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Abstract

Nuclear fusion holds forth the promise of being a clean and safe solu-
tion to meet the world’s energy demand in the foreseeable future without
producing long-lived radioactive waste or weapons-grade material. The
most mature configuration for magnetically confining a fusion plasma is
the tokamak; a current carrying toroidal plasma characterized by strong
externally produced magnetic fields. The temperatures, densities, and
current will diffuse across the magnetic field lines at some rate, determin-
ing the confinement properties of the tokamak. The tokamak can also
develop global instabilities if the current and/or pressure exceed certain
instability thresholds. This set of lectures is aimed at describing ana-
lytical formulations and associated numerical methods for quantitatively
describing both the slow (diffusive) motion associated with transport and
the faster (wavelike) motion associated with instabilities. The former
uses slow time scale ordering to remove the wavelike motion, and a time-
dependent field-aligned coordinate transformation to isolate the cross-field
transport from the faster transport along the magnetic field lines. The
latter uses a combination of high-order finite elements, a particular repre-
sentation of the magnetic and velocity vector fields, and an implicit time
advance algorithm with desirable properties.
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1 Tokamak Fusion Basics and the
MHD Equations

1.1 Tokamak Fusion Basics

A strong case can be made for the development of fusion energy [1]. Worldwide
demand for energy continues to increase due to both population increases and
economic development. Most of this population growth and new energy demand
is in urban areas, which implies the need for large centralized power generation.
By many estimates, worldwide oil and gas production is near or past its peak,
which implies the need for an alternative source. The only possibilities are: coal,
nuclear fission, or nuclear fusion.

There is increasing evidence that release of greenhouse gasses is causing
global climate change. This comes both from historical data and from detailed
climate projections. This makes nuclear energy (both fission and fusion) prefer-
able to fossil (coal). Nuclear fusion has three advantages over nuclear fission
that could become critical: (i) It has inherent safety, so there is no possibility
of a meltdown accident; (ii) There are no weapons proliferation considerations;
and (iii) The waste disposal problems are greatly alleviated.

Controlled fusion uses isotopes of Hydrogen. A Deuterium (D) nuclei that
collides with a Tritium (T) nuclei can fuse to produce a Helium nuclei, and
neutron, and 17.5 MeV of energy. The neutron can be captured by a Lithium
nuclei to produce another Helium nuclei and a Tritium nuclei. Because the
process breeds its own Tritium and both Deuterium and Lithium are naturally
abundant, there is essentially an unlimited supply of fuel.

In order to create the conditions for D and T to fuse, you must create a
mixture of DT nuclei (or ions) and their associated electrons, called a plasma,
and heat it to high temperature and high pressure. You need about 5 atmosphere
pressure at a temperature of 10 keV (100, 000, 0000 degrees K). A plasma at that
temperature can never come into contact with material walls so we must confine
it with magnetic fields.

To a first approximation, both the electrons and DT ions exhibit spiral orbits
around magnetic field lines as indicated in Fig. 1. They describe circular orbits
perpendicular to the field and free-stream in the direction of the field lines. In
a tokamak [2], the magnetic field is bent into a torus so that the free-streaming
motion does not lead to loss of particles. The tokamak has large electromagnets
to produce the confining magnetic fields and to induce electrical current into the
plasma. This current both heats the plasma and provides an essential “twist”
to the magnetic field in the plasma so that the electrons and ions do not drift
out of the confinement region. The toroidal-field coils produce the strongest
magnetic field. These fields are directed in the toroidal direction (the long way
around the torus). The poloidal-field coils produce weaker fields in the same
plane as the fields produced by the plasma currents. These are orthogonal to
the toroidal field, and serve to shape the plasma cross section. The magnetic
field from the central field coil changes in time such as to induce current into
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Figure 1: Charged particles have helical orbits in a magnetic field; they de-
scribe circular orbits perpendicular to the field and free-stream in the direction
of the field.

the plasma through transformer action. The coil arrangement in a standard
tokamak is shown in Fig. 2.

The doughnut-shaped tokamak plasma can develop global instabilities if the
current it carries is too large or poorly distributed, or if the pressure is too
high. This is the motivation for developing a set of partial differential equations
that describe the dynamics of the plasma in the tokamak. The mathematical
description of a plasma we consider here is called extended magnetohydrody-
namics, or just simply magnetohydrodynamics (MHD). This treats the plasma
as a conducting fluid that interacts with the magnetic fields produced by the
electrical currents flowing in the plasma and from external sources. A tokamak
is characterized by having a very strong externally imposed toroidal magnetic
field (going the long way around the torus) so that the plasma pressure, p is
much less than the magnetic pressure, B2/2µ0 (SI Units). This is referred to as
low-β, where β ≡ 2µ0p/B

2. Special numerical methods are required to obtain
accurate numerical solutions of low-β plasmas [3].

1.2 Magnetohydrodynamic (MHD) Equations

For simplicity, we consider here only a single species of ions with unit charge.
The field equations in MHD are then [4]:

∂B
∂t

= −∇×E, (1.1)

∇ ·B = 0, (1.2)

∇×B = µ0J, (1.3)
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Figure 2: The tokamak creates toroidal magnetic field to confine the plasma
and induces a toroidal plasma current to heat and confine the plasma.

ni = ne = n. (1.4)

Equations (1.1) and (1.2) for the magnetic field B and the electric field E are
exact and always valid. Note that Eq. (1.2) can be regarded as an initial con-
dition for Eq. (1.1). Equation (1.3) can be taken as a defining equation for
the electrical current density J. Equation (1.4), stating the equivalence of the
electron and ion number density, is referred to as quasineutrality .

The fluid equations are the continuity equation for the number density

∂n

∂t
+∇ · (nu) = Sm, (1.5)

the internal energy equation for the plasma pressure

3
2
∂p

∂t
+ ∇ ·

(
q +

3
2
pu
)

= −p∇ · u +
(

3
2
∇pe −

5
2
pe
n
∇n
)
· J
ne

+ Re ·
J
ne

− π : ∇u + πe : ∇ J
ne

+Q, (1.6)

the electron internal energy equation for the electron pressure

3
2
∂pe
∂t

+ ∇ ·
(
qe +

3
2
peu
)

= −pe∇ · u +
(

3
2
∇pe −

5
2
pe
n
∇n
)
· J
ne

+ Re ·
J
ne

− πe : ∇
(
u− J

ne

)
+Q∆ei +Qe, (1.7)

and the force balance equation for the fluid velocity

nmi

(
∂u
∂t

+ u · ∇u
)

+∇ · (πe + πi) = −∇p+ J×B. (1.8)
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In addition, from the momentum equation for the electrons, we have the general-
ized Ohm’s law equation, which in the limit of vanishing electron mass (me = 0)
becomes:

E + u×B =
1
ne

[Re + J×B−∇pe −∇ · πe] . (1.9)

The variables B, u, n, p, pe are the fundamental variables in that they
obey time advancement equations. The variables E, J, and the ion pressure
pi = p − pe are auxiliary variables which we define only for convenience. We
have also introduced the total heat flux q = qe + qi and the total non-isotropic
stress tensor π = πe + πi.

To proceed with the solution, one needs closure relations for the remaining
terms; the collisional friction term Re, the random heat flux vectors qj , the
anisotropic part of the stress tensor πj , and the equipartition term Q∆ei. It
is the objective of transport theory to obtain closure expressions for these in
terms of the fundamental variables and their derivatives. There is extensive
and evolving literature on deriving closures that are valid in different parameter
regimes. We will discuss some of the more standard closures in the following
sections. We note here that the external sources of particles, total energy,
and electron energy Sm, Q, and Qe must also be supplied, as must initial and
boundary conditions.

1.2.1 Two-Fluid MHD

The set of MHD equations as written in Section 1.2 is not complete because
of the closure issue. The most general closures that have been proposed are
presently too difficult to solve numerically. However, there are some approx-
imations that are nearly always valid and are thus commonly applied. Other
approximations are valid over limited time scales and are useful for isolating
specific phenomena.

The two-fluid magnetohydrodynamic equations are obtained by taking an
asymptotic limit of the extended MHD equations in which first order terms in the
ratio of the ion Larmor radius to the system size are retained. This is sometimes
called the finite Larmor radius or FLR approximation. The principal effects
are to include expressions for the parts of the ion stress tensor πi and ion and
electron heat fluxes qi and qe that do not depend on collisions. This contribution
to the ion stress tensor is known as the gyroviscous stress or gyroviscosity . Let
b be a unit vector in the direction of the magnetic field. The general form of
gyroviscosity, assuming isotropic pressure and negligible heat flux, can be shown
to be [4, 5, 6]:

πgyri =
mipi
4eB

{
b×W · (I + 3bb) + [b×W · (I + 3bb)]†

}
. (1.10)

Here, the rate of strain tensor is

W = ∇u + (∇u)† − 2
3
I∇ · u. (1.11)
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The expressions for the gyroviscosity in Eqs. (1.10) and (1.11) are quite complex
and difficult to implement. A common approximation is to replace Eq. (1.10)
with what has become known as the gyroviscous cancellation approximation [7,
8],

∇ · πgyri ≈ −minu∗ · ∇u, (1.12)

where the ion magnetization velocity is defined by

u∗ = − 1
ne
∇×

( pi
B2

B
)
. (1.13)

At the same order in this expansion, it can be shown that for each species there
exists a heat flux q that is independent of the collision frequency:

q∧j =
5
2
pjkB
qjB

b×∇Tj . (1.14)

The remaining contributions to the ion stress tensor are dependent on the
collisionality regime and magnetic geometry in a complex way. These are often
approximated by an isotropic part and a parallel part as follows:

πisoi = −µ
[
∇u +∇u†

]
− 2(µc − µ) (∇ · u) I, (1.15)

∇ · πisoi = −µ∇2u− (2µc − µ)∇ (∇ · u) , (1.16)

π
‖
i = µ‖(b ·W · b)(I− 3bb). (1.17)

We note the positivity constraints µ ≥ 0, µc ≥ 2
3µ, µ‖ ≥ 0.

