x,v h.

When h is very small we expect the quadratic term F [h] · ∇vh to
be negligible in front of the linear terms, and obtain

(3.6)
∂h

∂t
+ v · ∇xh+ F [h] · ∇vf

0 = 0.

The physical interpretation of (3.6) is not so obvious. Assume that
we have two species of particles, one that has distribution h and the
other one that has distribution f 0, and that the h-particles act on the
f 0-particles by forcing, still they are unable to change the distribution
f 0 (like you are pushing a wall, to no effect). In this case, we can
imagine that the changes in the f 0 density would be compensated by
the transmutation of h-particles into f 0-particles, or the reverse. Then
the equation for f 0 will be

(3.7) F [h] · ∇vf
0 = S,
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where S is the source of f 0 particles, and thus the equation for h would
be

(3.8)
∂h

∂t
+ v · ∇xh = −S.

The combination of (3.7) and (3.8) implies (3.6). Thus, in some sense,
equation (3.6) can be interpreted as expressing the reaction exerted
by the “wall” f 0 on the particle density.

We note that the last term on the right-hand side of (3.6) has the
form F [h] · ∇vf

0, where F [h] is a function of t and x, and f 0(v) is a
function of v. This property of separation of variables will be crucial.
As a start, it implies the statement below.

Proposition 3.4. If h = h(t, x, v) evolves according to the lin-
earized Vlasov equation (3.6), then the function 〈h〉 =

∫
h(t, x, v) dx

depends only on v and not on t.

An equivalent statement is that the linearized Vlasov equation
has an infinite number of conservation laws: for any function ψ(v),∫
hψ dv dx is a conserved quantity.

Proof of Proposition 3.4. First note that 〈∇xh〉 = 0 and 〈F [h]〉 =
0, since F [h] is a gradient. So (3.6) implies

∂t〈h〉 = −〈v · ∇xh〉 −
〈
F [h] · ∇vf

0
〉

= −v · ∇x〈h〉 − 〈F [h]〉 · ∇vf
0 = 0.

�

2. Separation of modes

Let us now work on the linearized equation, in the form

(3.9)
∂h

∂t
+ v · ∇xh+ F [h] · ∇vf

0 = 0.

Solving this equation is a beautiful exercice in linear partial differential
equations, involving three ingredients (whose order does not matter
much): the method of characteristics, the integration in v, and the
Fourier transform in x.

• First step: the method of characteristics. We apply the
Duhamel principle to (3.9), treating it as a perturbation of free trans-
port. It is easily checked that the solution of ∂th+ v · ∇xh = −S takes
the form

h(t, x, v) = hi(x− vt, v) −
∫ t

0

S(τ, x− v(t− τ), v) dτ,
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where hi(x, v) = h(0, x, v).

• Second step: Fourier transform. Taking Fourier transform
in both x and v yields

h̃(t, k, η) =

∫∫
hi(x− vt, v) e−2iπk·x e−2iπη·v dx dv

(3.10)

−
∫∫ ∫ t

0

S(τ, x− v(t− τ), v) e−2iπk·x e−2iπη·v dx dv dτ

=

∫∫
hi(x, v) e

−2iπk·(x+vt) e−2iπη·v dx dv(3.11)

−
∫∫∫

S(τ, x, v) e−2iπk·x e−2iπk·v(t−τ) e−2iπη·v dx dv dτ

= h̃i(k, η + kt) −
∫ t

0

S̃
(
τ, k, η + k(t− τ)

)
dτ,

where I used the measure-preserving change of variables (x− vt, v) →
(x, v), and the obvious identity k ·(vs) = v ·(ks) to absorb the time-shift
into a change of arguments in the Fourier variables.

Now we note that the structure of separated variables in the term
S and the properties of Fourier transform imply

S̃(τ, k, η) = F̂ (τ, k) · ∇̃vf 0(η)

= (−∇W ∗ ρ)b(τ, k) · ∇̃vf 0(η)

=
(
−2iπkŴ (k) ρ̂(τ, k)

)
·
(
2iπηf̃ 0(η)

)

= 4π2 k · η Ŵ (k) ρ̂1(τ, k) f̃ 0(η),

where ρ1(t, x) =
∫
h(t, x, v) dv is the first-order correction to the spatial

density. Combining this with (3.10) we end up with

(3.12) h̃(t, k, η) = h̃i(k, η + kt)

− 4π2 Ŵ (k)

∫ t

0

ρ̂1(τ, k) f̃ 0(η + k(t− τ)) k · [η + k(t− τ)] dτ.

Third step: Integrate in v. This amounts to consider the Fourier
mode η = 0 in (3.12):

ρ̂1(t, k) = h̃i(k, kt) − 4π2Ŵ (k)

∫ t

0

ρ̂1(τ, k) f̃ 0(k(t− τ)) |k|2 (t− τ) dτ.
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To recast it more synthetically:

(3.13) ρ̂1(t, k) = h̃i(k, kt) +

∫ t

0

K0(t− τ, k) ρ̂1(τ, k) dτ,

where

(3.14) K0(t, k) = −4π2 Ŵ (k) f̃ 0(kt) |k|2t.
Now appreciate the sheer miracle: the Fourier modes ρ̂1(k), k ∈ Z,

evolve in time independently of each other! In a way this expresses a
property of complete integrability, which can actually be made more
formal.

Of course identity (3.14) is interesting only for k 6= 0; we already

know that ρ̂1(t, 0) = h̃i(0, 0) is preserved in time.

3. Mode-by-mode study

If k is given, equation (3.13) is a Volterra equation, which in
principle can be solved by Laplace transform. Generally speaking,
if we have an equation of the form ϕ = a+K ∗ ϕ, that is

ϕ(t) = a(t) +

∫ t

0

K(t− τ)ϕ(τ) dτ,

then it can be changed, via the Laplace transform

(3.15) ϕL(λ) =

∫ ∞

0

e2πλt ϕ(t) dt,

into the simple equation

ϕL = aL +KL ϕL,

whence

(3.16) ϕL =
aL

1 −KL
,

which is well-defined at λ ∈ R if AL(λ) and KL(λ) are well-defined (for
instance if a and K decay exponentially fast and λ is small enough),
and (careful!) if KL(λ) 6= 1.

At this point it is useful to define the complex Laplace transform:
for ξ ∈ C,

(3.17) ϕL(ξ) =

∫ ∞

0

e2πξ∗ t ϕ(t) dt.

It is well-known that the reconstruction of ϕ from its Laplace transform
involves integrating ϕL on a well-chosen contour in the complex plane,
which has to go out of the real line and should be chosen appropriately.
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Since Landau, many authors have discussed this tricky issue, by now
very classical in plasma physics.

However, the reconstruction gives more information than we need:
what we want is not the complete description of h, but its time-
asymptotics. The following lemma will be enough to achieve this goal:

Lemma 3.5. Let K = K(t) be a kernel defined for t ≥ 0, such that

(i) |K(t)| ≤ C0 e
−2πλ0t;

(ii) |KL(ξ) − 1| ≥ κ > 0 for 0 ≤ Re ξ ≤ Λ.

Let further a = a(t) satisfy |a(t)| ≤ α e−2πλt, and let ϕ solve the equa-
tion ϕ = a +K ∗ ϕ. Then for any λ′ < min(λ, λ0,Λ),

|ϕ(t)| ≤ C α e−2πλ′t,

where C = C(λ, λ′,Λ, λ0, κ, C0).

Let us express this lemma in words: If the kernel K decays expo-
nentially fast and satisfies the stability condition KL 6= 1 on a strip of
width Λ > 0 (see Fig. 3.4), then the solution ϕ decays in time at a rate
which is limited only by the time-decay of the source, the time-decay
of the kernel, and the width of the strip.

{KL = 1}

Λ

Re ξ

ℑm ξ

Figure 3.4. Λ is the width of a strip starting from the
imaginary axis, containing no complex root of {KL = 1}.
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Proof of Lemma 3.5. Let us write Φ(t) = e2πλ′t ϕ(t), A(t) =
e2πλ′t a(t). The equation becomes

(3.18) Φ(t) = A(t) +

∫ t

0

K(t− τ) e2πλ′(t−τ) Φ(τ) dτ.

Extend Φ, A and K by 0 for t ≤ 0, then take Fourier transforms
in the time variable: recalling the definition of the complex Laplace
transform (3.17), this gives, for any ω ∈ R,

Φ̂(ω) = Â(ω) +KL(λ′ + iω) Φ̂(ω),

whence

Φ̂(ω) =
Â(ω)

1 −KL(λ′ + iω)
.

By assumption |1 −KL(λ′ + iω)| ≥ κ, whence

‖Φ̂‖L2(dω) ≤
‖Â‖L2(dω)

κ
;

therefore, by Plancherel’s identity and the decay assumption on A,

‖Φ‖L2(dt) ≤
‖A‖L2(dt)

κ
≤ α

κ
√

4π(λ− λ′)
.

Now plug this back in the equation (3.18), to get

‖Φ‖L∞(dt) ≤ ‖A‖L∞(dt) +
∥∥∥(K e2πλ′t) ∗ Φ

∥∥∥
L∞(dt)

≤ ‖A‖L∞(dt) + ‖K e2πλ′t‖L2(dt) ‖Φ‖L2(dt)

≤ α +
C0√

4π(λ0 − λ′)

α

κ
√

4π(λ− λ′)
,

whence the desired result. �

Remark 3.6. It seems that I did not use the stability assumption
in the whole strip 0 ≤ ξ ≤ Λ, but only in a small strip near Re ξ =
Λ. But in fact I have cheated in the above proof, because I did not

check that Φ̂(ω) is well-defined. Making the reasoning rigorous will
make the condition come back via a continuity argument. Further
note that under appropriate decay conditions at infinity, (1 −KL)−1,
if well-defined as a holomorphic function on the strip of width Λ, has
maximum modulus near the axes Re ξ = 0 and Re ξ = Λ.

Let us apply Lemma 3.5 to (3.13). The kernel K0(t, k) decays
as a function of t, exponentially fast if f 0 is analytic, more precisely
like O(e−2πλ0|k|t). (The important remark is that time appears through

|k|t.) Similarly, the source term h̃i(k, kt) is O(e−2πλi|k|t) if hi is analytic.
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So in order to ensure the exponential decay of ρ̂1(t, k) like O(e−2πλ′|k|t),
it only remains to check that

(3.19) 0 ≤ Re ξ ≤ λL|k| =⇒ |(K0)L(ξ) − 1| ≥ κ > 0.

When that condition is satisfied, ρ̂1(t, k) converges to 0 at a rate
which is exponential, uniformly for |k| ≥ 1, so ρ1(t, ·) converges ex-
ponentially fast to its mean, and the associated force F [h] converges
exponentially fast to 0; this phenomenon is called Landau damping.
For mnemonic means, you can figure it in the following way: if you
keep pushing on a wall, the wall will not move and you will exhaust
itself.

Before going on, note that the conclusion would be different if the
position space Xd was the whole space Rd rather than Td: then the
spatial mode k would live in Rd rather than Zd (no “infrared cutoff”),
and there would be no uniform lower bound for the convergence rate
when k becomes small. As a matter of fact, counterexamples by Glassey
and Scheffer show that the exponential damping of the force does not
hold true in natural norms if Xd = Rd, f 0 is a Gaussian and the
interaction is Coulomb. Numerical computations by Landau suggest
that the Landau damping rate in a periodic box of length ℓ decays
extremely fast with ℓ, like exp(−c/ℓ2).

In the sequel, I shall continue to stick to the case when the position
space is Td.

4. The Landau–Penrose stability criterion

Of course, the previous computation is hardly a solution of the
problem, because the stability criterion (3.19) is only indirectly linked
to the form of the distribution function f 0. Now the problem is to find
more explicit stability conditions expressed in terms of f 0.

As a start, let us assume d = 1. Let us also rescale time by a factor
|k|; the Laplace transform of K0(t, k), evaluated at (λ− iω)|k|, is, by
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integration by parts in the v variable,
∫ ∞

0

e2π(λ+iω)|k|t K0(t, k) dt

= −4π2Ŵ (k)

∫ ∞

0

∫

R

f 0(v) e−2iπ|k|tv e2π(λ+iω)|k|t |k|2 t dv dt

= 2iπ Ŵ (k)

∫ ∞

0

∫

R

(f 0)′(v) e−2iπ|k|tv e2π(λ+iω)|k|t|k| dv dt

= 2iπ Ŵ (k)

∫

R

(f 0)′(v)

(∫ ∞

0

e−2iπ|k|tv e2π(λ+iω)|k|t |k| dt
)
dv

= Ŵ (k)

∫

R

(f 0)′(v)

v − ω + iλ
dv,(3.20)

where I have used the formula for the generalized Laplace transform of
a complex exponential. (This is justified if (f 0)′ decays fast enough at
infinity.) The final result is an integral transform of (f 0)′, sometimes
called Cauchy transform.

As soon as (f 0)′(v) = O(1/|v|), the expression in (3.20) decays like
O(1/|ω|) as |ω| → ∞, uniformly for λ ∈ [0, λ0]; so if we wish to check
that this expression does not approach 1, we can restrict ω to a bounded
interval |ω| ≤ Ω. If in the limit λ → 0+ (3.20) does not approach 1,
then by uniform continuity we can find Λ > 0 such that (3.20) does not
approach 1 throughout the domain {|ω| ≤ Ω, 0 ≤ λ ≤ Λ}, and thus
throughout the strip 0 ≤ λ ≤ Λ. So let us focus on the limit λ→ 0+.

From (3.20) we deduce

(K0)L((λ+ iω)|k|) −−−→
λ→0+

Ŵ (k)

∫
(f 0)′(v)

v − ω + i0
dv

= Ŵ (k)

[
p.v.

∫
(f 0)′(v)

v − ω
dv − iπ(f 0)′(ω)

]

=: Z(k, ω).

Here I have used the so-called Plemelj formula,

1

z + i0
= p.v.

(
1

z

)
− iπ δ0,

which has become a standard in plasma physics. The abbreviation p.v.
stands for principal value, that is, simplifying the possibly divergent
part by symmetry around the vanishing of the numerator; in simple-
minded terms,

p.v.

∫
(f 0)′(v)

v − ω
dv =

∫
(f 0)′(v) − (f 0)′(ω)

v − ω
dv.
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Now the goal is to find conditions so that Z does not approach 1.
If the imaginary part of Z(k, ω) stays away from 0, then of course Z
does not approach 1. But the imaginary part can approach 0 only

if Ŵ (k) approaches 0 (as k → ∞), in which case the real part will
also approach 0; or if ω → ∞, in which case the real part will also
approach 0; or if ω approaches a zero of (f 0)′. So we only need to
worry about zeros of (f 0)′, the problem becomes compact, and we have
obtained a simple criterion for stability:

(3.21) ∀ω ∈ R, (f 0)′(ω) = 0 =⇒ Ŵ (k)

∫
(f 0)′(v)

v − ω
dv < 1.

This is the Penrose stability condition.

Example 3.7. Consider the Newton interaction, Ŵ (k) = −1/|k|2,
with a Gaussian distribution

f 0(v) = ρ0

√
β

2π
e−βv2/2.

Then (3.21) is satisfied if ρ0β < |k|2 for all k 6= 0, that is if β < 1/ρ0:
the Gaussian should be spread enough to be stable. In physics, there is
a multiplicative factor G in front of the potential, the temperature T =
β−1 is typically given and determines the spreading of the distribution,
the density is given, but one can change the size of the periodic box
by performing a rescaling in space: the result is that the stability
condition is satisfied if and only if L < LJ , where LJ is the so-called
Jeans length,

LJ =

√
πT

Gρ0
.

