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Wine guide to Riemann solvers
Godunov: Produced from vines of great antiquity. Full-bodied

vintage to satisfy the most demanding palate. Modern
viniculture is able to deliver most of its features at
substantially lower cost though.
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Godunov: Produced from vines of great antiquity. Full-bodied

vintage to satisfy the most demanding palate. Modern
viniculture is able to deliver most of its features at
substantially lower cost though.

Roe: Moderately robust and finely flavored. Its variable density
makes it unique. Be warned, though, that its method of
manufacture may cause very local headache in some
states.
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Godunov: Produced from vines of great antiquity. Full-bodied

vintage to satisfy the most demanding palate. Modern
viniculture is able to deliver most of its features at
substantially lower cost though.

Roe: Moderately robust and finely flavored. Its variable density
makes it unique. Be warned, though, that its method of
manufacture may cause very local headache in some
states.

Harten – Lax – van Leer: Robust wine that may be served on most
occasions, but the omission of certain traditional ingredients
leads to cloudiness and a sticky aftertaste.
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Wine guide to Riemann solvers
Godunov: Produced from vines of great antiquity. Full-bodied

vintage to satisfy the most demanding palate. Modern
viniculture is able to deliver most of its features at
substantially lower cost though.

Roe: Moderately robust and finely flavored. Its variable density
makes it unique. Be warned, though, that its method of
manufacture may cause very local headache in some
states.

Harten – Lax – van Leer: Robust wine that may be served on most
occasions, but the omission of certain traditional ingredients
leads to cloudiness and a sticky aftertaste.

Osher: Robust, smooth top-quality wine with a high proof
content. From the best Californian winery. Not a cheap wine
to speed the gaiety. No artificial additives have been used.
In my opinion the best buy!
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Properties Osher scheme
Strengths

Closest similarity to Godunov
Consistent boundary-condition treatment
Consistent source-term treatment
Continuous differentiability
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Properties Osher scheme
Strengths

Closest similarity to Godunov
Consistent boundary-condition treatment
Consistent source-term treatment
Continuous differentiability

Challenges
Construction
Computational intensity
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Osher scheme in a nutshell

Consider ∂q
∂t

+ ∂f(q)
∂x

= 0 and suppose f+(q) and f−(q) exist
such that:

f(q) = f+(q) + f−(q).

Then, a natural approximate Riemann solver is:

F (ql, qr) = f+(ql) + f−(qr),

which can also be written as:

F (ql, qr) = f(ql) − f−(ql) + f−(qr) = f(ql) +

∫ qr

ql

df−

dq
dq,

or : F (ql, qr) = f(qr) − f+(qr) + f+(ql) = f(qr) −

∫ qr

ql

df+

dq
dq.
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Osher scheme in a nutshell

Consider ∂q
∂t

+ ∂f(q)
∂x

= 0 and suppose f+(q) and f−(q) exist
such that:

f(q) = f+(q) + f−(q).

Then, a natural approximate Riemann solver is:

F (ql, qr) = f+(ql) + f−(qr),

which can also be written as:

F (ql, qr) = f(ql) − f−(ql) + f−(qr) = f(ql) +

∫ qr

ql

df−

dq
dq,

or : F (ql, qr) = f(qr) − f+(qr) + f+(ql) = f(qr) −

∫ qr

ql

df+

dq
dq.

Osher’s elegant choice: integration along eigenvectors.
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Task 1
Construct Osher scheme for 1D ideal MHD equations,
∂q
∂t

+ ∂f(q)
∂x

= s(q), with Ken Powell’s source terms:
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.

K.G. POWELL, An approximate Riemann solver for magnetohydrodynamics

(that works in more than one dimension), CWI Report NM-R9407, Amsterdam

(1994).
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Task 2
Construct Osher scheme for 1D ideal MHD equations,
∂q
∂t

+ ∂f(q)
∂x

= s(q), with ‘divergence cleaning’ terms:
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A. DEDNER ET AL., Hyperbolic divergence cleaning for the MHD equations,

J. Comput. Phys., 175, 645–673 (2002).
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Success !
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