The electron gyroviscosity can normally be neglected due to the small elec-
tron mass. However, for many applications, an electron parallel viscosity can
be important. This is similar in form to the ion one in Eq. (1.17) but with a
coefficient µe‖. In addition, it has been shown by several authors that in certain
problems involving two-fluid magnetic reconnection, an electron viscosity term
known as hyper-resistivity is required to avoid singularities from developing in
the solution [9, 10]. It is also useful for modeling the effect of fundamentally
three-dimensional reconnection physics in a two-dimensional simulation [11, 12].
Introducing the coefficient λH , we can take the hyper-resistivity to be of the
form:

πhre = λHη‖ne∇J. (1.18)

If h is the smallest dimension that can be resolved on a numerical grid, then it
has been proposed that λH ∼ h2 is required for the current singularity to be
resolvable, while at the same time vanishing in the continuum limit h→ 0.

The plasma friction force is generally taken to be of the form:

Re = ne
(
η‖J‖ + η⊥J⊥

)
, (1.19)
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where ‖ and ⊥ are relative to the magnetic field direction. The classical values
for these resistivity coefficients are [4]:

η⊥ = 1.03× 10−4Z lnλ[T (ev)]−3/2 Ω m, (1.20)
η‖ = 0.51 η⊥. (1.21)

Here Z is the effective charge of the ion species and lnλ ∼ 20 is the Coulomb
logarithm [13]. The electron-ion temperature equilibration term is related to
the perpendicular resistivity by:

Q∆ei =
3e2n
mi

η⊥nkB(Ti − Te). (1.22)

The forms used for the viscosity coefficients µ, µc, µ‖ and the heat conduction
coefficients κe‖, κ

e
⊥, κi‖, κ

i
⊥ can be the classical value for the collisional regime [4],

but are normally chosen according to other anomalous (or empirical) models or
so as to perform parametric studies. However, from basic physical considerations
(that the particles essentially free-stream with very long collisional mean-free-
paths parallel to the magnetic field but not perpendicular to it) we normally
have:

κe,i‖ � κe,i⊥ . (1.23)

The standard two-fluid MHD model can now be summarized as follows.
Using the equations of Section 1.2, we use the following closure model:

Re = ne
(
η‖J‖ + η⊥J⊥

)
, (1.24)

qe = −κe‖∇‖Te − κe⊥∇⊥Te + q∧e, (1.25)

qi = −κi‖∇‖Ti − κi⊥∇⊥Ti + q∧i, (1.26)

πi = πgyri + πisoi + π
‖
i , (1.27)

πe = π‖
e + πhre , (1.28)

Q∆ei =
3e2n
mi

η⊥nkB(Ti − Te). (1.29)

To complete this model, one must specify the 11 scalar functions η‖, η⊥, κe‖,
κe⊥ , κi‖, κ

i
⊥, µ, µc, µ‖, µe‖, and λH . These can be either constants or functions

of the macroscopic quantities being evolved in time according to the transport
model being utilized.

1.2.2 Resistive MHD

The resistive MHD model treats the electrons and ions as a single fluid with
pressure p = pe + pi. This model can formally be derived by taking a limiting
case of the two-fluid equations. The first limit is that of collision dominance,
which allows one to neglect the parallel viscosities compared to ∇p. The second
limit is that of zero Larmor radius. This implies the neglect of the gyroviscous

7



stress and the collision-independent perpendicular heat fluxes q∧j as well as
most terms involving J/ne compared to those involving u. It follows that the
electron hyperviscosity is also not required. With these simplifications, neglect-
ing external sources, and introducing the mass density ρ ≡ nmi, the equations
of Section 1.2 become:

∂ρ

∂t
+∇ · (ρu) = 0, (1.30)

ρ(
∂u
∂t

+ u · ∇u) = −∇p+ J×B−∇ · πisoi , (1.31)

3
2
∂p

∂t
+∇ · (q +

3
2
pu) = −p∇ · u− πisoi : ∇u + ηJ2, (1.32)

∂B
∂t

= ∇× (u×B− ηJ) , (1.33)

J =
1
µ0
∇×B, (1.34)

qi = −κ‖∇‖T − κ⊥∇⊥T. (1.35)

Here the fluid temperature is defined as T = p/2nkB and the viscosity term
in Eq. (1.31) is evaluated using Eq. (1.16). This model requires only the five
transport coefficients: η, κe‖ , κ⊥, µ, and µc.

1.2.3 Ideal MHD

A further approximation has to do with the smallness of the plasma resistivity
and the time scales over which resistive effects are important, τR = µ0a

2/η,
where a is the minor radius or other typical global dimension. If we non-
dimensionalize the MHD equations, using the Alfvén velocity VA = B/

√
µ0nMi,

a, and the Alfvén time τA = a/VA, we find that the plasma resistivity becomes
multiplied by the inverse magnetic Lundquist number S−1, where

S ≡ τR
τA
. (1.36)

In modern fusion experiments, this number is typically in the range S ∼ 106 −
1012.

The other dissipative quantities qj and πiso are related to the resistivity and
thus also become multiplied by S−1. Although these terms are very important
for the longer time dynamics of the plasma or to describe resistive instabilities
that involve internal boundary layers [14], if we are only interested in the fastest
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time scales present in the equations, we can neglect all these dissipative terms
which scale as S−1. Doing so leaves the ideal MHD equations [17].

These equations have been extensively studied by both physicists and math-
ematicians. They have a seemingly simple symmetrical structure with well-
defined mathematical properties, but at the same time can be exceedingly rich
in the solutions they admit. Adding back the dissipative and dispersive terms
will enlarge the class of possible solutions by making the equations higher order,
but will not fundamentally change the subset of non-dissipative solutions found
here for macroscopic motions. It is therefore important to understand the types
of solutions possible for these equations before studying more complex equation
sets.

The ideal MHD equations can be written (in SI units), as follows:

∂ρ

∂t
+∇ · ρu = 0, (1.37)

∂B
∂t

= ∇× (u×B), (1.38)

ρ

(
∂u
∂t

+ u · ∇u
)

+∇p = J×B, (1.39)

∂p

∂t
+ u · ∇p+ γp∇ · u = 0, (1.40)

where the current density is given by J ≡ µ−1
o ∇×B. Here we have introduced

γ = 5
3 , which is the ratio of specific heats, sometimes called the adiabatic index.

It is sometimes useful to also define another variable

s ≡ p/ργ ,

the entropy per unit mass. It then follows from Eqs. (1.37) and (1.40) that s
obeys the equation

∂s

∂t
+ u · ∇s = 0. (1.41)

Eq. (1.41) can be used to replace Eq. (1.40).

1.3 Characteristics

The ideal MHD equations are a quasilinear symmetric hyperbolic system of
equations and thus have real characteristics. Because they are real, the charac-
teristic directions or characteristic manifolds have important physical meaning
since all information is propagated along them. Here we determine these char-
acteristics for the ideal MHD equations [18, 19].
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We start with the ideal MHD equations, in the following form:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p− 1
µo
∇B ·B +

1
µ0

(B · ∇)B, (1.42)

∂B
∂t

+ v · ∇B = B · ∇v −B∇ · v, (1.43)

∂p

∂t
+ v · ∇p = −γp∇ · v, (1.44)

∂s

∂t
+ v · ∇s = 0. (1.45)

We use the fact that if the boundary data are given only along the characteristic
curves, then the solution cannot be determined away from those curves. Let
us assume that the boundary data for variables v, B, p, s are given on the
three-dimensional surface φ(r, t) = φ0, and ask under what conditions is this
insufficient to determine the solution away from this surface.

We perform a coordinate transformation to align the boundary data surface
with one of the coordinates. We consider φ as a coordinate and introduce addi-
tional coordinates χ, σ, τ within the three-dimensional boundary data manifold.
Thus we transform

(r, t) → (φ, χ, σ, τ). (1.46)

On the boundary data manifold φ = φ0, we specify v(r, t) = v0(χ, σ, τ),
B(r, t) = B0(χ, σ, τ), p(r, t) = p0(χ, σ, τ), and s(r, t) = s0(χ, σ, τ). Since v0,
B0, p0, and s0 are known functions, the derivatives with respect to χ, σ, and τ
are also known. We ask under what conditions can the solutions v(φ, χ, σ, τ),
B(φ, χ, σ, τ), p(φ, χ, σ, τ), and s(φ, χ, σ) be obtained away from the boundary
φ = φ0?

We look for a power series solution of the form

v (φ, χ, σ, τ) = v0(χ, σ, τ) + (φ− φ0)
∂v
∂φ

∣∣∣∣
φ0

+ (χ− χ0)
∂v
∂χ

∣∣∣∣
φ0

+(σ − σ0)
∂v
∂σ

∣∣∣∣
φ0

+(τ − τ0)
∂v
∂τ

∣∣∣∣
φ0

+ · · · ,

and similarly for B, p, and s. The problem is solvable if the normal derivatives
∂v/∂φ|φ0 , ∂B/∂φ|φ0 , ∂p/∂φ|φ0 , and ∂s/∂φ|φ0 can be constructed since all sur-
face derivatives are known and higher-order derivatives can be constructed by
differentiating the original PDEs.
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Using the chain rule and using subscripts to denote partial derivatives with
respect to the time t, φt = ∂φ/∂t, etc., we can calculate

∂v
∂t

=
∂v
∂φ

φt +
∂v
∂χ

χt · · · ,

v · ∇v = v · ∇φ∂v
∂φ

+ v · ∇χ∂v
∂χ

+ · · · ,

∇ · v = ∇φ · ∂v
∂φ

+∇χ · ∂v
∂χ

+ · · · ,

etc. It is convenient to define some new notation. Define the spatial normal,

n̂ = ∇φ/ | ∇φ |,

the characteristic speed,

u ≡ − (φt + v · ∇φ) /|∇φ|,

which is the normal velocity of the characteristic measured with respect to the
fluid moving with velocity v, and let a prime denote the normal derivative,

( )′ ≡ ∂

∂φ
( ).