It is widely accepted that this is a typical instability length for the New-
tonian Vlasov–Poisson equation, which determines the typical length
scale for the inter-galactic separation distance, and thus provides a
qualitative answer to the basic question “Why are stars forming clus-
ters (galaxies) rather than a uniform background?”

Example 3.8. Consider the Coulomb interaction, Ŵ (k) = 1/|k|2.
If f 0 has only one maximum at the origin, and is nondecreasing for
v < 0, nonincreasing for v > 0 (for brevity we say that f 0 is increas-
ing/decreasing), then obviously

∫
(f 0)′(v)

v
dv < 0,

and (3.21) trivially holds true, independently of the length scale. This
is the Landau stability criterion.
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Example 3.9. If f 0 is a small perturbation of an increasing/decreasing
distribution, so that it has a slight secondary bump, then the Landau
criterion will no longer hold, but the Penrose criterion will still be satis-
fied, and linear stability will follow. If the bump becomes larger, there
will be linear instability (bump-on-tail instability, or two-stream

instability).

v

Figure 3.5. Bump-on-tail instability: For a given
length of the box, a large enough secondary bump in the
distribution function implies a linear instability. Con-
versely, if a non-monotone velocity distribution is given,
there will be instability when the size of the box is large
enough.

Now let us turn to the multidimensional setting. If k ∈ Zd \ {0}
and ξ ∈ C, we use the splitting

v =
k

|k| r + w, w⊥k, r =
k

|k| · v

to rewrite

(K0)L(ξ, k) = −4π2 Ŵ (k) |k|2
∫ ∞

0

∫

Rd

f 0(v) e−2iπkt·v t e2πξ∗t dv dt

= −4π2Ŵ (k)

∫ ∞

0

∫

R

(∫

k
|k|

r+k⊥

f 0

(
k

|k|r + w

)
dw

)
e−2iπ|k|rtt e2πξ∗t dr dt,

where k⊥ is the hyperplane orthogonal to k. So everything is expressed
in terms of the one-dimensional marginals of f 0. If f is a given function
of v ∈ Rd, and σ is a unit vector, let us write σ⊥ for the hyperplane
orthogonal to σ, and

(3.22) ∀v ∈ R fσ(v) =

∫

vσ+σ⊥

f(w) dw.

Then the computation above shows that the multidimensional stabil-
ity criterion reduces to the one-dimensional criterion in each direction
k/|k|. Let us formalize this:
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Definition 3.10 (Penrose’s stability criterion). We say that f 0 =
f 0(v) satisfies the (generalized) Penrose stability criterion for the in-
teraction potential W if for any k ∈ Zd, and any ω ∈ R,

(f 0
σ)′(ω) = 0 =⇒ Ŵ (k)

∫
(f 0

σ)′(v)

v − ω
dv < 1, σ =

k

|k| .

Example 3.11. The multidimensional generalization of Landau’s
stability criterion is that all marginals of f 0 are increasing/decreasing.

Example 3.12. If f 0 is radially symmetric and positive, and d ≥ 3,
then all marginals of f 0 are decreasing functions of |v|. Indeed, if

ϕ(v) =
∫

Rd−1 f(
√
v2 + |w|2) dw, then after differentiation and integra-

tion by parts we find



ϕ′(v) = −(d − 3) v

∫

Rd−1

f
(√

v2 + |w|2
) dw
|w|2 (d ≥ 4)

ϕ′(v) = −2π v f(|v|) (d = 3).

5. Asymptotic behavior of the kinetic distribution

Let us assume stability, so that the force F [h] converges to 0 as
t → ∞, exponentially fast in an analytic setting. What happens to h
itself?

Starting again from

(3.23) h̃(t, k, η) = h̃i(k, η + kt)

− 4π2 Ŵ (k)

∫ t

0

ρ̂1(τ, k) f̃ 0(η + k(t− τ)) k ·
[
η + k(t− τ)

]
(t− τ) dτ

we can control the integrand on the right-hand side by the bounds

|ρ̂(τ, k)| = O(e−2πλ′|k|τ), |f̃ 0(η)| = O(e−2πλ′|η+k(t−τ)|).

Sacrificing a little bit of the τ -decay of |ρ̂| to ensure the convergence
of the τ -integral, using |η + kt| ≤ |η + k(t − τ)| + |kτ |, and assuming

|k|Ŵ (k) = O(1) (which is true if ∇W ∈ L1), we end up with
∣∣∣∣4π2 Ŵ (k)

∫ t

0

ρ̂1(τ, k) f̃ 0(η + k(t− τ)) |k|2 (t− τ) dτ

∣∣∣∣ = O
(
e−2πλ′′|η+kt|

)
,

where λ′′ is arbitrarily close to λ′. Plugging this back in (3.23) implies

(3.24)
∣∣h̃(t, k, η) − h̃i(k, η + kt)

∣∣ ≤ C e−2πλ′′|η+kt|.

It is not difficult to show that the bound (3.24) is qualitatively optimal;

it is interesting only for k 6= 0, since we already know h̃(t, 0, η) =

h̃i(0, η).
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Let us analyze (3.24) as time becomes large. First, for each fixed

(k, η) we have h̃(t, k, η) −→ 0 exponentially fast, in particular

h(t, ·) t→∞−−−→
weakly

〈hi〉,

and the speed of convergence is determined by the regularity in velocity
space: exponential convergence for analytic data, inverse polynomial
for Sobolev data, etc.

However, for each t one can find (k, η) such that |h̃(t, k, η)| is O(1)
(not small!). In other words, the decay of Fourier modes is not uniform,
and the convergence is not strong. In fact, the spatial mode k of
h(t, · ) undergoes oscillations along the kinetic frequency η ≃ −kt in
the velocity variable as t→ ∞; so at time t, the typical oscillation scale
in the velocity variable is O(1/|k|t) for the mode k. How much large
|k| modes affect the whole distribution h depends on the respective
strength of the modes, that is, on the regularity in the x variable; but in
any case the kinetic distribution h will exhibit fast velocity oscillations
at scales O(1/t) as t goes by. The problem only arises in the velocity
variable: it is an easy exercice to check that the smoothness in the
position variable is essentially preserved.

However, if one considers h along trajectories of free transport, the

smoothness is restored: (3.24) shows that h̃(t, k, η−kt) is bounded like
O(e−2πλ′′|η|), so we do not see oscillations in the velocity variable any
longer. Let us call this the gliding regularity: if we change the focus
in time to concentrate on modes η ≃ −kt in Fourier space, we do see
a good decay. Equivalently, if we look at h(x + vt, v), what we see is
uniformly smooth as t→ ∞.

This point of view can also be given an appealing interpretation as a
finite-time scattering procedure. As t→ ∞, the force field vanishes,
so the linearized Vlasov equation is asymptotic to the free transport
evolution. Now the idea is to let the distribution evolve according to the
linearized Vlasov for time t, then apply the free evolution backwards
from time t to initial time, and study the result. This is the same as
one does in classical scattering theory, except that in scattering theory
one would take the limit t→ ∞, and we prefer to have estimates that
are uniform in time, not just in the limit.

6. Qualitative recap

Let me reformulate and summarize what we learnt in this section.
I shall start with a precise mathematical statement.
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Theorem 3.13. Let f 0 = f 0(v) be an analytic homogeneous equilib-

rium, with |f̃ 0(η)| = O(e−2πλ0|η|), and let W be an interaction potential
such that ∇W ∈ L1(Td). Let K0 be defined in (3.14); assume that there
is λL > 0 such that the Laplace transform (K0)L(ξ, k) of K0(t, k) stays
away from the value 1 when 0 ≤ Re ξ < λL|k|. Let hi = hi(x, v) be an

analytic initial perturbation such that h̃i(k, η) = O(e−2πλ|η|). Then if
h solves the linearized Vlasov equation (3.6) with initial datum hi, one
has exponential decay of the force field: for any k 6= 0,

F̂ [h](t, k) = O(e−2πλ′|k|t),

for any λ′ < min(λ0, λL, λ). Moreover, Penrose’s stability condition
(Definition 3.10) guarantees the existence of λL > 0.

Remark 3.14. Following Landau, physics textbooks usually care
only on λL and forget about λ0, λ, assuming that f 0 and hi are entire
functions (so one can choose λ0 and λL arbitrarily large). But in gen-
eral one should not forget that the damping rate does depend on the
analytic regularity of f 0 and hi.

Beyond Theorem 3.13, one can argue that the three key ingredients
leading to the decay of the force field are

• the confinement ensured by the torus;
• the mixing property of the geodesic flow (x, v) → (x+ vt, v);
• the Riemann–Lebesgue principle converting smoothness into de-

cay in Fourier space.

The first two ingredients are important: as I already mentioned,
there are counterexamples showing that decay does not hold in the
whole space, and it is rather well-known from experiments that damp-
ing may cease when the flow ceases to be mixing, so that for instance
trapped trajectories appear. As for the third ingredient, it is subject to
debate, since there are many points of view around as to why damping
holds (wave-particle interaction, etc.), but in these notes I will advocate
the Riemann–Lebesgue point of view as natural and robust.

Now as far as the regularity of h is concerned, one should keep in
mind that

• the regularity of h deteriorates in the velocity variable, as it
oscillates faster and faster in v as time increases;

• there is a cascade in Fourier space from low to high kinetic modes,
which on the mean is faster for higher position modes — it is like a
shear flow in Fourier space;
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• the distribution function evaluated along trajectories of the free
flow, h(t, x + vt, v), remains very smooth, uniformly in time (gliding
regularity).

While the regularity of h deteriorates in the kinetic variable, on the
contrary, the regularity of the force field increases with time, since (in
analytic regularity)

(3.25) F̂ (t, 0) = 0, |F̂ (t, k)| = O(e−2πλ|k|t).

Of course this implies the time decay of F like O(e−2πλt), but (3.25) is
much more precise by keeping track of the respective size of the various
modes. A simplistic way to summarize these apparently conflicting be-
haviors is that there is deterioration of the regularity in v, improvement
of the regularity in x.

In the study of the linearized equation, we can live without knowing
all this qualitative information, and it is not surprising that it has
apparently never been recorded in a fully explicit way. But this will
become crucial in our analysis of the nonlinear equation.
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CHAPTER 4

Nonlinear Landau damping

The damping phenomenon discovered by Landau, and considered
in the previous chapter, is based on the study of the linearized Vlasov
equation. But the physical model, of course, is the nonlinear equation,
so the question naturally arises whether damping still holds for that
model, at least in the perturbative regime, that is, near a spatially
homogeneous equilibrium.

1. Nonlinear stability?

Linear stability is often a necessary condition for nonlinear stability,
but is it sufficient? Starting from the nonlinear Vlasov equation, we
have implicitly considered two distinct asymptotic regimes: t → ∞
and ε → 0, where ε = ‖fi − f 0‖; and these two limits a priori do not
commute! In large time, small cumulated nonlinear effects might lead
to a significant departure from the linearized equation.

To estimate the time scale on which this may occur, let us look for
a scale invariance of the Vlasov equation. Let us assume that f = 1+h
solves the Vlasov equation (forget the fact that f has infinite mass),
and set

fε(t, x, v) = 1 + ε1+dν h
(
εθt, x, ενv

)
,

where ν and θ are unknown parameters. (We cannot rescale in x since
we work with periodic boundary conditions.) Note that fε−1 is of size
ε in L1 norm, and

∫
(fε − 1) dv = O(ε). Then

∂tfε + v · ∇xfε + F [fε] · ∇vfε

= ε1+dν
[
εθ ∂th + ε−ν (v · ∇xh) + ε1+ν (F · ∇vh)

]
(εθ t, x, εν v),

so fε solves the Vlasov equation if θ = −ν = 1 + ν, i.e. θ = 1/2 = −ν.
In other words,

(4.1) fε(t, x, v) = 1 + ε1− d
2 h

(√
ε t, x,

v√
ε

)

also solves the Vlasov equation. This suggests the typical nonlinear
time scale O(1/

√
ε), where ε is the size of the perturbation. This is

47
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the O’Neil time scale and it is indeed well satisfied in numerical
experiments.

To summarize: after a time scale O(1/
√
ε) we expect the solution of

the nonlinear Vlasov equation to be significantly different from the so-
lution of the linearized approximation; in particular, it is not clear that
the large-time limit of the linearization coincides with the linearization
of the large-time limit.

The problem arises not only for the study of the damping, but also
already for the a priori simpler stability problem: for many years it has
been an open problem to show that Penrose’s linear stability condition
guarantees nonlinear stability. Only the simpler stability condition by
Landau (monotone profile) could be treated by Lyapunov functional
techniques.

2. Elusive bounds

The study of the linearized Vlasov equation ∂th + v · ∇xh + F [h] ·
∇vf

0 = 0 showed that the expected decay rate depends (among other
things) on the smoothness of f 0. In the nonlinear case we have ∂tf +
v · ∇xf + F [f ] · ∇vf = 0, so the uniformly smooth background f 0(v)
is replaced by the time-dependent distribution f(t, x, v), which may
be analytic, but not uniformly in time: fast oscillations in the velocity
variable, a phenomenon which is also known as filamentation in phase
space, will imply the blow-up of all regularity bounds of f in large time.
Then how can one hope to adapt the tools on which the linearized study
was based??

3. Backus’s objection

When one linearizes the Vlasov equation as in the beginning of the
previous chapter, one neglects the quadratic term F [h] · ∇vh in front
of the others, assuming implicitly that ‖h‖ is much smaller than ‖f 0‖
in some sense. However, ∇vh cannot stay small in the usual sense: its
norm will typically grow in time — unless we use a weak norm, but we
are in a context where smoothness matters much. To see this growth,
let us consider just the simpler free transport: if ∂th + v · ∇xh = 0,
then

∇̃vh(t, k, η) = 2iπη h̃(t, k, η) = 2iπη h̃i(k, η + kt).

Then even if hi is of size ε≪ 1, the choice η ≃ −kt shows that

sup
η

∣∣∣∇̃vh(t, k, η)
∣∣∣ ≥ const. ε|k|t
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as t → +∞, so ‖∇vh‖L1(dx dv) grows at least linearly in time. As a
consequence, if we wait long enough, there will necessarily come a time
when the linearization postulate is no longer satisfied! This objection
was raised by Backus in 1960.

Of course, F [h] ·∇vh might still decay in time, since we expect F [h]
to decay exponentially fast, and ∇vh to grow at most linearly. But
right now we cannot understand why the effect of this term would be
negligible compared to the effect of other terms like F [h] ·∇vf

0, which
we also expect to be decaying exponentially fast!

4. Numerical simulations

Numerical simulations about the large-time behavior of the non-
linear Vlasov–Poisson equation are nonconclusive because of the diffi-
culties in getting reliable simulations on very large times. If ε is the
size of the perturbation, nonlinear effects start to appear at time scale
O(1/

√
ε), and then tiny numerical errors cumulated over very large

times can be dreadful.
To summarize the situation, one can say that

• for a slight perturbation of the equilibrium, numerical schemes
do display the Landau damping phenomenon for large times, and some
of them continue to display damping at very large times, while other
ones present tiny bumps of the electric field, which sometimes do not
vanish as t→ ∞;

• for a larger perturbation of the equilibrium, numerical schemes
agree that damping may be replaced by a much more complicated
behavior, leading to a persistent electric field. Some authors claim
to observe BGK waves in very large times, while others remain more
cautious.

Francis Filbet kindly accepted to do a few precise simulations for me
in the perturbative regime, with different methods; they led to different
results, but the one that was supposed to be the most precise displayed
damping at spectacular precision (more than 20 orders of magnitude
for the amplitude of the electric field, and at times so large that the
nonlinear effects can definitely not be neglected; see Figures 4.1 and
4.2).

5. Theorem

Some of the previous questions are solved by the following theorem
by Mouhot and myself. If n is a multi-integer and f a function I shall
write f (n) = ∇nf = ∂n1

1 . . . ∂nd
d f .
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Figure 4.1. Large time behavior of the logarithm of
the norm of the electric field, with two different numer-
ical methods — the second one is supposed to be more
precise. The interaction is gravitational, the initial da-
tum is a Gaussian multiplied by 1 + ε cos(2πkx).
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Figure 4.2. With the more precise method from Figure
4.1, a plot of log(‖ENL‖/‖EL‖), the logarithmic ratio of
the norm of the nonlinear electric field to the norm of
the linearized electric field. On the left the time-scale is
1, on the right the time scale is 1/

√
ε. Here we see that

we arrive in a time regime where the nonlinearity can
definitely not be neglected.

Theorem 4.1. Let f 0 = f 0(v) be an analytic profile satisfying the
Penrose linear stability condition. Further assume that the interaction
potential W satisfies

(4.2) Ŵ (k) = O

(
1

|k|2
)
.
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Then one has nonlinear stability and nonlinear damping close to f 0.
More precisely, assume that (a) f 0 is analytic in a strip of width

λ0 > 0, in the sense that

|f̃ 0(η)| ≤ C0 e
−2πλ0|η|,

∑

n∈Nd

λn
0

n!
‖∇n

vf
0‖L1(dv) ≤ C0;

(b) the Penrose linear stability condition is satisfied in a strip of width

λL, in the sense that, if K0(t, k) = −4π2 Ŵ (k) f̃ 0(kt) |k|2t, then

(4.3) 0 ≤ Re ξ ≤ λL|k| =⇒ |(K0)L − 1| ≥ κ > 0.

(c) the initial condition fi is a perturbation of f 0 in a strip of width
λ > 0, in the sense that

|f̃i−f̃0|(k, η) ≤ ε e−2πµ|k| e−2πλ|η|,

∫
|fi(x, v)−f 0(v)| e2πβ|v| dx dv ≤ ε

for some µ > 0, β > 0. Then if ε ≤ ε∗ = ε∗(λ0, λL, λ, µ, κ, C0, β),
for any λ′ < min(λ0, λL, λ), if f(t, · ) is the solution of the nonlinear
Vlasov equation with interaction W and initial datum fi, and F = F [f ]
is the associated force field, one has

‖F (t, · )‖ = O(ε e−2πλ′t) as t→ +∞;

also ρ(t, x) converges (strongly and exponentially fast) to the average
ρ∞ =

∫∫
fi(x, v) dx dv.

Moreover,

f(t, · ) t→±∞−−−−→
weakly

f±∞,

where f±∞ = f±∞(v) is an analytic homogeneous equilibrium; and

〈f(t, · )〉 t→±∞−−−−→
strongly

f±∞,

where 〈 · 〉 stands for the x-average.

Remarks 4.2. Here is a long series of remarks:

1. The condition Ŵ (k) = O(1/|k|2) seems critical, and only appears
in the study of the nonlinear problem. It would somehow be easier to
handle a decrease like O(1/|k|2+δ); this may be a coincidence or some
deep thing.

2. The analytic norm used for fi − f 0 is the most naive norm
controlling exponential localization in Fourier space and in physical
space. Also the smallness restriction on the size of ε is natural.

3. The decay of the force field is the damping phenomenon; the
existence of limit distributions f+∞ and f−∞ is a bonus. These distri-
butions are not determined by variational principles (at least, not that
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I know) and may differ for t→ +∞ and t→ −∞. When f+∞ 6= f−∞,
such trajectories may be called heteroclinic, as opposed to homoclinic
trajectories for which the behavior for t → +∞ is the same as for
t→ −∞ (as in the case of the linearized Vlasov equation). It is strik-
ing to see that a whole neighborhood of f 0 (stable equilibrium) is filled
by homoclinic/heteroclinic trajectories. This is not predicted by the
(random) quasilinear theory of the Vlasov–Poisson equation, neither
by the statistical theory: there is in fact no randomness in Theorem
4.1. This abundance of homoclinic/heteroclinic orbits is possible only
because, thanks to the infinite dimension, one can play with the various
topologies. The fact that the conditions for damping are expressed in
terms of the initial condition alone is a considerable improvement over
previous works in the field.

4. The proof provides a constructive approach of the long-time
behavior of f , which makes it possible to exchange the limits ε → 0
and t → ∞, perform asymptotic expansions, etc. In particular, one
can check that the asymptotic state f+∞ “keeps the memory” of the
initial datum, in a way that goes beyond the invariants of motion. The
mere existence of heteroclinic trajectories demonstrates this: reversing
time does not change the energy neither any of the constants of motion
which were mentioned in Chapter 2, but will change the asymptotic
behavior. This seems to confirm an objection raised by Isichenko in
1966 against the statistical theory of the nonlinear Vlasov equation.
However, on second thoughts, the statistical theory can counterattack,
because of the high regularity which is involved in the result. Theorem
4.1 is based on an analytic regularity; even if this is later relaxed in
a Sobolev or even Cr regularity, these classes of regularity are prob-
ably negligible in a statistical context, where typical distributions are
probably not smooth. (For instance, typical distributions for Sturm’s
entropic measure are not even absolutely continuous!)

5. The theorem in this section provides a perturbative large-time
existence result which is covered neither by the Lions–Perthame theory
(because this is a periodic setting) nor by the Pfaffelmoser–Batt–Rein
theory (because the analyticity assumption is not compatible with a
compact support).

6. An important corollary of the theorem is the orbital stability in
a strong sense: if Hs

x,v stands for the L2-Sobolev space of order s on

Td
x ×Rd

v, then under the assumptions of Theorem 4.1, for any s > 0 we
have

(4.4)
∥∥∥f(t, x+ vt, v) − f 0(v)

∥∥∥
Hs

x,v

= O(ε),
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uniformly as t→ +∞. Since L2(dx dv) is invariant under the action of
free transport, the norms in (4.4) control ‖f(t, ·)− f 0‖L2(Rd×Td). Using
moment bounds and Sobolev injections, one may also control f − f 0 in
Lp norms, for all p ≥ 1.

7. The critical regularity to which the proof applies is the Gevrey
class Gν , for any ν < 3 in the favorable cases. By convention, a func-
tion f belongs to the Gevrey class Gν if f (n) = O(n!ν), say in the
supremum norm. Modulo an arbitrarily small loss on the exponent ν,

it is equivalent to say that the Fourier transform f̂(ξ) of f decays at

infinity like O(e−c|ξ|1/ν
). The favorable case alluded to above is the one

in which
∫
|K(t, k)| dt < 1; this applies for instance for gravitational

interaction below the Jeans length. More generally, if the interaction

satisfies |Ŵ (k)| = O(1/|k|1+γ) and
∫
|K(t, k)| dt < 1 then the critical

exponent is ν = γ + 2. Here is a precise statement where we do not
care about the critical exponent:

Theorem 4.3 (Nonlinear Landau damping in Gevrey regularity).

Let W : Td → R be an interaction potential such that |Ŵ (k)| =
O(1/|k|2). Let f 0 = f 0(v) be an analytic profile such that

|f̃ 0(η)| ≤ C0 e
−2πλ0|η|,

∑

n

λn
0

n!
‖∇n

vf
0‖L1(dv) ≤ C0,

for some λ0 > 0, and satisfying the Penrose stability condition with
Landau width λL > 0. Then there is θ > 0 such that for any ν ∈
(1, 1 + θ), β > 0, α < 1/ν, there is ε∗ > 0 such that if

ε := sup
k,η

(∣∣(f̃i−f̃ 0)(k, η)
∣∣ eλ|η|1/ν

eλ|k|1/ν
)
+

∫∫
|fi(x, v)−f 0(v)| eβ|v| dv dx

satisfies ε ≤ ε∗, then the solution f = f(t, x, v) of the nonlinear Vlasov
equation with interaction W and initial datum fi satisfies

F [f ](t, · ) = O
(
ε e−ctα

)
,

and f(t, · ) converges weakly to some asymptotic Gevrey profile f±∞ =
f±∞(v) as t→ ±∞, with convergence rate O(ε e−ctα).

6. The information cascade

How can one reconciliate the reversibility of the nonlinear Vlasov
equation and the convergence in large time? Convergence seems to be
about loss of information, which should go with an increase of entropy;
but we have seen that the Vlasov equation preserves the entropy. So
what?
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The solution to this apparent paradox (well understood by some
physicists at least fifty years ago, but not by all of them) is that the
information all goes out to high frequencies, where it is inaccessible,
hidden. The following numerical simulations will illustrate this.

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

-6 -4 -2  0  2  4  6

h(
v)

v

t = 0.16

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

-6 -4 -2  0  2  4  6

h(
v)

v

t = 2.00

Figure 4.3. A slice of the distribution function (relative
to a homogeneous equilibrium) for gravitational Landau
damping, at two different times; notice the fast oscilla-
tions of the distribution function, which are very difficult
to capture by an experiment.
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Figure 4.4. Time-evolution of the norm of the field, for
electrostatic (on the left) and gravitational (on the right)
interactions. In the electrostatic case, the fast time-
oscillations are called Langmuir oscillations, and should
not be mistaken with the velocity oscillations.

In fact, the cascade of energy, already present in the free transport
evolution, still holds: energy (or information) flows from low to high
frequencies. The complete integrability has been lost, but the energy
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transfer still holds. This is similar in spirit to the KAM phenomenon

(KAM = Kolmogorov–Arnold–Moser), to which we shall come back
later; for the moment I will just mention that there are common points
and differences with the KAM theory.

To go back to the information, let us note that
∫∫

f log f =

∫
ρ log ρ+

∫∫
f log

f

ρ
,

and the first term on the right-hand side converges to 0 because ρ con-
verges strongly to a constant. So all the information becomes “kinetic”
in the limit. (Due to the oscillations, a priori we cannot pass to the
limit; but that becomes possible if we go along trajectories of the free
transport and use the gliding regularity.)

A final remark is in order: because of the time-reversibility, any
stability result, read backwards in time, should imply an instability
result. This is true, however with a catch on the topologies involved.
Landau damping asserts convergence in large time in the weak topol-
ogy, when the initial datum is perturbed in the strong topology. Read-
ing it backwards implies a instability in the strong topology, when the
initial datum is perturbed in the weak topology. In particular, Landau
damping is by no means in contradiction with the time-reversibility.

Bibliographical notes

Backus [8] was certainly the first one to point out the conceptual
problem caused by the interversion of the asymptotic regimes t → ∞
and ‖fi − f 0‖ → 0. Thus his paper contains both positive state-
ments (the first mathematically rigorous treatment of the linear Landau
damping) and expression of skepticism, which has not been answered
until [74].

Nonlinear stability of monotone homogeneous profiles for the elec-
trostatic Vlasov–Poisson equation was studied by Rein [86]. The two-
stream instability has been established by Guo and Strauss [41].

The nonlinear time scale O(1/
√
ε) was predicted in 1965 by O’Neil

[81] with a more sophisticated argument than the naive scaling ap-
proach presented in Section 1, and is anyway well checked in numerical
simulations. This is the time scale where significant departure appears
between the solutions of the linear and nonlinear equations; it does not
mean that the qualitative behavior of these solutions differ much. Ac-
tually, O’Neil argues that damping still holds true for larger time scales,
even though not infinite. He also stumbles on the problem pointed out
by Backus.
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Numerical investigation of the Landau damping, for small and larger
perturbations, was performed by several authors at the end of the
nineties, when precise methods started to be available [67, 105]. Since
then, more efficient schemes have become available [44].

The mysterious but popular quasilinear theory is presented in a
number of sources [61, Section 49] [1, Section 9.1.2] [54, Chapter 10],
with more or less convincing arguments. Putting this theory on a
decent level of rigor looks like a challenge.

Isichenko’s criticism of the statistical theory of Vlasov equation ap-
pears in [51]. Using an analogy with a random potential problem, he
argues that the convergence to equilibrium should be slow; however
the analogy used by Isichenko is not so sound, and in fact very fast
convergence can occur, as demonstrated in [21] and in the present pa-
per. Isichenko’s paper is still worth reading for his interesting insights,
though.

Theorem 4.1 is taken from [74], as well as the comments made right
after its statement.

Caglioti and Maffei [21] were the first to construct some exponen-
tially damped solutions to the Vlasov–Poisson equation (in dimen-
sion 1); they also noted that this implies, by time-reversibility, the
instability in the weak topology. Another construction to damped so-
lutions was performed by Hwang and Velázquez [50].

The numerical simulations in this chapter were kindly provided by
Filbet.



CHAPTER 5

Gliding analytic regularity

Analytic regularity may seem very specific, but it is for sure the
first setting to understand in the study of Landau damping, for phys-
ical reasons (because it is associated to exponential damping) and for
historical reasons as well (because this is the case that was treated by
Landau). But the obstacles related to the study of the limit t → ∞
require much care in the choice of functional space.

1. Preliminary analysis

There are many families of analytic norms. A particularly simple
family is defined by the formula

(5.1) ‖f‖λ,µ = sup
k,η

∣∣f̃(k, η)
∣∣ e2πµ|k| e2πλ|η|.

One can interpret λ and µ as the width of the analyticity strip in the
v and x variables, respectively.

To evaluate the relevance of these functional spaces, let us examine
the equation and seek to approximate it by an iterative scheme. The
natural quasilinear scheme is

(5.2) ∂tf
n+1 + v · ∇xf

n+1 + F [fn] · ∇vf
n+1 = 0,

which amounts to let particles evolve at stage n + 1 in the force field
created by the distribution at stage n. Equivalently, one solves the
transport equation by the characteristic method:

fn+1(t, x, v) = fi

(
Sn

t,0(x, v)
)
,

where Sn
t,0(x, v) is the position (in phase space) at time 0 of particles

evolving in the force field induced by fn, which at time t will be at
(x, v). Thus one is naturally led to study the behavior of norms with
respect to composition. But these norms do behave very badly: to fix
ideas, let us assume that St(x, v) satisfies “perfect” estimates, as good

57
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as (say) 2 Id ; and observe that

∥∥f ◦ (2 Id )
∥∥

λ,µ
= 2d sup

k,η

∣∣∣∣f̃
(
k

2
,
η

2

)∣∣∣∣ e2πµ|k| e2πλ|η|

= 2d sup
k,η

∣∣f̃(k, η)
∣∣ e2π(2µ)|k| e2π(2λ)|η|

= 2d ‖f‖2λ,2µ.

In other words, the norms λ, µ are not stable under composition. This is
in sharp contrast with Sobolev or Cr norms. Now imagine the disaster:
as one iterates the estimates, one loses a factor 2 on the width of the
analyticity strip, so that there is nothing left in the end...

What is more, (5.2) will not express a reaction: recall the heuristic
image about pushing the wall and exhausting oneself. It would be more
promising to use the alternative scheme

∂tf
n+1 + v · ∇xf

n+1 + F [fn+1] · ∇vf
n = 0.

But this would mean treating a higher order degree, ∇vf
n, as a per-

turbation: thus there would be a loss of derivative.
A third problem is related to the filamentation: the best one can

hope for f is estimates in the style of the solution of free transport
g̃(k, η + kt); so in the best of worlds,

∣∣f̃(t, k, η)
∣∣ ≤ C e−2πλ|η+kt| e−2πµ|k|.

But then ‖f‖λ,µ & e2πλt (choose η = −kt, |k| = 1); and even worse,
‖f‖λ,µ & e2πλ|k|t for any k such that the mode k does not vanish. If
all modes k are represented, one expects the norm of f to grow faster
than any exponential! This of course is a disaster for the large-time
analysis.