Using this notation, the ideal MHD equations take the form

−ρuv′ + n̂p′ +
1
µ0

n̂B ·B′ − 1
µ0

n̂ ·BB′ = · · · , (1.47)

−uB′ − n̂ ·Bv′ + Bn̂ · v′ = · · · , (1.48)

−up′ + γpn̂ · v′ = · · · , (1.49)

−us′ = · · · , (1.50)

where the right side contains only known derivative terms. For definiteness,
now choose B along the z axis and n̂ in the (x̂, ẑ) plane so that in Cartesian
coordinates,

B = (0, 0, B) ,
n̂ = (nx, 0, nz) .

We define the quantities VA ≡ B/
√
µ0ρ and cS ≡

√
γp/ρ, and premultiply

Eq. (1.48) by
√
ρ/µ0 and Eq. (1.49) by c−1

S . This allows the system of equations
Eqs. (1.47)–(1.50) to be written as

A ·X = · · · , (1.51)
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where

A =



−u 0 0 −nzVA 0 nxVA nxcS 0
0 −u 0 0 −nzVA 0 0 0
0 0 −u 0 0 0 nzcS 0

−nzVA 0 0 −u 0 0 0 0
0 −nzVA 0 0 −u 0 0 0

nxVA 0 0 0 0 −u 0 0
nxcS 0 nzcS 0 0 0 −u 0

0 0 0 0 0 0 0 −u


and

X =



ρv′x
ρv′y
ρv′z√
ρ/µ0B

′
x√

ρ/µ0B
′
y√

ρ/µ0B
′
z

1
cS
p′

s′


.

Note that the matrix in Eq. (1.51) is symmetric, which guarantees that the
eigenvalues will be real and that the system is hyperbolic. The characteristics are
obtained when the determinant vanishes so that solutions cannot be propagated
away from the boundary data manifold φ = φ0. The determinant is given by

D = u2
(
u2 − V 2

An

) [
u4 −

(
V 2
A + c2S

)
u2 + V 2

Anc
2
S

]
= 0, (1.52)

where we have used the relation n2
x + n2

z = 1 and let V 2
An = n2

zV
2
A. The eight

roots are given by:

u = u0 = ±0 entropy disturbances,
u = uA = ±VAn Alfvén waves,

u = us = ±
{

1
2
(
V 2
A + c2S

)
− 1

2

[(
V 2
A + c2S

)2 − 4V 2
Anc

2
S

]1/2}1/2

slow wave,

u = uf = ±
{

1
2
(
V 2
A + c2S

)
+

1
2

[(
V 2
A + c2S

)2 − 4V 2
Anc

2
S

]1/2}1/2

fast wave.

The latter two roots are also known as the slow magnetoacoustic and fast
magnetoacoustic waves.

In normal magnetically confined fusion plasmas, we can take the low-β limit,
c2S � V 2

A, which implies

u2
s

∼= n2
zc

2
S ,

u2
f

∼= V 2
A + n2

xc
2
S .
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Figure 3: Reciprocal normal surface diagram in low-β limit.

The solutions following Eq. (1.52) are represented pictorially by the reciprocal
normal surface diagram of Figure 3. The intersection points uj give the speed
of a plane wavefront whose normal n̂ is at an angle φ with the magnetic field
B.

We list here some properties of the characteristic speeds of Eq. (1.52) and
Figure 3:

1. |u0| ≤ |us| ≤ |uA| ≤ |uf | <∞ .
2. For propagation along B, VAn = VA, and

|us| = min(VA, cS),
|uA| = VA,

|uf | = max(VA, cS).

3. For propagation perpendicular to B, VAn = 0, and

|us| = |uA| = 0,

|uf | =
(
V 2
A + c2S

)1/2
.

4. If VA = 0 (no magnetic field) the gas dynamics equations are obtained:

|us|, |uA| → 0,
|uf | → cS (ordinary sound wave cS).

5. Incompressible plasma limit is γ →∞, or cS →∞:

|us| → |uA| · · · these coincide,
|uf | → ∞ · · · instantaneous propagation.
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B

x̂

ẑ
S A

F

Figure 4: Ray surface diagram in low-β limit.

It is also instructive to compute a ray surface diagram. Suppose the initial
disturbance is on a circle of radius R0. After a time t, the equation for the wave
surface is

z cosφ+ x sinφ = R0 ± uj(φ)t. (1.53)

We can take the φ derivative of Eq. (1.53) to obtain

−z sinφ+ x cosφ = ± d

dφ
uj(φ)t. (1.54)

Now, invert Eqs. (1.53) and (1.54) for (x, z) to obtain

x = R0 sinφ+
[
sinφuj + cosφ

d

dφ
uj(φ)

]
t,

z = R0 cosφ+
[
cosφuj − sinφ

d

dφ
uj(φ)

]
t.

Next, we let R0 → 0 represent a point disturbance and plot [x(φ), z(φ)] for
0 < φ < 2π to obtain the ray surface diagram in Figure 4. This shows clearly
the extreme anisotropy of the Alfvén wave and also the slow waves in the low-β
limit c2S � V 2

A. Point disturbances just travel along the magnetic field.
Finally, let us consider the eigenvectors of the matrix in Eq. (1.51). The

eigenvectors corresponding to each of the 4-pair of eigenvalues have physical
significance. On a characteristic manifold, relations exist between v′, B′, p′, s′.
Discontinuities satisfying these relations are propagated along with the charac-
teristics. Substitution of the roots of Eq. (1.52) into the matrix in Eq. (1.51)
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yields the following eigenvectors:



ρv′x
ρv′y
ρv′z√
ρ/µ0B

′
x√

ρ/µ0B
′
y√

ρ/µ0B
′
z

1
cS
p′

s′


=

Entropy

0
0
0
0
0
0
0
±1


,

Alfvén

0
1
0
0
±1
0
0
0


,

Magnetoacoustic

nxu
2/(u2 − V 2

A)
0
nz

−nxuVAnz/(u2 − V 2
A)

0
n2
xuVA/(u

2 − V 2
A)

u/cS
0


.

(1.55)

Note that the Alfvén wave is purely transverse, only perturbing v and B
perpendicular both to the propagation direction and to the equilibrium magnetic
field, while the magnetoacoustic waves involve perturbations in the other two
directions. Note also that the different eigenvectors are orthogonal.

It is instructive to again take the low-β limit c2S � V 2
A, and also to examine

propagation parallel to (nz = 1, nx = 0), and perpendicular to (nz = 0, nx = 1)
the equilibrium magnetic field. We find



ρv′x
ρv′y
ρv′z√
ρ/µ0B

′
x√

ρ/µ0B
′
y√

ρ/µ0B
′
z

1
cp

′

s′



=

Fast
nz = 0
nx = 1

1
0
0
0
0
1

cS/VA
0



,

Fast
nz = 1
nx = 0

1
0
0
±1
0
0
0
0



,

Slow
nz = 1
nx = 0

0
0
1
0
0
0
±1
0


.

(1.56)

It is seen that in a low-β (µ0p� B2) magnetized plasma, there exists a dramatic
difference in the nature of the three non-trivial families of characteristics. All
three waves can propagate parallel to the magnetic field, with the fast wave and
the Alfvén wave having approximately the same velocity, but different polarities
with respect to the perturbed velocities and fields, and the slow wave being much
slower. The slow wave is the only one that involves a velocity component parallel
to the background magnetic field.

The fast wave alone can propagate perpendicular to the background mag-
netic field and does so by compressing and expanding the field. Note that since
the energy in the magnetic field is B2/2µ0, perturbing the background field
by an amount δBz will require an energy BzδBz/µ0 � δB2

z/2µ0. Thus, from
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energetic considerations we expect these perpendicularly propagating distur-
bances to be of very small amplitude compared to other disturbances that do
not compress the background field. However, because the length scales perpen-
dicular to the field are normally much smaller than those parallel to the field,
the time scales associated with the fast wave can be much shorter than those
associated with either the Alfvén or slow waves. This is the fundamental reason
for the stiffness of the ideal MHD equations when applied to a low-β magnetic
confinement device.

1.3.1 Wave Dispersion Relation in Two-Fluid MHD

The additional terms present in the two-fluid MHD model of Section 1.2.1 in-
troduce many new effects that are not present in the ideal MHD equations. The
resistivities and viscosities generally damp the wave motion found in the last
section, but resistivity can also allow plasma instabilities by relaxing the flux
constrains of ideal MHD [14].

Here we discuss the effect of the non-dissipative terms in Ohm’s law, Eq. (1.9),
that are present in the two-fluid model but not in the ideal MHD description,

E + u×B =
1
ne

[J×B−∇pe + · · · ] . (1.57)

When we non-dimensionalize the equations, these new terms on the right bring
in a new dimensionless parameter,

di ≡
1

ΩciτA
, (1.58)

where Ωci = eB0/Mi is the ion cyclotron frequency. The parameter di is called
the ion skin depth. With these terms included, commonly called the Hall terms,
the equations are no longer purely hyperbolic and become dispersive, i.e., dif-
ferent wavelength disturbances will propagate at different velocities.

If we linearize the equations about an equilibrium state with no flow and
assume a periodic time and space dependence ∼ exp i(ωt−k ·x), and now take
the velocity u to be the phase velocity, u ≡ ω/k, the analogue of the dispersion
relation, Eq. (1.52) (after removing the entropy roots), becomes [20]

D =
(
u2 − V 2

An

) [
u4 −

(
V 2
A + c2S

)
u2 + V 2

Anc
2
S

]
− V 2

Anu
2d2
i k

2
(
u2 − c2S

)
= 0. (1.59)

Equation (1.59) is a cubic equation in u2. In Figure 5 we show the roots as a
function of the parameter dik corresponding to the low-β parameters of Figure 3
with cS = 0.3VA for three angles of propagation relative to the magnetic field,
nz = VAn/VA. The curves are labeled according to which ideal MHD character-
istic they match onto in the limit k → 0. It is seen that the Hall terms increase
the propagation speed of the fast wave, either increase or decrease the propa-
gation velocity of the Alfvén wave, and decrease the velocity of the slow wave.
The modification is most pronounced for propagation parallel to the background
magnetic field. Only wavelengths such that kdi > 1 are substantially affected.
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Figure 5: Typical dispersion relation for low-β two-fluid MHD for different
angles of propagation relative to the background magnetic field.
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2 Diffusion and Transport in Axisymmetric
Geometry

In this lecture we consider the time evolution of magnetically confined tokamak
plasmas over time scales that are very long compared to the Alfvén transit time,
and are thus characterized by resistive diffusion and particle and heat transport.
Because the electron and ion heat fluxes qe and qi are extremely anisotropic
in a highly magnetized plasma, it becomes essential to work in a coordinate
system that is aligned with the magnetic field. The derivation of an appropriate
set of transport equations to deal with this is presented in Section 2.1 and
its subsections. These transport equations need to be supplemented by an
equilibrium constraint obtained by solving a particular form of the equilibrium
equation as described in Section 2.2. Together, this system of equations provides
an accurate description of the long time scale evolution of a MHD stable toroidal
plasma.

2.1 Basic Equations and Orderings

Here we consider the scalar-pressure two-fluid MHD equations of Section 1.2.1,
which for our purposes can be written:

nmi

(
∂u
∂t

+ u · ∇u
)

+∇p = J×B, (2.1)

∂n

∂t
+∇ · (nu) = Sn, (2.2)

∂B
∂t

= −∇×E, (2.3)

E + u×B = R, (2.4)

3
2
∂p

∂t
+∇ ·

[
q +

3
2
pu
]

= −p∇ · u + J ·R + Se, (2.5)

3
2
∂pe
∂t

+∇ ·
[
qe +

3
2
peu
]

= −pe∇ · u + J ·R +Q∆ei + See. (2.6)

We have denoted by R the inhomogeneous term in the generalized Ohm’s law,
Eq. (2.4), by q = qi+qe the random heat flux vector due to ions and electrons,
by Q∆ei the electron-ion equipartition term, and by Sn and Se = Sei + See
sources of particles and energy. Note that in comparing Eq. (2.4) with Eq. (1.9),
we have the relation

R =
1
ne

[Re + J×B−∇pe −∇ · πe]. (2.7)
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We are also neglecting (assumed small) terms involving the ion and electron
stress tensors πe, πi, and the heating due to ∇Te · J.

We now apply a resistive time scale ordering [21, 22, 24] to these equations
to isolate the long time scale behavior. This consists of ordering all the source
and transport terms to be the order of the inverse magnetic Lundquist number,
Eq. (1.36), S−1 = ε � 1, where ε is now some small dimensionless measure of
the dissipation. Thus

η ∼ R ∼ Sn ∼ Se ∼ q ∼ ε� 1. (2.8)

We look for solutions in which all time derivatives and velocities are also small,
of order ε ,

∂

∂t
∼ u ∼ ε� 1, (2.9)

as is the electric field, E ∼ ε.
Applying this ordering to Eqs. (2.1)–(2.6), we find that the last five equations

remain unchanged, merely picking up the factor ε in every term, which can then
be canceled. However, the momentum equation, Eq. (2.1), does change, with a
factor of ε2 multiplying only the inertial terms,

ε2nmi

(
∂u
∂t

+ u · ∇u
)

+∇p = J×B. (2.10)

Thus in the limit ε→ 0 we can neglect the inertial terms, replacing the momen-
tum equation with the equilibrium condition

∇p = J×B. (2.11)

Equation (2.11) is correct to second order in ε, and provides significant sim-
plifications since replacing Eq. (2.10) by this removes all the wave propagation
characteristics from the system.

We note here that the system of equations given by Eqs. (2.11) and (2.2)
through (2.6) involve the plasma velocity u, but there is no longer a time ad-
vancement equation for u. We will derive a method to solve this system asymp-
totically in spite of this apparent difficulty. We restrict consideration here to
axisymmetric geometry. The most general form for an axisymmetric magnetic
field consistent with Eq. (2.11) is given by

B = ∇φ×∇Ψ + g(Ψ)∇φ. (2.12)

Let us first consider the poloidal part of the magnetic field evolution equa-
tion, Eq. (2.3). Insertion of Eq. (2.12) into Eq. (2.3) and taking the (R̂, Ẑ)
projections gives an equation to evolve the poloidal flux function

∂Ψ
∂t

= R2E · ∇φ+ C(t). (2.13)
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The integration constant C(t) can be set to zero by adopting the convention
that Ψ be proportional to the actual poloidal flux that must vanish at R = 0.
Setting C(t) = 0 and using Eq. (2.4) to eliminate the electric field, we have

∂Ψ
∂t

+ u · ∇Ψ = R2∇φ ·R. (2.14)

(Note that the symbol R is being used to represent the cylindrical coordinate,
while R, defined in Eq. (2.7), is the vector inhomogeneous term in the general-
ized Ohm’s law.) The ∇φ projection of Eq. (2.3) gives

∂g

∂t
= R2∇ · [∇φ×E],

or, upon substituting from Eq. (2.4),

∂g

∂t
+R2∇ ·

[ g
R2

u− (∇φ · u)∇φ×∇Ψ−∇φ×R
]

= 0. (2.15)

The system of time evolution equations that we are solving is thus reduced to
the five scalar equations (2.2), (2.5), (2.6), (2.14), and (2.15) as well as the
equilibrium equation (2.11).

2.1.1 Time-Dependent Coordinate Transformation

We adopt here an axisymmetric magnetic flux coordinate system (ψ, θ, φ) where
ψ is a magnetic flux coordinate, θ is a poloidal angle (that goes the short way
around the torus), and φ is the standard toroidal angle in a cylindrial coordinate
system. [3]. The infinitesimal volume element associated with the differentials
dψ, dθ, dφ is given by the Jacobian J defined by

dτ = Jdψdθdφ =
dψdθdφ

[∇ψ ×∇θ · ∇φ]
. (2.16)

Since the magnetic field and flux surfaces evolve and change in time, the coor-
dinate transformation being considered will be a time-dependent one. At any
given time we have the flux coordinates (ψ, θ, φ) and the inverse representation
x(ψ, θ, φ), where x are Cartesian coordinates. We define the coordinate velocity
at a particular (ψ, θ, φ) location as the time rate of change of the Cartesian
coordinate at a fixed value of the flux coordinate as shown in Figure 6,

uC =
∂x
∂t

∣∣∣∣
ψ,θ,φ

. (2.17)

Consider now a scalar function, α, that may be thought of either as a func-
tion of Cartesian coordinates and time, α(x, t), or of flux coordinates and time,
α(ψ, θ, φ, t). Time derivatives at a fixed spatial location x and at fixed coordi-
nates (ψ, θ, φ) are related by the chain rule of partial differentiation,

∂α

∂t

∣∣∣∣
ψ,θ,φ

=
∂α

∂t

∣∣∣∣
x

+
∂α

∂x
· ∂x
∂t

∣∣∣∣
ψ,θ,φ

.
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θ = const.

ψ = const.

Cu

Figure 6: uC is the velocity of a fluid element with a given ψ,θ value relative
to a fixed Cartesian frame.

Using Eq. (2.17), we therefore have the relation

∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
ψ,θ,φ

− uC · ∇. (2.18)

We will also make use of the relation for the time derivative of the Jacobian,

∂J

∂t

∣∣∣∣
ψ,θ,φ

= J∇ · uC . (2.19)

This may be verified directly.
With the introduction of the coordinate velocity in Eq. (2.17), it follows

that the fluid velocity appearing in the MHD equations can be thought of as
consisting of two parts,

u = uC + uR, (2.20)

where uC is the coordinate velocity already discussed, and uR is the velocity
of the fluid relative to the coordinates. Since the total velocity u is a physical
quantity which must be determined by the MHD equations, constraining either
uC or uR to be of a particular form will determine the other.

The two parts of the velocity field can be thought of as a Lagrangian part and
an Eulerian part. If the total velocity were represented with uC only and there
were no dissipation, the coordinates would be frozen into the fluid as it moves
and distorts. If the total velocity were represented with uR, the coordinates
would be fixed in space, and the fluid would move through them. We will see
that an attractive choice is to split the velocity between these two parts so that
the coordinates can move just enough to stay flux coordinates, but we allow the
fluid to diffuse relative to them.
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2.1.2 Evolution Equations in a Moving Frame

We now transform each of the scalar evolution equations, Eqs. (2.14), (2.15),
(2.2), (2.5), and (2.6), into the moving flux coordinate frame by using the iden-
tities in Eqs. (2.18), (2.19), and (2.20). After some manipulations, we obtain
the scalar equations

∂Ψ
∂t

+ uR · ∇Ψ = R2∇φ ·R, (2.21)

∂

∂t

(
g
J

R2

)
+ J∇ ·

[ g
R2

uR − (∇φ · uR)∇φ×∇Ψ−∇φ×R
]

= 0, (2.22)

∂

∂t
(nJ) + J∇ · (nuR) = JSn, (2.23)

∂

∂t

(
p3/5J

)
+ J∇ ·

[
p3/5uR

]
+

2
5
Jp−2/5[∇ · q − J ·R− Se] = 0, (2.24)

∂

∂t

(
p3/5
e J

)
+ J∇ ·

[
p3/5
e uR

]
+

2
5
Jp−2/5

e [∇ · qe − J ·R−Q∆ei − See] = 0.

(2.25)

Here, and in what follows, the time derivatives are with ψ and θ held fixed,
and are thus in a moving flux coordinate frame. We note that the coordinate
velocity uC does not appear in Eqs. (2.21)–(2.25), but only the velocity of the
fluid relative to the moving coordinate, uR = u−uC , is present. This is because
the equations are of conservation form, and thus valid in a moving frame. We
will use this fact to define a coordinate transformation in which the velocity
vanishes altogether.