2. Algebra norms

Among all families of analytic norms, two deserve a special mention;
let us present them in dimension 1:

(5.3) ‖f‖Fλ =
∑

k∈Z

e2πλ|k| |f̂(k)| ‖f‖Cλ =
∑

n∈N0

λn

n!
‖f (n)‖L∞,

where f (n) stands for the derivative of order n of f , and N0 = {0, 1, 2, . . .}.
The first norm (as it is written) makes sense only for periodic functions,
while the second one makes sense for any smooth function on R.

Proposition 5.1. With ‖ · ‖λ standing either for the Fλ or the Cλ

norm, one has
‖fg‖λ ≤ ‖f‖λ ‖g‖λ.
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Sketch of proof. Let us prove the inequality for, say, the Cλ

norm: the Leibniz differentiation formula implies

∑

n

λn

n!

∥∥(fg)(n)
∥∥

L∞ ≤
∑

n

∑

m≤n

λn

n!

n!

m! (n−m)!
‖f (m)‖L∞ ‖g(n−m)‖L∞

=
∑

m,m′

λm+m′

m!m′!
‖f (m)‖L∞ ‖g(m′)‖L∞

=

(∑

m

λm

m!
‖f (m)‖L∞

) (∑

m′

λm′

m′!
‖f (m′)‖L∞

)
.

�

As an immediate corollary, we have ‖fn‖λ ≤ ‖f‖n
λ. This remarkable

algebra property implies good properties with respect to composition
as well: there will be a loss of exponent, that is unavoidable, but it will
be controlled.

Proposition 5.2. With ‖ · ‖λ standing either for the Fλ or the Cλ

norm, one has

∥∥∥f ◦ (Id +G)
∥∥∥

λ
≤ ‖f‖ν , ν = λ+ ‖G‖λ.

Note carefully: the constant in front of the right-hand side is equal
to 1; and the size of G (in the λ-norm) is found in the regularity index
on the right-hand side.

Sketch of proof of Proposition 5.2. Let us do it for the Cλ

norm. Writing h = f ◦ (Id +G) and using the Taylor formula (leaving
aside the issue of convergence), we have

h(x) =
∑

n

f (n)(x)

n!
Gn(x),

whence

h(m)(x) =
∑

k+ℓ=m

∑

n

m!

k! ℓ!n!
f (n+k)(x) (Gn)(ℓ)(x),



60 5. GLIDING ANALYTIC REGULARITY

so
∑

m

λm

m!
‖h(m)‖L∞ ≤

∑

m

∑

k+ℓ=m

∑

n

λk+ℓ

k! ℓ!n!
‖f (n+k)‖L∞ ‖(Gn)(ℓ)‖L∞

=
∑

k,ℓ,n

λk+ℓ

k! ℓ!n!
‖f (n+k)‖L∞ ‖(Gn)(ℓ)‖L∞

≤
∑

k,n

λk

k!n!
‖Gn‖λ ‖f (n+k)‖L∞

≤
∑

r

( ∑

k+n=r

r!

k!n!
λk ‖G‖n

λ

)
‖f (r)‖L∞

r!

≤
∑

r

(
λ+ ‖G‖λ

)r

r!
‖f (r)‖L∞

= ‖f‖λ+‖G‖λ
,

where Newton’s binomial formula was used. �

Proposition 5.2 admits some variants: in particular, it is possible
to mix norms:

(5.4)
∥∥∥f ◦ (Id +G)

∥∥∥
Cλ

≤ ‖f‖Fν , ν = λ+ ‖G‖Ċλ,

where the Ċλ seminorm is obtained from the Cλ norm by throwing away
the zero mode. (The proof of (5.4) involves the dreaded Faà di Bruno
formula.)

Working in kinetic theory, it is particularly convenient to hybridize
the two spaces: apply the recipe C to the velocity space, and the recipe
F to the position space. This will take advantage of the periodic ge-
ometry of the position space, and property (5.4) will guarantee that
composition by the characteristics is still properly handled. Let us also
generalize to d dimensions, add a parameter γ to count derivatives (for
technical reasons, this is needed only in the x variable), and another
parameter p to modulate the integrability; we are led to the formula

(5.5) ‖f‖Zλ,(µ,γ);p =
∑

k∈Zd

∑

n∈Nd
0

e2πµ|k| (1 + |k|)γ λ
n

n!

∥∥∇n
v f̂(k, v)

∥∥
Lp(dv)

,

where f̂(k, v) =
∫
f(x, v) e−2iπk·x dx is the Fourier transform of f in the

x variable only. Then we have good properties generalizing Property
5.1 such as

‖fg‖Zλ,(µ,γ);p ≤ ‖f‖Zλ,(µ,γ);q ‖g‖Zλ,(µ,γ);r ,
1

r
=

1

p
+

1

q
.
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3. Gliding regularity

Now it remains to take into account filamentation, that is, the ap-
pearance of fast oscillations in the velocity variable. Since we cannot
avoid it, let us accept it and incorporate it in the norm. This amounts
to introducing a parameter τ (time-like) and to let the free transport
evolution act backwards on the distribution function, for a time τ :

‖f‖Zτ = ‖f ◦ S0
−τ‖Z ,

where the regularity indices are implicit, and S0
t (x, v) = (x+ vt, v).

This provides a family of functional spaces depending on a param-
eter τ , which can a priori be chosen as one wishes, the idea being that
τ is equal to, or at least asymptotic to, the time of the equation. Thus
we adapt our regularity scale to the filamentation; or, we focus on the
relevant Fourier modes as time goes by.

All in all, we are led to the final definition of the Z norms: for a
function f = f(x, v),

(5.6) ‖f‖
Z

λ,(µ,γ);p
τ

=
∑

k∈Zd

∑

n∈Nd
0

e2πµ|k| (1 + |k|)γ λ
n

n!

∥∥∥
(
∇v + 2iπτk

)n
f̂(k, v)

∥∥∥
Lp(dv)

.

By default, τ = 0, γ = 0 and p = ∞.

Remarks 5.3. Here are some important remarks about the Z
norms.

1. If f = f(t, x, v) is a solution of the free transport equation, then

‖f(t, ·)‖Zt = ‖f(0, ·)‖Z
(the regularity indices being implicit).

2. If f = f(v), then the ‖f‖
Z

λ,(µ,γ)
τ

norm reduces to the Cλ norm.

3. On the other hand, if f = f(x), it reduces to the Fν norm with
ν = (λτ+µ, γ) (that is, the Fλτ+µ space with γ additional derivatives).
The crucial point is that the regularity in x improves with t, as it should
be in view of our discussion at the end of Chapter 3!

4. As a final remark, we shall almost never try to compare norms
Zτ for various values of τ , because this is very costly in the velocity
regularity: we don’t have anything better than

‖f‖Zλ,µ

τ ′
≤ ‖f‖

Z
λ,µ+λ|τ−τ ′|
τ

,

and this becomes unaffordable as soon as |τ − τ ′| is large.
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4. Functional analysis

Now one can study the main properties of the Z spaces, with respect
to product, composition, differentiation (the analytic rigidity implies a
control of the derivative in terms of the function itself), inversion, aver-
aging... (The inversion is estimated by means of a fixed point theorem.)
Here are some of the main results (I do not mention those indices which
are similar on the left and right-hand sides of the inequalities):

(5.7) ‖fg‖Z;r ≤ ‖f‖Z;p ‖g‖Z;q ,
1

r
=

1

p
+

1

q
;

(5.8)
∥∥∥f
(
x+X(x, v), v + V (x, v)

)∥∥∥
Zλ,µ;p

τ

≤ ‖f‖Zα,β;p
σ

,

where α = λ+ ‖V ‖Zλ,µ
τ

, β = µ+ λ|τ − σ| + ‖X − σV ‖Zλ,µ
τ

;

(5.9) ‖∇xf‖Zλ,µ ≤ C

µ− µ
‖f‖Zλ,µ;

(5.10)

1 < λ/λ ≤ 2 =⇒ ‖∇vf‖Zλ,µ
τ

≤ C

(
1

λ− λ
+

1 + τ

µ− µ

)
‖f‖

Zλ,µ
τ

;

(5.11) ∃α = α(d) > 0; ‖∇(F − Id )‖
Zλ′,µ′

τ
≤ α

=⇒
∥∥F−1 ◦G− Id

∥∥
Zλ,µ

τ
≤ 2 ‖F −G‖Zλ,µ

τ
,

where λ′ = λ+ 2 ‖F −G‖Zλ,µ
τ

, µ′ = µ+ 2 (1 + |τ |) ‖F −G‖Zλ,µ
τ

;

(5.12)

∥∥∥∥
∫
f dv

∥∥∥∥
Fλ|τ |+µ

≤ ‖f‖Zλ,µ;1
τ

;

(5.13)

∥∥∥∥
∫
f dx

∥∥∥∥
Cλ

≤ ‖f‖Zλ
τ
.

A more subtle inequality, which will allow us to “cheat” with the
time index, is

(5.14)

∥∥∥∥
∫
f
(
x− v(t− τ), v

)
dv

∥∥∥∥
Fλt+µ

≤ ‖f‖
Z

λ(1+b),µ;1

τ− bt
1+b

,

for any b > −1 and t > 0. To prove (5.14), write
∥∥∥∥
∫
f ◦ S0

τ−t dv

∥∥∥∥
Fλt+µ

≤ ‖f ◦ S0
τ−t‖Zλ′,µ;1

t′

= ‖f‖
Zλ′,µ;1

t′+τ−t

,
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where λ′ and t′ are subject to λ′t′ = λt. The choice λ′ = λ(1 + b),
t′ = t/(1 + b) completes the proof of (5.14).

All these properties will be convenient to study the nonlinear Vlasov
equation. One may complain about the complicated nature of the
norms; but it is possible to inject these norms into more standard
norms, up to an arbitrarily small loss on the regularity indices. Thus,
even if we work out the estimates in the complicated Z norms, we will
be able to state the result in the simple-minded Y norms defined by

‖f‖Yλ,µ
τ

:= sup
k,η

∣∣f̃(k, η)
∣∣ e2πλ|η+kt| e2πµ|k|.

To estimate the Y norms by the Z norms, we have the simple
inequality

(5.15) ‖f‖Yλ,µ
τ

≤ ‖f‖Zλ,µ;1
τ

.

Conversely, to estimate the Z norms by the Y norms, we have the more
subtle inequalities

(5.16) ‖f‖Zλ,µ;∞
τ

≤ C(d, µ)

(λ− λ)d (µ− µ)d
‖f‖Yλ,µτ

and
(5.17)

‖f‖Zλ,µ;1
τ

≤ C
1

min(λ−λ,µ−µ)

(
‖f‖Yλ,µτ

+

∫
|f(x, v)| e2πβ|v| dv dx

)
.

The last inequality holds as soon as λ < λ ≤ Λ, µ < µ < M , 0 <
b ≤ β ≤ B,

∫
|f |e2πβ|v| dv dx ≤ E, and the constant C only depends

on Λ, M , B, β, E. The mechanism of proof is similar to the Sobolev

injections.
All inequalities in this section seem pretty much optimal, except

for (5.17), for which one may conjecture that the best constants in
the right-hand side of (5.17) are polynomial (instead of exponential) in
1/min(λ− λ, µ− µ).

Bibliographical notes

Algebra norms similar to those in Section 2 are well-known in cer-
tain circles, and appear for instance in [3]. The idea to combine them,
the resulting composition formulae, and the notion of gliding regularity
were introduced in [74]. Detailed proofs can be found in Section 4 of
that work.

Gliding regularity is somehow reminiscent of the philosophy used by
Bourgain [18] in the definition of his Xs,b spaces, which are defined by
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comparison with some unperturbed reversible dynamics; a difference is
the role of the time variable, which in our treatment is just a parameter.

The conjecture according to which the constants in (5.17) might be
polynomial is briefly discussed in [74], and an application to the study
of the nonlinear stability in “low” regularity is sketched. The picture
is far from clear.



CHAPTER 6

Characteristics in damped forcing

Before turning to the nonlinear problem where the distribution
function determines the force, let us address the linear problem in
which the force field is given and drives the force, and let us assume on
the force field the desired qualitative features. Of course, the study of
the transport equation can be reduced to the understanding of particle
trajectories (characteristics), so we shall focus on those trajectories.

1. Damped forcing

Let be given a small gradient force field F (t, ·) whose analytic reg-
ularity improves linearly in time: with the notation (5.3),∥∥F (t, · )

∥∥
Fλt = O(ε).

The question is about the qualitative behavior of trajectories; in
particular, are they transient like free transport trajectories, or can
they be trapped and go along complicated trajectories?

To get a first feeling, let us proceed to a formal asymptotic analysis.
As before, we writeXs,t(x, v), Vs,t(x, v) for respectively the position and
velocity at time t, starting from time s at (x, v) Writing formally

V0,t(x, v) = v + ε v(1)(t, x, v) + ε2 v(2)(t, x, v) + . . . ,

X0,t(x, v) = x+ vt+ ε

∫ t

0

v(1)(s, x, v) ds+ ε2

∫ t

0

v(2)(s, x, v) ds+ . . . ,

we expect F (t, X0,t(x, v)) = F (t, x + vt) + O(ε2), then the equation

Ẍ = F (t, X) leads to

V0,t(x, v) = v +

∫ t

0

F (s, x+ vs) ds+O(ε2),

so we expect V0,t(x, v) = v+O(ε). If this is in an analytic norm taking
derivatives into account, we expect in particular

|∇vV0,t(x, v) − I| = O(ε),

in particular the flow should be invertible if ε is small enough.
So our guess is that the trajectories remain perturbations of the

free flow (x+ vt, v), uniformly in time.

65
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2. Scattering

To compare the perturbed dynamics to the free dynamics, let us
write St,τ = (Xt,τ , Vt,τ ), S

0
t,τ = (x− (t− τ)v, v), and define the finite-

time scattering operator: for 0 ≤ τ ≤ t,

(6.1) Ωt,τ = St,τ ◦ S0
τ,t.

That is, start from time τ , evolve by the free dynamics up to time t,
and then evolve it backwards by the perturbed dynamics to time τ . As
t→ ∞, Ωt,τ converges to what is usually called a scattering transform,
whence the terminology.

Proposition 6.1. With the above notation, if λ′ < λ, µ′ < µ and

(6.2) |||F ||| := sup
t≥0

‖F (t, · )‖Fλt+µ ≤ (µ− µ′) (λ− λ′)2

C
,

where C is large enough, then

∥∥Ωt,τ − Id
∥∥
Zλ′,µ′

τ
≤ C |||F ||| e−2π(λ−λ′)τ min

(
t− τ,

1

λ− λ′

)
.

Proposition 6.1 provides an analytic scattering, modulo a small loss
on the regularity index; it can be generalized (e.g. by changing τ on the
left within some constraints), but for the moment this is quite sufficient
to give a first idea. This estimate is

(a) uniform as t→ ∞;
(b) small as τ → t;
(c) exponentially small as τ → ∞.

Choosing λ−λ′ ≃ µ−µ′, we see that the loss of regularity index is
roughly of order O(ε1/3). We shall see in Chapter 8 how to overcome
this loss by changing the estimate.

Sketch of proof of Proposition 6.1. The principle of the proof
is a standard fixed point reasoning. First let us make the ansatz

St,τ (x, v) =
(
x− v(t− τ) + Zt,τ (x, v), v + ∂τZt,τ (x, v)

)

(the second component of St,τ is the τ -derivative of the first one). The
equation on Z is

(6.3)





∂2Z

∂τ 2
= F

(
τ, x− v(t− τ) + Zt,τ

)

Zt,t = 0, ∂τ |τ=t Zt,τ = 0.
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So Z appears as a fixed point of Ψ : W 7−→ Z, where Z is the solution
of

(6.4)





∂2Z

∂τ 2
= F

(
τ, x− v(t− τ) +Wt,τ

)

Zt,t = 0, ∂τ |τ=t Zt,τ = 0.