We first derive a reduced set of equations by integrating Eqs. (2.22)–(2.25)
over the angle θ at fixed values of the coordinate ψ. This flux surface averaging
leads to a set of one-dimensional evolution equations that depend only on the
coordinate ψ and time t. Furthermore, by using the fact that g = g(ψ, t) and p =
p(ψ, t) from the equilibrium constraint, and that n ' n(ψ, t) and pe ' pe(ψ, t)
from the fact that the temperatures are nearly constant on flux surfaces because
the parallel conductivities are large compared to their perpendicular values, we
can obtain a closed set of equations that depend only on these surface averages.

We introduce the differential volume as

V ′(ψ) ≡ dV

dψ
= 2π

∫ 2π

0

dθJ = 2π
∮

Rd`

|∇ψ|
, (2.26)

where V (ψ) is the volume enclosed by the flux surface ψ=constant. For any
scalar quantity a(ψ, θ) we define the surface average of a as the following integral
over a constant ψ contour:

〈a〉 =
2π
V ′

∫ 2π

0

dθJa. (2.27)
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Using this notation, it follows that for any vector A, we have the identity

2π
∫ 2π

0

J∇ ·Adθ =
∂

∂ψ
[V ′ 〈A · ∇ψ〉] .

Using this, the following set of equations are obtained by integrating Eqs. (2.22)–
(2.25) over the angle θ at fixed value of the flux coordinate ψ:

∂

∂t

[
gV ′ 〈R−2

〉]
+

∂

∂ψ

[
gV ′ 〈R−2uR · ∇ψ

〉
− V ′ 〈∇φ×R · ∇ψ〉

]
= 0, (2.28)

∂

∂t
[nV ′] +

∂

∂ψ
[nV ′ 〈∇ψ · uR〉] = V ′ 〈Sn〉 , (2.29)

∂

∂t

[
p

3
5V ′

]
+

∂

∂ψ

[
p

3
5V ′ 〈uR · ∇ψ〉

]
(2.30)

+
2
5
p−

2
5

[
∂

∂ψ
(V ′ 〈q · ∇ψ〉)− V ′ 〈J ·R〉 − V ′ 〈Se〉

]
= 0.

∂

∂t

[
p

3
5
e V

′
]

+
∂

∂ψ

[
p

3
5
e V

′ 〈uR · ∇ψ〉
]

(2.31)

+
2
5
p
− 2

5
e

[
∂

∂ψ
(V ′ 〈qe · ∇ψ〉)− V ′ (〈J ·R〉+ 〈Q∆ei〉+ 〈See〉)

]
= 0.

As discussed above, an important constraint that must be incorporated is
that the coordinates (ψ, θ, φ) remain flux coordinates as they evolve in time. To
this end, we require that in the moving frame, the flux function Ψ evolve in
time in such a way that the coordinate ψ remain a flux coordinate, i.e.,

∇φ×∇ψ · ∂Ψ
∂t

= 0. (2.32)

From Eq. (2.21), this implies

∇Ψ · uR −R2R · ∇φ = f(ψ). (2.33)

Here f(ψ) is a presently undetermined function only of ψ. Equation (2.33) puts
an important constraint on the relative velocity uR and hence on the coordinate
velocity uC through Eq. (2.20), but it also leaves some freedom in that we are
free to prescribe the function f(ψ). This freedom will be used to identify the
flux coordinate ψ with a particular surface function.

The system of equations given by Eqs. (2.21), (2.28)–(2.31), and (2.33) still
depend upon the relative velocity uR · ∇ψ. This is determined up to a function
only of ψ by Eq. (2.33), which follows from the constraint that constant Ψ
surfaces align with constant ψ surfaces as they both evolve. We thus have a
freedom in the velocity decomposition that we can use to simplify the problem.

23



The remaining function of ψ is determined by specifying which flux function ψ
is. Three common choices are the following.

(i) Constant poloidal flux:

uR · ∇Ψ = R2∇φ ·R. (2.34)

(ii) Constant toroidal flux:

−g
〈
R−2uR · ∇ψ

〉
= 〈∇φ×∇ψ ·R〉 . (2.35)

(iii) Constant mass:

〈∇ψ · uR〉 = 0. (2.36)

Here, we choose number (ii), the toroidal magnetic flux, as it is most appropriate
for most magnetic fusion applications, particularly for describing tokamaks. The
toroidal field in the tokamak is primarily produced by the external field magnets,
and is generally much stronger than the poloidal field. This makes it the most
immobile, and thus most suitable for use as a coordinate. Also, unlike the
poloidal magnetic flux, the toroidal flux at the magnetic axis does not change
in time, always remaining zero.

2.1.3 Evolution in Toroidal Flux Coordinates

By combining Eq. (2.35) and the constraint Eq. (2.33), we can eliminate the free
function f(ψ) and solve explicitly for the normal relative velocity. This gives

f(ψ) = − 〈B ·R〉
〈B · ∇φ〉

,

which when inserted into Eq. (2.33) yields

uR · ∇ψ =
1
Ψ′

[
R2R · ∇φ− 〈B ·R〉

〈B · ∇φ〉

]
. (2.37)

Using Eq. (2.37) to eliminate the relative velocity uR from the surface averaged
transport equations allows us to identify the flux coordinate ψ with the toroidal
magnetic flux inside a constant flux surface, Φ.

Following Kruskal and Kulsrud [23], we compute the toroidal flux inside a
magnetic surface explicitly as

Φ(ψ) =
1
2π

∫
B · ∇φdτ =

1
2π

∫ ψ

ψ0

dψg(ψ)V ′ 〈R−2
〉
. (2.38)

The time derivative of this can be verified to vanish by calculating directly from
the definition of Φ,

∂Φ
∂t

∣∣∣∣
ψ

=
1
2π

∫ ψ

ψ0

[
gV ′ 〈R−2

〉]
t
dψ = 0,

24



where we used Eqs. (2.28) and (2.37). It is seen that the use of Eq. (2.37) causes
Φ and ψ to be stationary with respect to each other, and we may therefore adopt
Φ as the flux surface label. Equation (2.28) need no longer be solved as it is
intrinsically satisfied by our adoption of Φ as the flux coordinate. Since ψ and
Φ are the same, we obtain a useful identity, valid for toroidal flux coordinates,
by differentiating each side of Eq. (2.38) by ψ ≡ Φ,

V ′ =
2π

g 〈R−2〉
. (2.39)

Using Eq. (2.37) to eliminate the relative velocity from Eqs. (2.21), (2.29),
(2.30), and (2.31) then yields the surface-averaged transport equations relative
to surfaces of constant toroidal flux. In deriving Eqs. (2.50) and (2.51) that
follow, we make use of the equilibrium conditions to express the equilibrium
current density as

J = −R2 dp

dΨ
∇φ− 1

µ0

dg

dΨ
B.

We also use Eq. (2.37) and the surface average of the inverse equilibrium equa-
tion to obtain the intermediate result

V ′ 〈J ·R〉 = −p′V ′ 〈uR · ∇Φ〉+
〈B ·R〉
〈B · ∇φ〉

d

dΦ

[
V ′

2πµ0q

〈
|∇Φ|2

R2

〉]
. (2.40)

To express the final form of the surface-averaged transport equations, we
first define the rotational transform

ι ≡ 1
q

= 2π
dΨ
dΦ

, (2.41)

the loop voltage

VL ≡ 2π
〈B ·R〉
〈B · ∇φ〉

, (2.42)

the differential particle number, or number of particles in the differential volume
between surfaces Φ and Φ + dΦ,

N ′ ≡ nV ′, (2.43)

the particle flux

Γ ≡ 2πqn
[〈
R2R · ∇φ

〉
− 〈B ·R〉
〈B · ∇φ〉

]
, (2.44)

the differential total and electron entropy densities

σ = pV ′ 53 , σe = peV
′ 53 , (2.45)
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the surface integrated current density

K ≡ V ′

(2π)2µ0q

〈
|∇Φ|2

R2

〉
, (2.46)

and the electron and ion heat fluxes

Qe ≡ V ′
[
〈qe · ∇Φ〉+

5
2
pe
n

Γ
]
,

Qi ≡ V ′
[
〈qi · ∇Φ〉+

5
2
pi
n

Γ
]
. (2.47)

With these definitions, the basic transport equations take on the compact form:

∂Ψ
∂t

=
1
2π
VL, (2.48)

∂N ′

∂t
+

∂

∂Φ
V ′Γ = V ′ 〈Sn〉 , (2.49)

3
2
(V ′)−

2
3
∂σ

∂t
+

∂

∂Φ
(Qe +Qi) = VL

∂K

∂Φ
+ V ′ 〈Se〉 , (2.50)

3
2
(V ′)−

2
3
∂σe
∂t

+
∂Qe
∂Φ

+ V ′
(

Γ
n

∂pi
∂Φ

−Q∆ei

)
= VL

∂K

∂Φ
+ V ′ 〈See〉 . (2.51)

By differentiating Eq. (2.48) with respect to the toroidal flux Φ, we obtain
an evolution equation for the rotational transform, defined in Eq. (2.41),

∂ι

∂t
=

∂

∂Φ
VL. (2.52)

In a similar manner, we can obtain an evolution equation for the toroidal angular
momentum density, Ω(Φ) = miN

′ 〈R2
〉
ω(Φ), where ω is the toroidal angular

velocity:

∂Ω
∂t

+
∂

∂Φ
V ′ΓΩ = V ′ 〈SΩ〉 . (2.53)

The physical reason we were able to eliminate the fluid velocity entirely from
the system of transport equations derived here is that transport coefficients only
determine the relative transport of the magnetic field and plasma densities and
energies with respect to one another. We cast these equations in a frame moving
with the toroidal magnetic flux, and so only the relative motion remains. The
absolute motion of the toroidal magnetic surfaces is determined by the equi-
librium constraint and the interaction with externally applied magnetic fields.
This is addressed in Section 2.2.
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2.1.4 Specifying a Transport Model

Specifying a transport model consists of providing the transport fluxes, Γ,
〈qi · ∇Φ〉, 〈qe · ∇Φ〉, VL, and ΓΩ and the equipartition term Q∆ei as functions
of the thermodynamic and magnetic field variables and the metric quantities.
Also required are the source functions for mass, energy, electron energy, and
angular momentum, 〈Sn〉, 〈Se〉,〈See〉,〈SΩ〉. The radiative loss function 〈SRAD〉
must be subtracted from the energy and electron energy source functions.

At a given time, when the geometry is fixed, the plasma pressures, densities,
and toroidal angular velocities are obtained from the adiabatic variables through
the relations, valid for a two-component plasma with charge Z = 1 and with
ne = ni = n,

pe(Φ) = σe/V
′5/3,

pi(Φ) = p− pe = (σ − σe)/V ′5/3,

n(Φ) = N ′/V ′,

kBTe(Φ) = pe/n,

kBTi(Φ) = pi/n,

ω(Φ) = Ω/
(
miN

′ 〈R2
〉)
.

The electron-ion equipartition term, Q∆ei, is normally taken to be the classical
value given by Eq. (1.22).

It is convenient to define a five-component force vector given by Φ derivatives
of the density, total and electron pressures, current density, and toroidal angular
velocity relative to the toroidal magnetic flux,

F =
[
n′(Φ), p′(Φ), p′e(Φ), (A(Φ)ι(Φ))′ , ω′(Φ)

]
. (2.54)

Here we have defined the geometrical quantity

A(Φ) ≡ V ′

g

〈
|∇Φ|2

R2

〉
.

This is related to the surface-averaged parallel current density by

〈J ·B〉
〈B · ∇φ〉

=
g2

(2π)2 µ0

[
V ′

g

〈
|∇Φ|2

R2

〉
ι

]′
=

g2

(2π)2 µ0

(A(Φ)ι(Φ))′ .

The transport fluxes can now be expressed as a matrix of functions multi-
plying the force vector:

Γ =
5∑
j=1

ΓjFj , 〈qi · ∇Φ〉 =
5∑
j=1

qjiFj , 〈qe · ∇Φ〉 =
5∑
j=1

qjeFj ,

VL =
5∑
j=1

V jLFj + V 6
L , ΓΩ =

5∑
j=1

ΓjΩFj .
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With this convention, specification of the 25 scalar functions Γ1,Γ2, · · ·Γ5
Ω will

specify the transport model. The additional term V 6
L will be used to incorporate

a source term for current drive.

A. Pfirsch–Schlüter regime plasma
The non-zero scalar coefficients needed to evaluate the transport fluxes for an
electron-ion plasma in the collision-dominated regime are as follows [25, 26]:

Γ1 = −L12pe, Γ2 = −L11n, Γ3 = L12n,

Γ4 = −
η‖qg

2n

2πµ0

〈
|∇ψ|2

R2

〉〈
B2
〉−1

, q1i = Lip
2
i /n,

q2i = −Lipi, q3i = Lipi, q1e = L22p
2
e/n,

q2e = L12pe, q3e = −L22pe, V 4
L =

η‖g
2

2πµ0
.

The transport coefficients are:

L11 = L0

[
1 + 2.65(η‖/η⊥)q2∗

]
,

L12 = (3/2)L0

[
1 + 1.47(η‖/η⊥)q2∗

]
,

L22 = 4.66L0

[
1 + 1.67(η‖/η⊥)q2∗

]
,

Li =
√

2L0(mi/me)1/2(Te/Ti)3/2
[
1 + 1.60q2∗

]
,

L0 =
η⊥
µ0

〈
|∇Φ|2/B2

〉
.

Here, we have introduced the function

q2∗ =
1
2

[〈
B−2

〉
−
〈
B2
〉−1
] g2

〈|∇Ψ|2/B2〉
, (2.55)

which reduces to the square of the safety factor, q2, in the low beta, large aspect
ratio limit. The resistivity functions η‖ and η⊥ are given by Eqs. (1.20) and
(1.21).

If an external source of current drive is present, we can incorporate it into
this model with the V 6

L coefficient by defining

V 6
L = −2πη‖JCD‖ , (2.56)

where

JCD‖ ≡
〈
JCD ·B

〉
〈B · ∇φ〉

, (2.57)

with JCD being the external current drive vector.

B. Banana Regime Plasma
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The transport coefficients for a low-collisionality plasma including trapped and
circulating particles have been computed for an arbitrary aspect ratio and cross
section shape [26] with the restriction that |B| have only a single maximum on
each flux surface [24, 26, 27, 28]. The fraction of trapped particles on a flux
surface is given by [24]

ft = 1− (3/4)
〈
B2
〉 ∫ B−1

c

0

λdλ/
〈
(1− λB)1/2

〉
, (2.58)

where Bc is the maximum value of |B| on a flux surface. Using this, we can
express the banana regime transport model as follows:

Γ1 = piL
bp
11y − pe

(
Lbp12 + L̃12 + LEL13L23

)
,

Γ2 = n (1 + y)
[
−Lbp11 − LE(L13)2

]
− nL̃11,

Γ3 = n
[
Lbp11y + Lbp12 + L̃12 + LEL13(L23 + yL13)

]
,

Γ4 = −LEL13(2π)−2g3n
〈
R−2

〉
,

q1i = Lnci p
2
i /n

2,

q2i = −Lnci pi/n,
q3i = Lnci pi/n,

q1e =
[
−Lbp12ypi + Lnc22pe + LEL23 (−L13ypi + L23pe)

]
pe/n,

q2e =
[(
Lbp12 + LEL23L13

)
(1 + y) + L̃12

]
pe,

q3e =
[
−Lnc22 − Lbp12y − LEL23(L13y + L23)

]
pe,

q4e = LEL23(2π)−2g3
〈
R−2

〉
,

V 1
L = L∗EL13p/n,

V 2
L = L∗EL13n(y + 1),
V 3
L = L∗E (L13 − L23)n,
V 4
L = LEg

2
〈
B2
〉
/2π.

Here, the transport coefficients are:

Lbp11 = L∗(1.53− 0.53ft),

Lbp12 = L∗(2.13− 0.63ft),
L13 = (2πq)gft(1.68− 0.68ft),
L23 = 1.25(2πq)gft(1− ft),
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L̃11 = L0(1 + 2q2∗),
L̃12 = (3/2)L0(1 + 2q2∗),

Lnc22 = 4.66
[
L0(1 + 2q2∗) + L∗

]
,

Lnci =
√

2(mi/me)1/2(Te/Ti)3/2
[
L0(1 + 2q2∗) + 0.46L∗(1− 0.54ft)−1

]
,

y = −1.17(1− ft)(1− 0.54ft)−1,

L33 = −1.26ft(1− 0.18ft),

L∗ = ft(2πqg)2
η⊥
µ0
/
〈
B2
〉
,

LE =
η‖(1 + L33)−1

µ0 〈B2〉
,

L∗E = LE
2π
〈
B2
〉

g 〈R−2〉

Note that in steady state, when the loop voltage VL is a spatial constant, the
banana regime model implies a current driven by the temperature and density
gradients,〈

1
R2

〉
〈J ·B〉
〈B · ∇φ〉

= −ft p
[
L∗13
n

dn

dΨ
+
L∗13(1 + y)
Te + Ti

dTi
dΨ

+
L∗13 − L∗23
Te + Ti

dTe
dΨ

]
.

(2.59)

Here L∗13 ≡ L13/(2πqgft), L∗23 ≡ L23/(2πqgft), and y are all dimensionless and
of order unity. In deriving Eq. (2.59) we have used the relation 2πqd/dΦ =
d/dΨ, where Ψ is the poloidal flux function. This current is called the bootstrap
current. These relations have been extended to multi-charged ions [29] and
to arbitrary collisionality [30]. An excellent overview of the results for the
transport coefficients in all of the collisionality regimes is given in Helander and
Sigmar [31].

As in the collisional regime case, an external source of current drive can be
included by defining the equivalent of Eq. (2.56). In the presence of external
current drive, we would add the coefficient

V 6
L = −2πη‖ (1 + L33)

−1
JCD‖ ,

where JCD‖ is defined in Eq. (2.57).

C. Anomalous Transport Model
Although this is still an area of active research, there are a number of anomalous
transport models available that purport to calculate local values of the surface
averaged transport coefficients based on local values of the surface averaged
profiles of density, the temperatures, angular velocity, and current profile, and
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their gradients. These profiles are often obtained from a fit to a subsidiary
micro-instability calculation [32, 33, 34, 35].

A typical model would return the particle diffusivity D, the electron thermal
diffusivity χe, the ion thermal diffusivity χi, and the toroidal angular velocity
diffusivity, χω, all with dimension m2/s, and a parallel resistivity function η‖
with units Ω−m. A relatively simple diagonal model would fit into the above
formalism as follows [36]:

Γ1 = −D
〈
|∇Φ|2

〉
,

q1i = χi
pi
n

〈
|∇Φ|2

〉
, q2i = −χi

〈
|∇Φ|2

〉
, q3i = χi

〈
|∇Φ|2

〉
,

q1e = χe
pe
n

〈
|∇Φ|2

〉
, q3e = −χe

〈
|∇Φ|2

〉
,

V 4
L =

η‖g
2

2πµ0
,

Γ5
Ω = −χω

〈
|∇Φ|2

〉
min

〈
R2
〉
.

Bootstrap and current drive terms are included in these models by defining the
additional V iL coefficients as discussed above.

The micro-instability-based models tend to return transport coefficients that
have strong dependences on the gradients of the corresponding surface averaged
profiles. Special computational techniques have been developed for dealing with
these[3].

2.2 Equilibrium Constraint

The variables N ′, σ, ι, σe, and Ω introduced in Section 2.1 are called adiabatic
variables. If there is no dissipation and no explicit sources of mass or energy, then
the time derivatives of these quantities are zero in the toroidal flux coordinate
system being used here.