For given t, Zt,τ is a function of τ ∈ [0, t]; let us introduce the norm

∥∥∥(Zt,τ )0≤τ≤t

∥∥∥
[0,t]

:= sup
0≤τ≤t

{
‖Zt,τ‖Zλ′,µ′

τ

R(τ, t)

}

where

R(τ, t) = C e−2π(λ−λ′)τ min

[
(t− τ)2

2
,

1

(λ− λ′)2

]
.

(For the sake of pedagogy, I am slightly cheating, the right definition
is slightly more complicated, see the original work for details.) Then
the goal is to check that (a) ‖Ψ(0)‖[0,t] ≤ 1 and (b) Ψ is 1-Lipschitz
in the norm ‖ · ‖[0,t], on the ball of radius 2 (for the same norm). If
that is true, it follows by a classical fixed-point theorem that Ψ has a
unique fixed point in the ball of radius 2, and this provides the desired
estimate.

Let us give a hint of how to perform these estimates. For (a), we
see that Ψ(0) = Z0 such that

Zt,τ =

∫ t

τ

(s− τ)F
(
s, x− v(t− s)

)
ds.

We are estimating this in Zλ′,µ′

τ norm, so (recalling Remark 5.3(3)) this
is trivially bounded above by

∫ t

τ

(s− τ) ‖F (s, · )‖Fλ′τ+µ′ ds.

Since F is a gradient, for s ≥ τ we have the estimate

‖F (s, · )‖Fλ′τ+µ′ ≤ e2π(λ′τ−λs) ‖F (s, · )‖Fλs+µ ≤ e−2π(λ−λ′)s |||F |||;
in other words, thanks to the gradient structure of F , the gliding regu-
larity has been converted into a time decay. Now we obtain the bound
on Z0 by time-integration:
∫ t

τ

(s− τ) e−2π(λ−λ′)s ds ≤ C e−2π(λ−λ′)τ min

[
(t− τ)2,

1

(λ− λ′)2

]
,

and the desired property follows easily.
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To check the Lipschitz property (b) is hardly more tricky: if Z =

Ψ(W ), Z̃ = Ψ(W̃ ) then we have

Zt,τ−Z̃t,τ =

∫ t

τ

(s−τ)
[
F
(
s, x−v(t−s)+W

)
−F
(
s, x−v(t−s)+W̃

)]
ds.

To estimate this we write

F
(
s, x− v(t− s) +W

)
− F

(
s, x− v(t− s) + W̃

)

=

∫ 1

0

∇xF
(
s, x− v(t− s) + (1 − θ)W + θW̃

)
dθ · (W − W̃ ),

and then use the functional analysis of the Z spaces (with respect to
product, composition, differentiation, and evolution by free transport)
to bound this. A source of loss of regularity is the composition by
something which has size 1 + O(‖W‖). Since ‖W‖ = O(ε/(λ− λ′)2),
we can absorb this loss of regularity (due to composition) into the loss
of regularity in x, if ε/(λ−λ′)2 is significantly smaller than µ−µ′, and
this explains where condition (6.2) comes from. �

Bibliographical notes

This chapter is entirely based on [74, Section 5].



CHAPTER 7

Reaction against an oscillating background

In the past chapter we were considering the time-evolution of an
unknown distribution evolving in a given force field, now we shall con-
sider the dual point of view: the force will be the unknown, and the
forced distribution will be given. So the equation will be

(7.1)
∂f

∂t
+ v · ∇xf + F [f ](t, x) · ∇vf(t, x, v) = 0.

Formally, this equation describes the evolution of a gas of particles
which tries to force the distribution f , however there is a flux (or trans-
mutation) of particles from distribution f to distribution f , compen-
sating exactly the effect of the force. Accordingly, I will informally call
(7.1) the reaction equation. We shall assume on f the same estimates
as on a typical solution of a transport equation, so in large time ∇vf
will oscillate fast in the velocity variable. — as in Chapter 3.

1. Regularity extortion

For mnemonic purpose, one may interpret (7.1) saying that one is
pushing against an oscillating wall, which at times takes energy and at
times gives it back, so that it is not clear whether at the end of the day
one gets exhausted or not. The goal of this chapter is to show that if f
is quite smooth (in gliding regularity), then the force associated with
f will gain regularity in time, eventually causing the exhaustion.

Proposition 7.1. Let f 0 such that |f̃ 0(η)| = O(e−2πλ0|η|) and f 0

satisfies the Penrose stability condition with stability width λL. Assume

that the interaction satisfies Ŵ (k) = O(1/|k|1+γ), γ ≥ 1. Let fi =
fi(x, v) such that

‖fi‖Zλ,µ;1 ≤ ε

and f(t, x, v) = f 0(v) + h(t, x, v) with

‖h(t, x, v)‖Zλ,µ;1
t

≤ δ,

where µ > 0 and 0 < λ < min(λ0, λL). Then there are C > 0 and
r, s > 0 such that the solution of (7.1) satisfies, for all λ′, µ′ with

69
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µ′/µ < 1 and 1/2 < λ′/λ < 1,

∥∥F [f ](t, · )
∥∥
Fλ′t+µ′ ≤ C

(
1 + δ

e
1

(λ−λ′)r

(µ− µ′)s

)
ε

for all times t ≥ 0.

Remark 7.2. The assumption on the interaction potential is sat-
isfied for the Coulomb or Newton interaction with γ = 1. The formu-
lation above allows to discuss the influence of γ on the estimates.

The rest of this chapter is devoted to a presentation of the main
ingredients behind Proposition 7.1.

2. Solving the reaction equation

Exactly as in Chapter 3, let us apply the Duhamel principle, the
Fourier transform, and integrate over v: with ρ =

∫
f dv, we get

(7.2) ρ̂(t, k) = f̃i(k, kt)

+

∫ t

0

∫∫
(∇W∗ρ)

(
τ, x−v(t−τ)

)
·(∇vf 0)

(
τ, x−v(t−τ), v

)
e−2iπk·x dx dv dτ

+

∫ t

0

∫∫
(∇W∗ρ)

(
τ, x−v(t−τ)

)
·(∇vh)

(
τ, x−v(t−τ), v

)
e−2iπk·x dx dv dτ.

The first and second terms on the right-hand side are the same as in
the linearized study, and the novelty is in the last integral. Since both
ρ and h depend on x, and the product becomes a convolution in Fourier
space, this last integral can be rewritten as

∫ t

0

∫
(∇W ∗ ρ) · ∇vh(τ, x, v) e

−2iπk·x e−2iπk·v(t−τ) dv dτ

(7.3)

∫ t

0

∫ ∑

ℓ∈Zd

∇̂W (k − ℓ) ρ̂(τ, k − ℓ) (∇vh)
b(τ, ℓ, v) e−2iπv·k(t−τ) dτ dv

=

∫ t

0

∑

ℓ

∇̂W (k − ℓ) ρ̂(τ, k − ℓ) (∇̃vh)
(
τ, ℓ, k(t− τ)

)
dτ.

The difference with the linearized situation is that now there are
all the nonzero values of ℓ, so that the various Fourier modes of ρ are
coupled to each other. To estimate the expression above, let us use the

bound ∇̂W (k−ℓ) = O(1/|k−ℓ|γ) and the gliding regularity assumption
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on h: using Y spaces for simplicity, we shall assume

∇̃vh
(
τ, ℓ, k(t− τ)

)
≤ C δ |k|(t− τ) e−2πλ|k(t−τ)+ℓτ | e−2πµ|k|.

Multiplying this estimate by e2πλ|k|t and summing over k, we can bound
the F (λt+µ) norm of the last term in (7.2) by

C

∫ t

0

∑

k 6=ℓ

1

|k − ℓ|γ
∣∣ρ̂(τ, k − ℓ)

∣∣ e2π(λτ+µ)|k−ℓ| |k|(t− τ)

e2πλ|k(t−τ)+ℓτ | e2πµ|ℓ| e−2πλ|k(t−τ)+ℓτ | e−2πµ|ℓ| dτ

≤ Cδ

∫ t

0

K(t, τ) ‖ρ(τ)‖Fλτ+µ dτ,

where the kernel K(t, τ) is defined by

(7.4) K(t, τ) = sup
k,ℓ

(
|k|(t− τ) e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ|

1 + |k − ℓ|γ

)
.

Notice, we took advantage of the fact that λ > λ to get some decay in
the exponentials appearing in (7.4).

Plugging these bounds in (7.2), we conclude that

(7.5)
∑

k

e2π(λt+µ)|k|t

∣∣∣∣ρ̂(t, k) −
∫ t

0

K0(t− τ, k) ρ̂(τ, k) dτ

∣∣∣∣

≤ A(t) + δ

∫ t

0

‖ρ(τ)‖Fλτ+µ K(t, τ) dτ,

where A(t) =
∑
e2πλ|k|t |f̃i(k, kt)| is the contribution of the initial da-

tum.
To appreciate the effect of the new kernel K(t, τ) let us set f 0 = 0

in (7.5); then this inequality turns into a closed inequality on ϕ(t) =
‖ρ(t, · )‖Fλt+µ:

(7.6) ‖ρ(t)‖Fλt+µ ≤ A(t) + C

∫ t

0

K(t, τ) ‖ρ(τ)‖Fλτ+µ dτ.

Let us analyze the expression (7.4). The decay in ℓ is good, the
decay in |k − ℓ| is not so good (depending on the smoothness of the
interaction), and the decay in k is not good at all since |k(t− τ) + ℓτ |
can be small even though k is very large: just choose ℓ opposite to k
and τ = (|k|/|k− ℓ|)t. Stated otherwise, in the time-integral there is a
resonance phenomenon occurring for

k(t− τ) + ℓτ = 0.
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3. Analysis of the kernel K

Let us analyze the kernel appearing in (7.4). Inside the supremum
there is a good decay in |k(t − τ) + ℓτ |, so for practical purposes one
may replace the factor |k|(t− τ) appearing in front of the exponential,
by 1 + |ℓ|τ . (This is true also for ℓ = 0: if f = O(1) in gliding analytic
regularity, then in general ∇vf = O(t), but 〈∇vf〉 = ∇v〈f〉 = O(1),
where 〈f〉 is the spatial average of f .) Then it is not difficult to see that
K(t, τ) is not better than O(τ) and that its time-integral

∫
K(t, τ) dτ

is not better than O(t). Now this is bad news, because it suggests the
possibility of a very serious instability as t → ∞, with a growth like,
say, et2 .

But, let us analyze the kernel more precisely. To get an idea of its
quantitative behavior, let us set d = 1, replace the slower power decay
|k − ℓ|−γ by the faster decay e−c|k−ℓ|, keep only the dominant mode
ℓ = −1 and the modes k ≥ 0, and replace |k|(t − τ) by 1 + τ . The
resulting approximation is, up to a multiplicative constant,

(7.7) K(t, τ) = sup
k=1,2,...

(
(1 + τ) e−2π(λ−λ)|k(t−τ)−τ | e−c k

)
.

Below is a numerical plot of K(t, τ); that is, the function τ 7−→ K(t, τ)
is plotted for various values of t.
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Figure 7.1. The kernel K(t, τ) fort = 10, t = 100,
t = 1000. The curve above is an approximate enve-
lope which can be computed analytically, but which pro-
vides disastrous estimates; observe indeed how most of
the mass of the kernel K concentrates on discrete times
as t becomes large.

A preliminary conclusion is that in the integral equation

(7.8) ϕ(t) ≤ A(t) +

∫ t

0

K(t, τ)ϕ(τ) dτ,
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for each t, only certain specific values of τ seem to count (like t/2, etc.).
This may seem crazy at first, but it is exactly the same principle which
underlies the echo phenomenon, a beautiful experiment made in the
sixties by Malmberg and co-workers. Let me describe the experiment
and its interpretation. Prepare your favorite plasma in your favorite
lab, and at time 0 excite it by a small impulse of frequency ℓ ∈ Z, say
ℓ < 0. Wait until the electric field damps, and at time τ > 0 excite the
plasma again by a small impulse of frequency k− ℓ, with k ∈ Z, k > 0.
Then sit and measure the electric field, analyzing the strength of the
mode k. Around time

(7.9) te =
(k − ℓ)τ

k
,

a spontaneous response, the echo, will be recorded.

Figure 7.2. Representation of the plasma echo experi-
ment, from the pioneering paper by Malmberg et al.

The interpretation is the following: initially disturbed, the electric
field has damped, but the information is still there, hidden in the fast
oscillations of the distribution function in the velocity variable. Start
from a homogeneous background f 0(v), apply an impulse in time, from
the Vlasov equation the variation in the density is −F (x) ·∇vf

0(v), so
right after the pulse the density will be roughly

f 0(v) − 2iπc e2iπℓ·x ℓ · ∇vf
0(v),
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where c is a small constant and I use a complex notation for simplic-
ity (only the real part makes sense). Then the distribution evolves by
damping and oscillates more and more; if we retain only the contribu-
tion of free transport we obtain, at time τ ,

f 0(v) − 2iπc e2iπℓ·(x−vτ) ℓ · ∇vf
0(v).

At time τ we apply the new pulse; now the change in the density is
proportional to −F · ∇vf , where the force now oscillates at spatial
frequency k − ℓ: this gives an additional term proportional to

e2iπ(k−ℓ)·x ℓτ e2iπℓ·(x−vτ) ℓ · ∇vf
0(v) + e2iπℓ·(x−vτ)

(
ℓ⊗ (k − ℓ)

)
: ∇2

vf
0(v).

The interesting term is the one involving both k and k − ℓ spatial
frequencies; it evolves again at dominant order by free transport after
time τ , with a contribution proportional to

e2iπ(k−ℓ)·[x−v(t−τ)] e2iπℓ·(x−vt) = e2iπk·x e−2iπv·[kt−(k−ℓ)τ ].

As long as kt − (k − ℓ)τ is large, the oscillations are very fast in the
v variable; but when this becomes small, that is around time t ≃ te,
then the oscillations in the velocity variable are not fast, and this gives
a strong contribution to the electric field, located at spatial frequency
k.

The beauty of the echo experiment is that it demonstrates that
in the Landau damping phenomenon, the information has not disap-
peared: it is still there, but hidden in the high frequency oscillations
in velocity. The interaction between the two spatial frequencies ℓ and
k− ℓ has produced a response which can be measured: a visible mani-
festation of what was meant to remain hidden.

Back to the nonlinear damping problem, here is the picture which
starts to emerge. While in the linearized Vlasov equation, each mode k
was evolving independently of the other ones, in the nonlinear Vlasov
equation that is not the case: there is a coupling of all modes by the
interaction. Exciting one mode at some time has a nonnegligible con-
clusion on other modes at later times (by echoes), but this is controlled
by the integral equation, mixing estimates on all modes together.

4. Analysis of the integral equation

Now let us come back to the analysis of the integral equation

(7.10) ϕ(t) = A(t) +

∫ t

0

K(t, τ)ϕ(τ) dτ

appearing as a variant of (7.8).
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From the past section, we have a bad news, namely that the kernel
grows linearly in time; and a good news, namely that it concentrates
on “resonant” times τ , which are not too close to t. The moral is the
same as can be derived from the echo experiment: the Vlasov equation
is an oscillatory system which responds with time-delay. To illustrate
why this is a good news, let us examine a few examples of baby integral
equations.

• a kernel that is uniformly O(τ):

ϕ(t) ≤ A+ c

∫ t

0

τ ϕ(τ) dτ ;

then this yields ϕ(t) ≤ Aect2/2, which is a disaster.

• a kernel whose integral is O(t), and which is spread over times:

ϕ(t) ≤ A+ c

∫ t

0

ϕ(τ) dτ ;

then ϕ(t) ≤ Aect, which is better.

• a kernel whose integral is O(t), which is concentrated at the final
time:

ϕ(t) ≤ A+ c t ϕ(t) :

this is a complete disaster, the inequality does not even prevent ϕ from
becoming infinite.

• a kernel whose integral is O(t), which is O(τ), and concentrated
near the final time:

ϕ(t) ≤ A + c t

∫ t

t−1

ϕ(τ) dτ ;

then this still allows for violent growth.

• a kernel whose integral is O(t), but whose mass concentrates far
away from t:

(7.11) ϕ(t) ≤ A+ c
t

2
ϕ

(
t

2

)
.

Then a power series expansion suggests

ϕ(t) ≤ A
∑

n

cn tn

2n(n−1)/2
,

which is basically the same as Ac′(log t)2 ; one can also guess this behavior
directly from (7.11). This is very good since this growth is subexponen-
tial (faster than any polynomial, slower than any fractional exponen-
tial). In particular, we can write ϕ(t) ≤ CεAe

εt, where ε is arbitrarily
small and Cε depends on ε.



76 7. REACTION AGAINST AN OSCILLATING BACKGROUND

Why is this good? Recall that in our case ϕ(t) is an analytic
norm whose regularity index increases exponentially fast with time,
say ϕ(t) = ‖ρ(t)‖Fλt+µ. Then for the force F (t) we have, for λ′ < λ,

using as usual F̂ (t, 0) = 0,

‖F (t)‖Fλ′t+µ ≤ e−2π(λ−λ′)t ‖F (t)‖Fλt+µ

≤ C e−2π(λ−λ′)t ‖ρ(t)‖Fλt+µ

≤ C CεAe
−2π(λ−λ′)t eεt,

and by choosing ε close enough we can make sure that the decay of the
force is still exponential in time.

5. Effect of singular interactions

In the previous discussion and analysis of the kernel, we have re-

placed the power law decay Ŵ (k) ≃ |k|−(1+γ) of the interaction by
the exponential decay e−c|k| which is typical of an analytic interaction.

But of course, the most interesting cases occur when Ŵ (k) only de-
cay like a power law, corresponding to a singularity in physical space.
The most important case of all is γ = 1 (Poisson coupling). How does
this singularity modify the picture which we formed for an analytic
interaction?

To get a feeling, and appreciate the influence of the strength of the
singularity, let us consider the baby kernels

Kγ(t, τ) = (1 + τ) sup
k=1,2,...

e−α|kt−(k+1)τ |

(k + 1)γ
.

To appreciate the long-time behavior, let us perform a time-rescaling,
setting kt(θ) = tK(t, tθ) (the t factor in front is there to keep the
total mass of K invariant in the rescaling). As t → ∞, the exponen-
tial e−α|kt−(k+1)θ| becomes localized in a neighborhood of size O(1/kt)
around θ = k/(k + 1), and its mass becomes 2/(α(k + 1)). Thus

kt

t
−→ 2

α

∑

k

1

(k + 1)γ

k

(k + 1)2
δ1− 1

k+1
,

where the convergence is in the weak sense on the time-interval [0, t].
This suggests the approximation

(7.12) Kγ(t, τ) ≃ c t
∑

k≥1

1

k1+γ
δ(1− 1

k)t.

Examination of (7.12) shows that the lower γ is, the more the echoes
accumulate near t; then we are getting closer to the (very bad) regime
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of instantaneous response. For pedagogical purpose, one may keep in
mind the image that if one sings in a very rough church (say), the
abundance of small echoes may blur the sound in an uncontrollable
way.

To evaluate the influence of the kernel (7.12), let us search once
again for an exact power series solution ϕ(t) =

∑
an t

n to the integral
equation

ϕ(t) = A + c t
∑

k≥1

1

k1+γ
ϕ

((
k − 1

k

)
t

)
.

This yields

a0 = A, an+1 = c

[∑

k≥1

1

k1+γ

(
1 − 1

k

)n
]
an.

The sum inside brackets is comparable to
∫ ∞

1

t−(1+γ)

(
1 − 1

t

)n

dt = B(γ, n+ 1) ≃ n−γ,

where B is Euler’s Beta function. So an+1 ≃ c n−γ an, thus an ≃
Acn/(n!)γ , and we expect

(7.13) ϕ(t) ≤ const. A
∑

n≥1

cn tn

n!γ
.

This is subexponential for γ > 1 (which is good), but exponential for
γ = 1!

Since γ = 1 is the most interesting case, it is tempting to believe
that we stumbled on some deep difficulty. But this is a trap: a much
more precise estimate can be obtained by separating modes and esti-
mating them one by one, rather than seeking for an estimate on the
whole norm. Namely, if we set

ϕk(t) = e2π(λt+µ)|k| |ρ̂(t, k)|,
then we have a system of the form

(7.14) ϕk(t) ≤ ak(t) +
c t

(k + 1)γ+1
ϕk+1

(
kt

k + 1

)
.

Let us assume that ak(t) = O(e−ak e−2πλ|k|t). First we simplify the
time-dependence by letting

Ak(t) = ak(t) e
2πλ|k|t, Φk(t) = ϕk(t) e

2πλ|k|t.
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Then (7.14) becomes

(7.15) Φk(t) ≤ Ak(t) +
c t

(k + 1)γ+1
Φk+1

(
kt

k + 1

)
.

(The exponential for the last term is right because (k+1)(kt/(k+1)) =
kt.) Now if we get a subexponential estimate on Φk(t), this will imply
an exponential decay for ϕk(t).

Once again, we look for a power series, assuming that Ak is constant
in time, decaying like e−ak as k → ∞; so we make the ansatz Φk(t) =∑

m ak,m t
m with ak,0 = e−ak. As an exercice, the reader can work out

the doubly recurrent estimate on the coefficients ak,m and deduce

ak,m ≤ const. A (k e−ak) km cm
e−am

(m!)γ+2
,

whence

(7.16) Φk(t) ≤ const. A e(1−α)(ckt)α

, ∀α < 1

γ + 2
.

This is subexponential even for γ = 1: in fact, we have taken advantage
of the fact that echoes at different values of k are asymptotically rather
well separated in time.

As a conclusion, as an effect of the singularity of the interaction, we
expect to lose a fractional exponential on the convergence rate: if the
mode k of the source decays like e−2πλ|k|t, then ϕk, the mode k of the
solution, should decay like e−2πλ|k|t e(c|k|t)

α
. More generally, if the mode

k decays like A(kt), one expects that ϕk(t) decays like A(kt) e(c|k|t)
α
.

Then we conclude as before by absorbing the fractional exponential in
a very slow exponential, at the price of a very large constant: say

etα ≤ exp
(
c ε−

α
1−α

)
eε t.

6. Large time estimates via exponential moments

So far we have mainly done heuristics and power expansions, now
arises the question of rigorously estimating solutions of integral equa-
tions. Let us leave apart the more tricky case when the modes are
decoupled, and focus on the single case when there is just one equa-
tion, like (7.6).

So let ϕ(t) ≥ 0 solve

ϕ(t) ≤ A+

∫ t

0

K(t, τ)ϕ(τ) dτ,

where K(t, τ) is given by (7.4). To estimate ϕ in an exponential scale,
we shall consider exponential moments of the kernel. The main idea is



6. LARGE TIME ESTIMATES VIA EXPONENTIAL MOMENTS 79

that

(7.17)

∫ t

0

e−εtKγ(t, τ) e
ετ dτ

will be smaller if K favors large values of t− τ .
It can be shown by elementary means that for t ≥ 1,

(7.18)

∫ t

0

e−εtK(t, τ) eετ dτ ≤ C

εr tγ−1
,

for some constants C > 0, r > 0. The important fact is that the bound
on the right-hand side of (7.18) decays as t→ ∞.

Let us see how to exploit this information. Let ψ(t) = B eεt. If ψ
satisfies {

ϕ(t) < ψ(t) for 0 ≤ t ≤ T

ψ(t) ≥ A+
∫ t

0
K(t, τ)ψ(τ) dτ,

then u := ψ − ϕ is positive for t ≥ T , and satisfies the inequality
u(t) ≥

∫ t

0
K(t, τ) u(τ) dτ for t ≥ T , so u will never vanish and always

remain positive — this is a maximum principle argument.
For small values of t, that is, 0 ≤ t ≤ T , a crude bound, in Gronwall

style, is easy: it may give a very bad constant like eT 2
or so, but that

remains a finite constant, whatever the choice of T .
For large values of t, that is t > T , we just have to check that

A+B

∫ t

0

K(t, τ) eετ dτ ≤ B eεt.

But from (7.18), the left-hand side is bounded above by

A +
BC eεt

εr tγ−1
,

and this is obviously bounded above by B eεt as soon as B ≥ A/2 and
t ≥ (2BC/εr)1/(γ−1), which in turn holds as soon as T is chosen large
enough.

The estimate can be refined in many ways. Instead of exponential
moments, one can consider fractional exponential moments∫

e−ε tαK(t, τ) eε τα

,

which gives much better results as far as the dependence on ε is con-
cerned.

Also, there is a variant which covers the case when the kernel is used
as a source term in the linearized Vlasov equation with a nontrivial f 0,
as in (7.5). This argument is more tricky and goes not only through a
maximum principle but also through L2 estimates (as in Lemma 3.5)



80 7. REACTION AGAINST AN OSCILLATING BACKGROUND

and an inequality of Young type. To work this out, one establishes
decay estimates not only on L1 exponential moments as (7.17), but
also decay estimates on L2 moments

(∫
e−2εt K(t, τ)2 e2ετ dτ

)1/2

,

and uniform bounds on dual L1 moments,

sup
τ≥0

∫ ∞

τ

eετ K(t, τ) e−εt dt.

The elementary method from Lemma 3.5 can then be adapted to this
tricky situation. (This is somewhat painful, but the use of the inversion
of the Laplace transform would probably have been quite more painful.)

Finally, there is also a variant which allows to estimate the norms
of all modes separately, and thus to treat the important case γ = 1.

Bibliographical notes

Basically all this chapter is taken from [74, Sections 6 and 7], where
more precise computations and estimates are established. (But the ef-
ficiency of fractional exponential moments is not noticed in that refer-
ence.)

The echo experiment appears at the end of the sixties, in [65] (pre-
diction) and [66] (report of experiment); I learnt it from Kiessling. In
fact at first it was spatial echoes which were observed, and it is only
later that temporal echoes could be produced. Nowadays they are used
as an indirect way to measure the strength of irreversible phenomena
going on in a plasma (defect of echo indicates dissipation!), see [91].



CHAPTER 8

Newton’s scheme

In the past two chapters we have examined the two sides of the
nonlinear Vlasov equation near equilibrium, first as a transport equa-
tion in a small force field whose regularity improves with time, secondly
as the reaction for a gas forcing an oscillating background which is a
perturbation of equililbrium. In both cases we obtained estimates in
gliding regularity that are uniform in time, at the price of a loss of
regularity, or consequently a loss on the time decay rate. (Recall that
the gliding regularity automatically implies a time decay on velocity
averages.)

Loss of regularity in the solution of the linearized problem is some-
times informally called the Nash–Moser syndrome. It was overcome
in the fifties by Kolmogorov (in the proof of his celebrated 1954 theorem
of the likely stability of trajectories of perturbed completely integrable
Hamiltonian systems) and by Nash (in his celebrated 1956 construction
of smooth isometric Riemannian embeddings). In both cases a key idea
was to work out a perturbative analysis based on the Newton iter-

ative scheme and use the supernatural speed of convergence of this
scheme to overcome the loss of regularity. Nash also showed how to
take advantage of this fast convergence to squeeze in a regularization at
each stage, giving birth to what is now called the Nash–Moser method,
arguably the most powerful perturbative technique known to this date.
Moser used it to prove Kolmogorov’s theorem in Cr regularity.

In the study of Landau damping, the mighty Newton scheme will
save us again. It does not mean that this is the only solution: History
has shown (for the Kolmogorov theorem and even more for the Nash
theorem) that the Newton scheme can sometimes be replaced by a
classical fixed point technique, applied to a clever reformulation of the
problem.

0. The classical Newton scheme

The general formulation of the Newton scheme is as follows. Let be
given an equation Φ(z) = 0, where the unknown z lies in R or in some
Banach space, and the equation should be solved in a neighborhood V

81
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where the differential DΦ is invertible. Start from some guess z0 and
solve iteratively, approximating Φ at each step by its tangent to the
previous approximation. So at step n, the equation to be solved is

(8.1) Φ(zn) +DΦ(zn) · (zn+1 − zn) = 0,

or equivalently
zn+1 = zn − [DΦ(zn)]−1 · Φ(zn).

If zn+1 always remains in V then this procedure defines inductively a
sequence (zn)n∈N. Clearly if zn converges to z, then from (8.1) we have
Φ(z) = 0. The claim is that if z0 is close enough to the desired solu-
tion, and if Φ is twice continuously differentiable, then the convergence
occurs extremely fast. To see this, use the Taylor expansion and (8.1)
to deduce

‖Φ(zn+1)‖ ≤
∥∥∥Φ(zn) +DΦ(zn) · (zn+1 − zn)

∥∥∥+
‖D2Φ‖∞

2
‖zn+1 − zn‖2

(8.2)

=
‖D2Φ‖∞

2
‖zn+1 − zn‖2,

where ‖ · ‖∞ is the supremum norm over the domain V .
Plugging (8.2) in the identity Φ(zn+1)+DΦ(zn+1)·(zn+2−zn+1) = 0

yields ‖DΦ(zn+1) · (zn+2 − zn+1)‖ ≤ (‖D2Φ‖∞/2)‖zn+1 − zn‖2, whence

‖zn+2 − zn+1‖ ≤
(‖(DΦ)−1‖∞ ‖D2Φ‖∞

2

)
‖zn+1 − zn‖2.

Iteration of the inequality ‖zn+2 − zn+1‖ ≤ C ‖zn+1 − zn‖2 yields

(8.3) ‖zn+1 − zn‖ ≤ Cn ‖z1 − z0‖2n

.

Now if ‖Φ(z0)‖ is small enough, then δ := ‖Φ(z0)‖ ‖DΦ(z0)
−1‖ is

strictly less than 1, so ‖z1 − z0‖ < δ, and (8.3) implies inductively

‖zn+1 − zn‖ ≤ Cn δ2n

.

Then of course (zn) converges to z, and by telescopic summation

‖zn − z‖ ≤ Cn δ2n
[
1 + C δ2n

+ C2 δ2n·4n

+ C3 δ2n·4n·8n

+ . . .
]
,

which is bounded above by 2Cnδ2n
if δ is small enough. Up to changing

C, we conclude that

(8.4) ‖zn − z‖ ≤ Cn δ2n

.

That is, the Newton method converges like an iterated exponential

(exponential of exponential). (One often says that the convergence
is quadratic to express the fact that the number of significant digits
doubles at each step.) All this is subject to the fact that (zn) remains
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inside the neighborhood V where the root z belongs; but in view of the
estimate (8.4), this is clearly the case if z is close enough to z0.

1. Newton scheme for the nonlinear Vlasov equation

Consider an evolution partial differential equation ∂tf = Q(f),
where the unknown is a solution f = (f(t))t≥0 and the initial datum
fi is prescribed. To cast this equation in the setting of the Newton
scheme, define

Φ(f) =

(
∂f

∂t
−Q(f), f(0) − fi

)
.