In the presence of dissipation, the surface-averaged transport equations of the
last section describe how these adiabatic variables evolve relative to equilibrium
magnetic surfaces with fixed values of toroidal magnetic flux. To complete the
description, we need to solve a global equation to describe how these surfaces
evolve relative to a fixed laboratory frame in which the toroidal field and poloidal
field magnetic coils are located. This is the associated equilibrium problem. In
the next subsection, we describe the circuit equations that describe how the
nearby coil currents evolve in time due to applied and induced voltages. Then,
we describe two approaches for incorporating the equilibrium constraint, the
Grad–Hogan method and an accelerated form of the Taylor method.

2.2.1 Circuit Equations

The toroidal plasma is coupled electromagnetically to its surroundings; both
passive structures and poloidal field coils that are connected to power supplies.
We assume here that the external conductors are all axisymmetric, and that

31



their currents and applied voltages are in the toroidal (φ) direction. Although
the passive structures are continuous, it is normally adequate to subdivide them
into discrete elements, each of which obeys a discrete circuit equation. Thus,
each of the poloidal field coils and passive structure elements obeys a circuit
equation of the form

d

dt
ΨPi +RiIi = Vi, (2.60)

where the poloidal flux at each coil i is defined by

ΨPi = LiIi +
∑
i 6=j

MijIj + 2π
∫
P

Jφ(R′)G(Ri,R′)dR′. (2.61)

Here, Ri and Vi are the resistance and applied voltage at coil i, Li is the self-
inductance of coil i, and Mij is the mutual inductance of coil i with coil j. For
a passive conductor, the corresponding Vi = 0.

The last term in Eq. (2.61) is an integral over the plasma volume. This
represents the mutual inductance between the distributed plasma current and
the conductor with index i.

2.2.2 Grad–Hogan Method

The Grad–Hogan method [21, 37] splits every time step into two parts. In the
first part, the adiabatic variables, including the poloidal flux at the conductors,
are advanced from time t to time t+ δt by solving Eqs. (2.49)–(2.53) and (2.60)
using standard techniques for parabolic equations [3]. In the second part, these
adiabatic variables are held fixed while we solve the appropriate form of the
equilibrium equation, where the “free functions” p′(Ψ) and gg′(Ψ) have been
expressed in terms of the adiabatic variables σ(Φ) and ι(Φ). The individual PF
coil and conductor currents will change during this part of the time step in order
to keep the poloidal flux fixed at each coil location and at the plasma magnetic
axis. This part of the time step effectively determines the absolute motion of
the toroidal flux surfaces relative to a fixed frame.

The adiabatic variables may also be expressed in terms of the poloidal flux
function Ψ. This is most convenient when solving the Grad–Shafranov equation
in the Grad–Hogan method as the poloidal flux function is what is being solved
for. Thus, if we define VΨ ≡ dV/dΨ and σΨ ≡ pV

5/3
Ψ , the form of the equilibrium

equation that needs to be solved is:

∆∗Ψ + µ0R
2 d

dΨ

[
σΨ(Ψ)

V
5/3
Ψ

]
+

(2π)4q(Ψ)
VΨ 〈R−2〉

d

dΨ

[
q(Ψ)

VΨ 〈R−2〉

]
= 0. (2.62)

The functions σΨ(Ψ) and q(Ψ) must be held fixed while finding the equilibrium
solution.

Equation (2.62) for Ψ can be solved using standard techniques [3]. Note
that the poloidal flux at the magnetic axis, ΨMA, must be held fixed during the
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equilibrium solution as well. Since ∇Ψ = 0 at the magnetic axis, the evolution
equation for Ψ at the axis is simply

∂ΨMA

∂t
= R2∇φ ·R. (2.63)

(Note that this is equivalent to applying Eq. (2.48) to Ψ at the magnetic axis.)
The value of ΨMA is evolved during the transport part of the time step using
Eq. (2.63) and ΨMA and the adiabatic variables are then held fixed during the
equilibrium solution part of the time step.

This completes the formalism needed to describe the transport in an axisym-
metric system. The one-dimensional evolution equations, Eqs. (2.49)–(2.53),
advance the adiabatic variables in time on the resistive time scale. Equation
(2.63) is used to advance the value of Ψ at the magnetic axis, and Eq. (2.60)
is used to advance the value of Ψ at the nearby conductors. The equilibrium
equation, Eq. (2.62), defines the flux surface geometry consistent with these
adiabatic variables and the boundary conditions. It does not introduce any new
time scales into the equations.

2.2.3 Taylor Method (Accelerated)

J. B. Taylor [38] suggested an alternative to the Grad–Hogan method that does
not require solving the equilibrium equation with the adiabatic constraints,
Eq. (2.62). His approach involves solving for the velocity field u, which when
inserted into the field and pressure evolution equations, Eqs. (2.3), (2.4), and
(2.5), will result in the equilibrium equation, Eq. (2.11), continuing to be sat-
isfied as time evolves. It was shown by several authors [22, 24] that an elliptic
equation determining this velocity field could be obtained by time differentiating
the equilibrium equation and substituting in from the time evolution equations.
Taking the time derivative of Eq. (2.11) gives

∇ṗ = J̇×B + J× Ḃ, (2.64)

or, by substituting in from Eqs. (2.3), (2.4), and (2.5),

2
3
∇
[
−∇ ·

(
q +

5
2
pu
)

+ J · (−u×B + R) + Se

]
+µ−1

0 ∇× [∇× (u×B−R)]×B + J× [∇× (u×B−R)] . (2.65)

This equation can, in principle, be solved for u, and that velocity field u can
be used to keep the system in equilibrium without repeatedly solving the equi-
librium equation. While this approach has been shown to be viable [39], it
suffers from “drifting” away from an exact solution of the equilibrium equation.
A preferred approach [40, 41] to obtaining this velocity is to use the acceler-
ated steepest descent algorithm which involves obtaining the velocity from the
residual equation,

u̇ +
1
τ
u = D [J×B−∇p] . (2.66)
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By choosing the proportionality and damping factors, D and τ , appropriately,
the system can be kept arbitrarily close to an equilibrium state as it evolves.
This is equivalent to applying the dynamic relaxation method to the plasma
equilibrium problem.

In using this approach, the magnetic field variables Ψ and g must be evolved
in time as two-dimensional functions from Eqs. (2.14) and (2.15) in order to
preserve the magnetic flux constraints. Equation (2.52) for ι is then redundant
but is useful as a check. The total entropy constraint is preserved by representing
the pressure as p(ψ) = σ(ψ)/V ′5/3. The other adiabatic variables, including the
poloidal flux at the conductors, are still evolved by solving Eqs. (2.49), (2.50),
(2.51), (2.53), and (2.60).
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3 The Galerkin Finite Element Method

The finite element method has emerged as an extremely powerful technique
for solving systems of partial differential equations. As described in the now-
classic textbook by Strang and Fix [42], the method was originally developed on
intuitive grounds by structural engineers. It was later put on a sound theoretical
basis by numerical analysts and mathematicians once it was realized that it
was, in fact, an instance of the Rayleigh–Ritz technique. It is similar to the
finite difference method in that it is basically a technique for generating sparse
matrix equations that describe a system. However, it provides a prescription for
doing this that is in many ways more straightforward than for finite differences,
especially when going to high-order approximations.

3.1 Galerkin Method in One Dimension

The original Rayleigh-Ritz (or just Ritz) technique applies only to problems of
the classical variational type, in which a convex functional is being minimized.
The corresponding Euler differential equation is self-adjoint and elliptic. The
Galerkin method is a means for extending the finite element technique to differ-
ential equations (or systems of differential equations) which are not necessarily
the Euler equation for corresponding variational statements.

Consider the ordinary differential equation in one dimension

L{U} = f, (3.1)

where L is a linear differential operator, f(x) is a known function, and U(x) is
the function to be solved for. We multiply by a test function V (x) and integrate
over the domain,

(L{U}, V ) = (f, V ). (3.2)

Here we have introduced the notation that for two functions f and g, and a
one-dimensional domain a ≤ x ≤ b, we define the inner product to be

(f, g) ≡
∫ b

a

f(x)g(x)dx. (3.3)

If we introduce a solution space to which U belongs, and require that Eq. (3.2)
be satisfied for every test function V (x) in that function space, it is called the
weak form of Eq. (3.1). Mathematically, the solution space might be the infinite
dimensional Hilbert space with finite energy, H1. In applying the finite element
method, we introduce a finite dimensional subspace of H1 we call S. The
Galerkin method is just the discretization of the weak form within the subspace
S.

There is a close connection between the Galerkin method and the Ritz
method if L is a self-adjoint operator. Let us take for an example the oper-
ator

L = − d

dx

(
p(x)

d

dx

)
+ q(x),
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and as our interval [a, b] = [0, 1]. After an integration by parts, we obtain

a(U, V ) = (f, V ), (3.4)

where a(U, V ) is the energy integral that appears in the Ritz variational state-
ment of the problem:

a(U, V ) ≡
∫ 1

0

[p(x)U ′(x)V ′(x) + q(x)U(x)V (x)] dx. (3.5)

Here, we assumed that the boundary conditions are such that the boundary
terms in the integration by parts vanish. In general, if the order of L is 2m, we
can shift m derivatives to v by repeated integration by parts.

To discretize Eq. (3.2), let us take φ1, · · · , φN as the basis for both the
solution space and for the test function space. We represent the solution as a
linear combination of the φj ,

U =
N∑
j=1

qjφj ,

where the amplitudes qj are to be solved for. We then have the system

N∑
j=1

qj (L{φj}, φi) = (f, φi) ; i = 1, · · · , N,

or, in matrix form

G ·Q = F, (3.6)

where

Gij = (L{φj}, φi),
Fi = (f, φi).