Then the equation Φ(fn) +DΦ(fn) · (fn+1 − fn) = 0 means
(8.5)



[
∂tf

n −Q(fn)
]

+ ∂t(f
n+1 − fn) −Q′(fn) · (fn+1 − fn) = 0

fn(0) = fi for all n.

The first equation is ∂tf
n+1 = Q(fn)−Q′(fn−1) · (fn+1 − fn), but this

is not the most convenient form. It is best to see fn as made of a series
of successive layers: fn = f 0 + h1 + . . . + hn, where the unknowns hn

solve

∂th
n+1 = Q′(fn) · hn+1 +Q(fn) − ∂tf

n

= Q′(fn) · hn+1 +
[
Q(fn−1 + hn) −Q(fn−1) −Q′(fn−1) · hn

]
,

together with the initial conditions h1(0) = hi, h
n+1(0) = 0.

In the case of the nonlinear Vlasov equation, the nonlinearity is
quadratic, so Q(fn−1 + hn) −Q(fn−1) −Q′(fn−1)hn = −F [hn] · ∇vh

n.
Then we arrive at the Newton scheme for the nonlinear Vlasov

equation near a spatially homogeneous equilibrium f 0. First f 0 =
f 0(v) is given, then fn = f 0 + h1 + . . . + hn, where h1 solves the
linearized Vlasov equation

(8.6)





∂h1

∂t
+ v · ∇xh

1 + F [h1] · ∇vf
0 = 0

h1(0, · ) = fi − f 0,

and, for any n ≥ 1,
(8.7)



∂hn+1

∂t
+ v · ∇xh

n+1 + F [fn] · ∇vh
n+1 + F [hn+1] · ∇vf

n = −F [hn] · ∇vh
n

hn+1(0, · ) = 0.
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In this way the nonlinear Vlasov equation has been reduced to an
infinite number of linear equations, each of which involves a source
term which is quadratic in the solution of the previous equation.

The Newton scheme destroys many of the properties and invariances
of the original equation, however note that it is still in divergence form,
so

(8.8) ∀n ≥ 2, ∀t ≥ 0,

∫∫
hn(t, x, v) dx dv = 0.

For n = 1 we already know that

∀t ≥ 0,

∫∫
h1(t, x, v) dx dv =

∫∫
(fi − f 0)(x, v) dx dv.

Now the goal is to study the various layers hn. We shall do this in
two stages: short time, large time.

2. Short time estimates

Proposition 8.1. Let f 0 = f 0(v) be a spatially homogeneous pro-
file satisfying ‖f 0‖Zλ0;1 ≤ C0 for some λ0 > 0, and let W be an inter-
action potential with ∇W ∈ L1(Td). If λ′ < λ < λ0 and 1 < a < 2,
then there are ε∗ > 0 and T∗ > 0 such that if fi satisfies

‖fi − f 0‖Zλ,µ ≤ ε,

then for ε ≤ ε∗ one has

∀n ∈ N, ∀t ∈ [0, T∗], ‖hn(t)‖Zλ,µ;1 ≤ C εan

.

Remark 8.2. In this short-time estimate, it does not matter whether
we use gliding regularity or not.

The Vlasov equation is a first-order nonlinear partial differential
equation; for such equations there is a general method to establish
short-time analytic estimates, known as the Cauchy–Kowalevskaya

theory. For our current purposes, we do not need to explicitly appeal
to that theory, and can give a self-contained treatment using the hybrid
analytic norms, with a regularity index which deteriorates in time.

Lemma 8.3. For t small enough,

d+

dt
‖f‖Zλ−Kt,µ−Kt;1 ≤ −cK ‖∇f‖Zλ−Kt,µ−Kt;1.

The proof of this lemma is easy and relies mainly on the identity
(d/dt)e2πλ|k|t = 2πλ|k| e2πλ|k|t.
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Sketch of proof of Proposition 8.1. Now let us estimate hn(t, ·)
in a norm Zλn−Kt,µn−Kt. We get rid of the linear transport term by
using the free transport semigroup, and we are left with the contribu-
tion of the force term. So the estimate of the variation of the norm will
involve several terms, one of which is nonlinear and involves derivatives
of fn and hn+1, and one of which comes from the time-variation of the
regularity index; that one is linear and proportional to −‖∇hn+1‖. So

(8.9)
d+

dt
‖hn+1‖ ≤ −K‖∇hn+1‖ + C ‖∇(fn − f 0)‖ ‖∇hn+1‖

+ C‖∇hn‖2 + . . .

and all the norms are Zλn+1−Kt,µn+1−Kt;1. The amount of regularity lost
with time is the same for all indices n, and if λn, µn remain bounded
from below and t is small enough, then these norms control a fixed
norm Zλ,µ;1.

Let us see how to estimate (8.9). We shall use the shorthand
‖h‖λn = ‖h‖Zλn−Kt,µn−Kt;1 and assume that

‖h‖λn ≤ δn,

then the goal is to get recursive estimates on δn. Using (5.9)–(5.10), we
relate the norm of the gradient to the norm of the function, stratifying
at the same time the estimate by estimating each layer hn in a different
norm (the regularity deteriorates with n, so we have more information
for lower indices n). Thus we write

‖∇(fn − f 0)‖λn+1 ≤ ‖∇h1‖λn+1 + ‖h2‖λn+1 + . . .

≤ ‖h1‖λ1

λ1 − λn+1

+
‖∇h2‖λ2

λ2 − λn+1

+ . . .

≤ δ1
λ1 − λn+1

+
δ2

λ2 − λn+1

+ . . .+
δn

λn − λn+1

.

Assuming that the sequence (λn − λn+1) is decreasing, this is grossly
bounded above by

(8.10)
∑ δn

λn − λn+1
,

and if that sum is small enough then the second term on the right-
hand side of (8.9) is absorbed by the first one. After bounding in a
similar way the last term on the right-hand side of (8.9), we end up
with something like

(8.11) δn+1 ≤
C δ2

n

λn − λn+1
.
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At this stage we can choose, say, λn−λn+1 = Λ/n2, where Λ is very
small: that is, we allow the regularity to decrease at each step in a con-
trolled way. If

∑
n2 δn is small enough, then the sum in (8.10) is very

small, so (8.11) holds true, and the recursion relation δn+1 ≤ C ′ n2 δ2
n

implies that δn = O(δan

1 ) for a < 2, which a posteriori justifies the as-
sumption of smallness of

∑
n2 δn. It is easy to conclude by propagating

bounds inductively. �

3. Large time estimates

Now the goal is to go for long-time estimates on the layers hn, and
establish

Proposition 8.4. Let f 0 = f 0(v) be a spatially homogeneous pro-

file satisfying |f̃ 0(η)| = O(e−2πλ0|η|) and ‖f 0‖Zλ0;1 < +∞, together
with the Penrose stability condition with stability width λL > 0. Let

W be an interaction potential with Ŵ = O(1/|k|2). Let λ > 0 and
λ′ < min(λ, λ0, λL), let µ > 0, let a ∈ (1, 2); then there is ε∗ > 0 such
that if fi satisfies ‖fi − f 0‖Zλ,µ;1 ≤ ε ≤ ε∗, then

∀n ∈ N, ∀t ≥ 0 ‖hn(t)‖Zλ,µ;1
t

≤ C εan

.

This is much more tricky than the short-time estimates. In par-
ticular, it will involve a Lagrangian point of view, where we will use
trajectories induced by the force field rather than just free transport;
and it will use the estimates from Chapters 6 and 7. The same global
strategy of stratification of estimates will be useful, but a number of
auxiliary estimates will be propagated. I shall only describe the main
ideas in a sketchy way.

Sketch of proof of Proposition 8.4. First the general pic-
ture: Starting from

∂th
n+1 +v ·∇xh

n+1 +F [fn] ·∇vh
n+1 +F [hn+1] ·∇vf

n = −F [hn] ·∇vh
n,

we formally get rid of the F [fn] ·∇vh
n+1 by using the characteristics Sn

associated with the force field F [hn](t, x). This gives a kind of reaction
equation in the style of (7.1), except that everything is composed with
Sn. A notable unpleasant consequence is that we lose the gradient
property: (∇vf

n)◦Sn is not a gradient any longer; as a consequence, an
additional zero mode will appear in the reaction estimates, associated
with instantaneous response. Fortunately, this term will be uniformly
bounded in time. The source term, quadratic in hn, will not cause any
serious problem.

From there, one sets up a constructive loop in the estimates: If the
characteristics are close to the free transport trajectories, then the flow
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will have good mixing properties, and as a consequence the density
will be uniformly smooth and the force will damp to 0. Conversely, if
the force damps, then the characteristics remain close to free transport
trajectories.

To quantify how close the characteristics are from free transport,
one introduces the “finite time scattering operators”

(8.12) Ωt,τ = Sn
t,τ ◦ S0

τ,t,

where Sn is the characteristic flow generated by the force F [hn].
Now the core of the proof is to estimate simultaneously hn ◦ Ωn−1

(the density hn along the characteristics generated by fn−1) and ρn =∫
hn dv (the spatial density). The density ρn is estimated in the natural

gliding regularity: that is, in the space Fλnτ+µn at time τ . But the
composed density hn ◦ Ωn−1 is estimated with a twist on the indices,
depending on the final time t: using (5.14), the time velocity and
regularity indices will be modulated by a function

b(t) = B/(1 + t)

So the main estimates to propagate are

(8.13) sup
τ≥0

‖ρn(τ)‖Fλnτ+µn ≤ δn, sup
t≥τ≥0

∥∥hn
τ ◦Ωn−1

t,τ

∥∥
Z

λn(1+b),µn;1

τ− bt
1+b

≤ δn,

where δn is a sequence of positive numbers which should converge very
fast to 0. I shall write δ = δ1: this is an estimate of the final error.

A number of auxiliary estimates will be propagated. Writing Ω =
Ωt,τ and h = h(τ) for simplicity, the desired estimates are (in appro-
priate norms)

• Ωn − Id and ∇Ωn − I are O(δ/τ s), uniformly in n;

• Ωn − Ωk and (Ωk)−1 ◦ Ωn − Id are O(δk/τ
s), for all k ≤ n (so

these expressions are small as k → ∞, uniformly in n);

• hk ◦ Ωn−1, ∇xh
k ◦ Ωn−1, (∇v + τ∇x)h

k ◦ Ωn−1 are all O(δk), for
all k ≤ n;

• ∇2hk ◦ Ωn−1 is O(τ 2 δk), for all k ≤ n;

• (∇hn) ◦ Ωn−1 −∇(hn ◦ Ωn−1) is O(δn/τ
s), for all n.

In the above expressions s > 0 is as large as desired; for the sequel it
would be sufficient to choose s = 4, but in these and related estimates
I shall continue to write s, meaning an integer which can change from
line to line and can be fixed arbitrarily large in advance. The possibility
of choosing s large comes from the fact that the scattering estimates
of Chapter 6 are exponentially small in τ .

Let us see in a sketchy way how this works. To simplify notation, I
shall forget about the x-regularity and the parameter µ in the estimate
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of the kinetic distribution, and focus on the v-regularity parameter λ.
At each stage of the iteration a bit or regularity is lost in v (when I say
a bit, this is still an infinite number of derivatives, but in the parameter
λ of analytic regularity this is just a bit): say λn − λn+1 = Λ/n2 with
Λ very small. At each stage there are a number of steps, at each step a
little bit is lost, so five or six intermediate indices are used between λn

and λn+1, say λn > λ′n > λ′′n > . . . > λn+1; but λn−λ′n, λ′′n−λ′n, etc. are
all of the order λn − λn+1, so I will just forget about the intermediate
indices and use the fact that these differences are all of order O(1/n2).
Also I shall assume δk decreases very fast to 0: in fact this can only be
checked a posteriori once all estimates have been performed.

With these conventions in mind, let us sketch the steps of the iter-
ation.

(a) In this step one shows that Ωn is asymptotically close to Id .
From ‖ρn‖Fλnτ = O(δn) we deduce, as in Chapter 6, a bound on
Ωn

t,τ − Id . If we do it in gliding regularity about λn+1, then to ap-

ply Proposition 6.1, we need λn − λn+1 to be at least of order δ1/3,
because the force field is of size δ (it depends not only on hn but also
on h1, h2, . . . Of course we cannot afford to lose such a fixed amount of
regularity as n → ∞. So we modify the estimates in Proposition 6.1
tby letting the velocity regularity depend on τ and t: replace Zλn

τ by

Zλn(1+b)
τ−bt/(1+b), where b(t) = B/(1 + t). This works because

• ‖F n(t)‖ decays faster than λn b(t),

• λn(1 + b)
(
τ − bt

1+b

)
< λn τ , at least for t positive enough. So

we can still estimate the Zλn(1+b)
τ−bt/(1+b) norm of the force field by its Fλnτ

norm (recall (5.14)).

This does not work for small values of t, but short times have al-
ready been treated separately, as explained in Section 2. In all the rest
of the argument one should consider separately small and not so small
times.

Then, by amplification of the fixed point technique of Chapter 6,
we arrive at

(8.14) ‖Ωn
t,τ − Id ‖

Z
λn(1+b)

τ− bt
1+b

=
O(δ)

τ s
.

Next, with another fixed point argument, one establishes

(8.15) ‖∇Ωn
t,τ − I‖

Z
λn(1+b)

τ− bt
1+b

= O

(
δ

τ s

)
.
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(b) In this step one shows that Ωk is close to Ωn, uniformly in n ≥ k.
This is done again by fixed point, and one arrives at something like

(8.16) ‖Ωn
t,τ − Ωk

t,τ‖Zλn(1+b)

τ− bt
1+b

= O

(
δk
τ s

)
.

(The regularity is the worst of λn and λk, that is λn; and the size is
the worst of δn and δk, that is δk.) The important point is that this
estimate goes to 0 as k → ∞, uniformly in n. From (8.16) is deduced
(by fixed point again...)

(8.17)
∥∥∥
(
Ωk

t,τ )
−1 ◦ Ωn

t,τ − Id
∥∥∥
Z

λn(1+b)

τ− bt
1+b

= O

(
δk
τ s

)
.

(Inversion with a norm of time index τ is possible only if Ωn − Ωk is
much smaller than 1/τ ; but this is guaranteed by (8.16).)

In the sequel I shall not always write the indices of the norms.

(c) The next step is to update the controls on the previous layers hk

by taking into account the change of the characteristics; so one should
estimate hk ◦ Ωn for all k. This is done by composition:

hk ◦ Ωn = (hk ◦ Ωk−1) ◦
(
(Ωk−1)−1 ◦ Ωn

)
,

so
∥∥hk ◦ Ωn − hk ◦ Ωk

∥∥ ≤ ‖∇(hk ◦ Ωk−1)‖
∥∥∥
(
Ωk−1

t,τ )−1 ◦ Ωn
t,τ

)
− I
∥∥∥

≤ C δk

(
δk
τ s

)
,

as a consequence of the induction assumption ∇(hk ◦ Ωk−1) = O(δk)
and (8.17). It follows

(8.18) ‖hk
τ ◦ Ωn

t,τ‖Zλn(1+b)

τ− bt
1+b

= O(δk).

Similar bounds are established for (∇xh
k)◦Ωn and ((∇v+τ∇x)h

k)◦Ωn,
with just a small loss on the regularity index. Consequently (∇vh

k)◦Ωn

is O(τ δk). Similarly, (∇2hk) ◦ Ωn = O(τ 2 δk).

(d) Next is the key step where an estimate is obtained for ρn+1.
First write the equation for hn+1, then the method of characteristics in
the force field F [fn] yields

ρn+1(t, x) = −
∫ t

0

∫ (
F [hn+1] · ∇vf

n
)(
τ, Sn

t,τ (x, v)
)
dv dτ

+ quadratic contribution from hn.
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To take advantage of the mixing effect of the free transport semigroup,
introduce the scattering Ωn by force, rewriting the estimate above as

(8.19)

ρn+1(t, x) = −
∫ t

0

∫ [(
F [hn+1] · ∇vf

n
)
◦ Ωn

t,τ

](
x− v(t− τ), v

)
dv dτ

+O(nr δ2
n),

where the contribution from hn has been estimated in a crude way.
If it was not for the composition by Ωn, we would be in the same

situation as in Chapter 7, and we could use the estimates on the Vlasov
equation seen as a reaction equation. But (F [hn+1]·∇vf

n)◦Ωn does not
have the structure G(t, x) ·∇vg(t, x, v) which was crucial in Chapter 7.
The problem is to show that composition by Ωn does not change much
in the long run.

So we decompose that reaction term as follows:

(
F [hn+1] · ∇vf

n
)
◦ Ωn

t,τ =F [hn+1] · ∇v

(
f 0 +

∑

k≤n

hk ◦ Ωk−1
)

(8.20)

+
(
F [hn+1] ◦ Ωn − F [hn+1]

)
· (∇vf

n ◦ Ωn)

+ F [hn+1] ·
∑

k≤n

[
(∇vh

k) ◦ Ωk−1 −∇v

(
hk ◦ Ωk−1

)]

+ F [hn+1] ·
∑

k≤n

[
(∇vh

k) ◦ Ωn − (∇vh
k) ◦ Ωk−1

]
.

The first term on the right-hand side is fine, and the other three terms
will be treated as perturbations in large time.

• The second term in the right-hand side of (8.20) is estimated as
follows:∥∥∥F [hn+1] ◦ Ωn − F [hn+1]

∥∥∥ ‖∇vf
n ◦ Ωn‖

≤
∥∥∇F [hn+1]

∥∥ ‖Ωn − Id ‖ ‖∇vf
n ◦ Ωn‖

≤ C ‖ρn+1‖ δτ
τ s
,

where I used ‖∇F [hn+1]‖ ≤ C ‖ρn+1‖: indeed, thanks to the assump-

tion |Ŵ (k)| = O(1/|k|2), passing from the density to the force should
gain at least one derivative. (Note carefully: Here we cannot afford to
lose regularity on ρn+1 because we are trying to get a Gronwall-type
estimate on the unknown ρn+1, so it is crucial to use the very same
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norm on the left-hand side and the right-hand side, and the only thing
we can use to regain the derivative is the smoothing induced by the
convolution inside the force.)

• Next, by recursion hypothesis,
∥∥∥∇v(h

k ◦ Omk−1) − (∇vh
k) ◦ Ωk−1

∥∥∥ = O

(
δk
τ s

)
,

which allows to control the third term in the right-hand side of (8.20)
by ‖ρn+1‖ δk/τ s.

• Finally, to handle the last term in the right-hand side of (8.20),
one writes
∥∥∥(∇vh

k) ◦ Ωk−1 − (∇vh
k) ◦ Ωn

∥∥∥

≤ sup
0≤θ≤1

∥∥∥∇2hk ◦
(
(1 − θ) Ωk−1 + θΩn

)∥∥∥ ‖Ωk−1 − Ωn‖.

From (8.17) the argument of ∇2hk is close to Ωk−1, uniformly in θ, so
up to a slight loss we end up with a bound like

∥∥∥∇2hk ◦ Ωk−1
∥∥∥ ‖Ωk−1 − Ωn‖ ≤ C δk τ

2

(
δk
τ s

)
,

after use of the induction hypothesis on ∇2hk ◦ Ωk−1 and the bound
(8.16).

Plugging all these controls in (8.20) shows

ρn+1(t, x) = −
∫ t

0

F [hn+1
τ ]·∇v

(
f 0+

∑

k≤n

hk
τ◦Ωk−1

t,τ

)
(x−v(t−τ), v) dτ dv

+O

(∫ t

0

‖ρn+1(τ)‖
1 + τ s

dτ

)
+O(nrδ2

n).

Then one can operate as in Chapter 7 and get a Gronwall estimate
on ‖ρn+1(τ)‖Fλn+1τ . The difference is an additional term in the kernel
K(t, τ), which is O(δ τ−s), uniformly in t. But this is harmless: think
indeed that a solution of

ϕ(t) ≤ A + δ

∫ t

0

ϕ(τ)

1 + τ 2
dτ

satisfies ϕ(t) ≤ A+C δ. The robustness of the moment estimates from
Chapter 7 and the L2 method in Lemma 3.5 makes it possible to adapt
all these estimates to the present complicated situation, yielding in the
end

‖ρn+1‖Fλn+1τ = O
(
enK

nr δ2
n

)
.
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So this step gives

δn+1 = O
(
enK

nr δ2
n

)
.

This is not as good as δn+1 = O(δ2
n), and does not imply δn = O(Cn δ2n

)
as in the classical Newton scheme; but this is still compatible with
δn = O(δan

), a < 2.
The final conclusion of this step is

(8.21) ‖ρn+1‖Fλn+1τ = O(δn+1).

(e) From the estimate on ρn+1 we immediately deduce an estimate
on the force: ‖F [hn+1]‖Fλn+1τ = O(δn+1).

(f) Then use the equation for hn+1 once more, but now compose
it with Ωn

t,τ where τ is given, and estimate hn+1
τ ◦ Ωn

t,τ . This is not so
difficult as Step (d) because now there is no need to use the same norm
on both sides: we already have an estimate on the force, we don’t need
any Gronwall-type inequality, we can afford to lose a little bit on the
regularity of hn+1 compared with the regularity of ρn+1. After some
computations, one gets something like

(8.22)
∥∥∥hn+1

τ ◦ Ωn
t,τ

∥∥∥
Z

λn(1+b)

τ− bt
1+b

= O(δn+1).

(g) Deduce (by gliding regularity) that

(8.23) ∇(hn+1
τ ◦ Ωn

t,τ ) = O(δn+1 τ), ∇2(hn+1
τ ◦ Ωn

t,τ ) = O(δn+1 τ
2).

(h) Deduce that

(∇hn+1) ◦ Ωn = (∇Ωn)−1 ∇(hn+1 ◦ Ωn) = O(δn+1 τ),

and similarly ∇2hn+1 ◦ Ωn = O(δn+1 τ
2). Finally, note that

∥∥∥∇(hn+1 ◦ Ωn) − (∇hn+1) ◦ Ωn
∥∥∥ ≤

∥∥∇(Ωn − Id )
∥∥∥∥∇hn+1 ◦ Ωn

∥∥

≤ C

(
δ

τ s

)
(δn+1 τ),

so at the same time this is small like O(δn+1), and it decays fast in τ .

Once this is done, all the estimates have been propagated from
stage n to stage n + 1, and we can go on! �
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4. Main result

Once we have obtained the estimates on all hn, it is easy to conclude
the proof of Theorem 4.1. Let us sketch the argument. Summing the
estimates on all hn, one obtains the uniform bound

(8.24) sup
t≥0

‖f(t, · ) − f 0‖Zλ,µ;1
t

+ sup
t≥0

‖ρ− ρ0‖Fλt+µ = O(δ).

This bound is the true main result: actually, it contains much more
information than Theorem 4.1. It implies immediately that the force
F (t, · ) satisfies ‖F (t)‖Fλt+µ = O(δ), and since F is a gradient, it im-
mediately follows that F (t) decays exponentially fast with t. On the
other hand, ∇vf grows at most linearly in t, so F ·∇vf decays exponen-
tially fast in gliding regularity. This implies that (d/dt)f(t, x + vt, v)
also decays exponentially; in particular, f(t, x+ vt, v) has a large-time
limit g(x, v), which is analytic, and the convergence actually holds in
an appropriate Z function space. As a consequence, f(t, x, v) has the
same asymptotic behavior as g(x − vt, v), which converges weakly to
〈g〉(v). The conclusion of Theorem 4.1 follows easily.

I shall conclude with a few indications on non-analytic data (Theo-
rem 4.3). It was noted in Chapter 7 that the expected loss of regularity
is like a fractional exponential, say e|ξ|

α
. Then it is expected that all

results hold true in a regularity which is better, that is, Gevrey-ν with
ν > 1/α.

All the estimates can indeed be adapted to this setting, either by
changing all our norms to handle Gevrey regularity, or by decomposing
a Gevrey function in a sum of analytic contributions with analyticity
width going to 0 in a controlled way. In practice, we decompose the
initial datum fi − f 0 in a sum of data hn

i , such that hn
i satisfies some

analyticity condition in a strip of width λ′n, and the norm of hn
i decays

in a controlled way as n→ ∞. Then we use hn
i as an initial datum in

the step n of the Newton scheme. Of course our long-time estimates
on hn only hold in regularity less than λ′n, but the way λ′n goes to 0
is controlled, so in the end we can reconstruct Gevrey regularity for∑
hn, losing just a bit on the Gevrey exponent in the process. Then

the iteration can be performed as in the analytic case.

Bibliographical notes

Newton presented his approximation scheme in a 1669 treatise [78]
which was published only decades later. The presentation and the
study of the scheme were revised and improved by a series of English
mathematicians: Wallis, Raphson, Simpson, Cayley. An ancestor of the
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Newton scheme is the so-called Babylonian method for the numerical
solution of square roots, which some experts conjecture to have been
known to Babylonian mathematicians as early as 1900 BC, and to
Indian mathematicians before 800 BC: to compute e.g.

√
2 apply the

Newton scheme to the function Φ(x) = x2 − 2.
Kolmogorov’s perturbation theorem for Hamiltonian systems was

announced in [53] in analytic regularity, and Nash’s embedding the-
orem appeared in [76]. Kolmogorov’s sketchy proof did not convince
everybody at the time, which was very fortunate since it motivated
Moser to devise his own proof [72, 73] in a differentiable setting, using
Nash’s work as an inspiration. Around the same time, Kolmogorov’s
analytic result was, after all, validated by Arnold [5] with an alterna-
tive proof. Much later, Chierchia [26] reconstructed the details of was
is likely to have been Kolmogorov’s original argument. Chierchia wrote
a survey of KAM theory for the online encyclopedia Scholarpedia [27].

A fixed point approach to the KAM theory was proposed by Herman
[45]; while it does not seem to apply in full generality, it does suffice
to cover certain simple situations. A fixed point approach to Nash’s
embedding theorem was devised by Günther [39].

The Cauchy–Kowalevsakaya method is presented in a number of
sources; Nirenberg’s presentation [79] is based on a Newton scheme,
and is close in spirit to the treatment sketched in these notes, whose
details are provided in [74]. (I learnt about Nirenberg’s work from
Klainerman, Alinhac and Gérard after [74] was written.) Once again,
after a few years, Nirenberg’s use of a Newton scheme has been replaced
by a fixed-point theorem [80], and maybe this will also happen some
day for our theory of Landau damping.

Short-time analyticity estimates on the solutions of the Vlasov–
Poisson equation go back to Benachour [12], with an alternative method.

A few remarks about Lemma 8.3 can be made. Differentiation of
the norm with respect to time-dependent integrability index is classical
in the field of hypercontractivity [38]. Differentiation with respect to a
time-dependent regularity index is not so common, but appears in the
work of Chemin [25] on the short-time regularity of the incompressible
Navier–Stokes system.

The long-time analysis of the Newton scheme is performed in painful
detail in [74]. The adaptation to Gevrey data is sketched in the same
source. As I learnt later, Moser already used the idea to decompose
a smooth, nonanalytic function h into a sum of analytic functions hn

whose norm and analyticity width decay in a controlled way as n→ ∞.



CHAPTER 9

Conclusions

The main result in this course is that Landau damping survives
nonlinearity, and the long-time behavior of the linearized Vlasov equa-
tion is, after all, a good approximation of the long-time behavior of the
nonlinear Vlasov equation. This ends up a controversy and provides
a final answer to the objection formulated by Backus half a century
ago. In the end Landau was right, although the proof involves many
ingredients which were inaccessible at his time.

Remarkably, the range of interactions which are admissible in the
main result includes the Poisson coupling (repulsive or attractive) as a
limit case.

Moreover, the theory provides an interpretation of Landau damp-
ing: this is a relaxation by mixing, confinement and smoothness.
The mixing transport equation converts smoothness into decay, in the
spirit of Fourier transform (Riemann–Lebesgue lemma). Regularity
goes away from the v variable to the x variable, so the force becomes
very smooth, and because it has a gradient structure this implies time
decay.

Even though the solution of the linearized problem involves a loss
of gliding regularity (which implies relaxation), regularity estimates
survive the nonlinear perturbation by a mathematical (rather than
physical) phenomenon comparable to the KAM theory, which takes
advantage of the complete integrability of the original system (in our
case the linearized Vlasov equation) and a Newton scheme to overcome
the loss of regularity.

In this sense the proof provides an unexpected bridge between three
of the most famous paradoxical statements from classical mechanics in
the twentieth century: Landau damping, KAM theory, and the echo
experiment. This is all the more remarkable that this bridge only ap-
pears in the treatment of the nonlinear Vlasov equation, while Landau
was dealing specifically with the linearized equation.

The fully constructive property of the Newton scheme allows to
construct the asymptotic state, opening the door to asymptotic studies.
For instance, one can construct in this way heteroclinic trajectories of

95



96 9. CONCLUSIONS

the nonlinear Vlasov equation (solutions are automatically homoclinic
at order 2 in the perturbation size ε; but heteroclinic corrections of
order O(ε3) can appear). This shows that the asymptotic behavior
cannot be predicted on the basis on invariants of motion alone: indeed,
these invariants are all preserved by the reversal of velocities, which
amounts to a change of the direction of time.

Another striking feature of our proof is that, compared to KAM
theory, the loss of regularity is much more severe in the present case:
infinitely many derivatives are lost, corresponding to a fractional ex-
ponential in Fourier space. Such high losses prevent the application of
the classical Nash–Moser regularization scheme; for this reason in par-
ticular, we have not been able to establish nonlinear Landau damping
below Gevrey regularity.

The issue of nonlinear Landau damping for less smooth data ap-
pears wide open. In a recent contribution, Lin proved that one cannot
hope for Landau damping in low regularity, that is, with less than 2
derivatives in an appropriate Sobolev space. Indeed, in such a low
regularity topology, BGK waves are dense around stable homogeneous
equilibrium profiles; so damping to a homogeneous state might still be
true for typical solutions, but cannot hold over a whole neighborhood
of the equilibrium.

The benchmarking of reliable long-time numerical schemes, the
study of the linear and nonlinear stability of BGK wave, the qualitative
study of large perturbations of equilibrium, the statistical theory of the
Vlasov–Poisson equation, remain wide open fascinating subjects. An-
other development of interest would be the adaptation of Landau damp-
ing theory to other models sharing some similar features; for the most
natural candidate, the two-dimensional incompressible Euler equation,
this turns out to be much more difficult than could be expected.

Bibliographical notes

KAM type problems with a loss of infinitely many derivatives (mul-
tiplication by a fractional exponential in Fourier space) have been con-
sidered by Popov [84]; in this case (as I learnt from Chierchia and
Pöschel) nobody knows how to treat Cr regularity in the style of Moser
[72].

Heteroclinic solutions of the nonlinear Vlasov equation are con-
structed in [74, Section 14].

Lin’s negative results are presented in [59]. The precise statement
is that there is density in W 1+1/p,p+0 topology for any p ∈ (1,∞).
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A preliminary discussion of nonlinear Landau damping for two-
dimensional incompressible Euler equation was performed by Bouchet
and Morita [16]. Together with Mouhot, we tried to put this on rig-
orous footing by adapting the study of the nonlinear Vlasov equation,
but stumbled upon formidable difficulties, even in the simple case of a
perturbation of a linear shear flow [75].
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