Assuming that the solution and test space are polynomials with finite energy
for the mth derivative, the elements in the matrix in Eq. (3.6) can be integrated
by parts m times so that

(L{φj}, φi) → a(φj , φi),

in which case it becomes identical with the discretization of the Ritz case.
The expected rate of convergence for the Galerkin method is [42]

‖U − u‖0 = O
(
hk, h2(k−m)

)
,

where the finite element solution space and test space S is of degree k − 1, and
the differential equation is order 2m.
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Figure 7: Linear finite elements φj equals 1 at node j, 0 at all others, and
are linear in between. A half element is associated with the boundary nodes at
j = 0 and j = N .

3.1.1 Linear Elements

We divide the interval [0, 1] into N equally spaced intervals of spacing h = 1/N .
The simplest choice for the subspace S is the space of functions that are linear
over each interval [(j − 1)h, jh] and continuous at the nodes x = jh. For
j = 0, · · · , N let φj be the function in S which equals one at the particular node
x = jh, and vanishes at all the others (Figure 7). Every member of S can be
written as a linear combination of the φj ,

U(x) =
N∑
j=0

qjφj . (3.7)

The “tent functions” φj are the simplest members of the more general set of
piecewise polynomials. Note that the amplitudes qj are the nodal values of the
function and thus have direct physical significance. Also, note that the functions
φj form a local basis in that they are orthogonal to all other elements except
φj+1 and φj−1. Only adjacent elements are directly coupled.

Let us now return to the problem at hand using the linear elements so that we
approximate U(x) as in Eq. (3.7). For simplicity, we will now take the functions
p and q to be constants and the boundary conditions to be U(0) = U(1) = 0.
To compute the terms on row i of the matrix equation, we compute separately
each subinterval in which φi is non-zero. Evaluating the elements as shown in
Figure 8a, we have for i = 1, N − 1
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Figure 8: Expressions needed for overlap integrals for functions (a) and deriva-
tives (b) for linear elements.

∫ 1

0

φi

N∑
j=0

qjφjdx =
∫ ih

(i−1)h

[x
h
− i+ 1

] i∑
j=i−1

qjφjdx

+
∫ (i+1)h

ih

[
i+ 1− x

h

] i+1∑
j=i

qjφjdx

=
∫ ih

(i−1)h

[x
h
− i+ 1

]{
qi−1

[
i− x

h

]
+ qi

[x
h
− i+ 1

]}
dx

+
∫ (i+1)h

ih

[
i+ 1− x

h

]{
qi

[
i+ 1− x

h

]
+ qi+1

[x
h
− i
]}

dx

=
h

6
[qi−1 + 4qi + qi+1] (3.8)

Similarly, using the relations as shown in Figure 8b,∫ 1

0

φ′i

N∑
j=0

qjφ
′
jdx =

1
h

[−qi−1 + 2qi − qi+1] .

We also need to compute the vector corresponding to the linear term, which
corresponds to a load. This is given by∫ 1

0

φif(x)dx. (3.9)

The usual method to evaluate Eq. (3.9) is to approximate f by linear interpo-
lation at the nodes, i.e.,

f(x) =
N∑
j=0

fjφj(x), (3.10)
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where fj is the value of f at the node points x = jh.
We next take note of the boundary condition to set q0 = 0 and qN = 0

and thus eliminate them from the system so that we only need to solve for the
amplitudes q1, · · · , qN−1. We then have the matrix equation

K · q = F, (3.11)

where q is the vector of unknown amplitudes

q = [q1, q2, · · · , qN−1] , (3.12)

and the matrix K is given by the sum of two matrices, commonly called the
“stiffness” matrix and the “mass” matrix.

K =
p

h


2 −1

−1 2 −1
−1 2 ·

· · ·
−1 2 −1

−1 2

+
qh

6


4 1
1 4 1

1 4 ·
· · ·

1 4 1
1 4


(3.13)

The load vector is given by

F =
h

6


f0 + 4f1 + f2
f1 + 4f2 + f3

· · ·
fj−1 + 4fj + fj+1

· · ·
fN−2 + 4fN−1 + fN

 . (3.14)

Finally, the solution is obtained by solving the matrix equation in Eq. (3.11).
We see that in this example K is a tridiagonal matrix (that is also diagonally
dominant and symmetric) so that this matrix equation can be solved efficiently
with standard methods [3].

3.1.2 Some Definitions

The finite element subspace is said to be of degree k − 1 if it contains in each
element a complete polynomial of this degree. For linear elements, as considered
in Section 3.1.1, the degree is one and k = 2.

The subspace S is said to possess continuity Cq−1 if the qth derivative exists
everywhere but is discontinuous at element boundaries. The linear elements
have q = 1 and are therefore C0. The Galerkin method can be applied to
a differential equation of order 2m if q ≥ m. This is because the associated
variational statement is only of order m, but the integrations by parts can
increase the order of the differential equation over that of the variational integral
by a factor of 2.
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For the subsequent error analysis, we introduce norms of the square roots of
the energies. For an interval [a, b] and a function u(x), we define the norms

‖u‖0 ≡

[∫ b

a

(u(x))2 dx

] 1
2

,

‖u‖2 ≡

[∫ b

a

[
(u′′(x))2 + (u′(x))2 + (u(x))2

]
dx

] 1
2

,

etc.

3.1.3 Hermite Cubic Elements

The linear elements discussed in Section 3.1.1 are continuous, but their first
derivatives are not. (However, the first derivatives have finite energy, and hence
they belong to H1.) These elements are therefore classified as C0. It is also
possible to define a class of piecewise quadratic or piecewise cubic elements that
are C0 [42]. However, there is a special class of C1 cubic elements, called Hermite
cubics, that are constructed such that not only is the solution guaranteed to be
continuous across element boundaries, but so is the first derivative. These can
therefore be used on variational problems up to second order, or on differential
equations up to fourth order by performing two integrations by parts.

There are two elements, or basis functions, associated with each node j that
we will refer to as Φ1,j(x) and Φ2,j(x) (or sometimes just as Φ1 and Φ2 in
context). The first, Φ1,j(x), has value unity at node j but its derivative Φ′

1,j(x)
vanishes there. The second basis function, Φ2,j(x), is zero at node j but its
derivative, Φ′

2,j(x), takes on the value of unity there. Both Φ1,j(x) and Φ2,j(x)
and their derivatives Φ′

1,j(x) and Φ′
2,j(x) vanish at nodes j+1 and j−1. These

elements are defined as follows and illustrated in Figure 9:

Φ1(y) = (|y| − 1)2 (2|y|+ 1) ,

Φ2(y) = y (|y| − 1)2 ,

Φ1,j(x) = Φ1

(
x− xj
h

)
,

Φ2,j(x) = hΦ2

(
x− xj
h

)
.

Since a cubic polynomial has four coefficients, it is completely determined in
an interval by the value of the function and its derivative at the endpoints. The
cubic polynomial in the interval between grid point j and j + 1 can therefore
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Figure 9: C1 Hermite cubic functions enforce continuity of v(x) and v′(x). A
linear combination of these two functions is associated with node j.

be written

v(x) = vj Φ1,j(x) + v′j Φ2,j(x) + vj+1 Φ1,j+1(x) + v′j+1 Φ2,j+1(x),

= vj + v′jx+
(
−3vj − 2hv′j + 3vj+1 − hv′j+1

) (x
h

)2

+
(
2vj + hv′j − 2vj+1 + hv′j+1

) (x
h

)3

,

= a0 + a1x+ a2x
2 + a3x

3.

In matrix form, the four coefficients of the cubic polynomial in the interval
[xj , xj+1] can thereby be related to the values of the function and its derivative
at the endpoints by

a0

a1

a2

a3


=



1 0 0 0

0 1 0 0

− 3
h2 − 2

h
3
h2 − 1

h

2
h3

1
h2 − 2

h3
1
h2


·



vj

v′j

vj+1

v′j+1


. (3.15)

The error ‖u − U‖0 in these elements when applied to a second-order dif-
ferential equation such as Eq. (3.1) to be O(h4). This is also what we would
infer from the fact that a local piecewise cubic expansion can match the terms
in a Taylor series expansion through x3 and so we would expect the local error
would be of order x4 ≈ h4. Boundary conditions at node J are readily incor-
porated into these matrices by replacing the row corresponding to either vJ or
v′J by a row with a 1 on the diagonal and the other elements zero, and with the
boundary value on the right side.
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Figure 10: Rectangular elements cannot be locally refined without introducing
hanging nodes. Triangular elements can be locally refined, but require unstruc-
tured mesh data structures in programming.

3.2 Finite Elements in Two Dimensions

In two dimensions, finite elements occupy a finite area rather than a finite
interval. This area can be a rectangle or a triangle as shown in Figure 10.
Rectangular elements have the advantage that they have a regular structure,
which will simplify programming requirements, but they generally cannot be
locally refined. Triangular elements have the advantage that they can more
easily fit complex shapes and can be locally refined, but they generally require
unstructured mesh logic which can make the programming more complex.

Elements are also characterized by the order of the polynomial that is defined
within them. If an element with typical size h contains a complete polynomial
of order M , then the error will be at most of order hM+1. This follows directly
from a local Taylor series expansion:

φ(x, y) =
M∑
k=0

k∑
l=0

1
l!(k − l)!

[
∂kφ

∂xk∂yk−1

]
x0,y0

(x− x0)l(y − y0)k−l +O(hM+1).

Linear elements will therefore have an error O(h2), quadratic elements will have
an error O(h3), etc.

Another property that characterizes elements is their interelement continu-
ity. As discussed in Section 3.1.2, a finite element with continuity Cq−1 belongs
to Hilbert space Hq, and hence can be used for differential operators with order
up to 2q. This applicability is made possible using the corresponding variational
statement of the problem (Ritz method) or by performing integration by parts
in the Galerkin method, and thereby shifting derivatives from the unknown to
the trial function.
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Figure 11: Reduced quintic finite element Q18 is defined by the four geometric
parameters a, b, c, θ. A local (ξ, η) Cartesian system is used. The function
and first two derivatives are constrained at the three vertex points, and C1

continuity is imposed at the edges. Exponents mi and ni are given in Table 1.

3.2.1 Triangular Elements with C1 Continuity

A particularly useful triangular finite element in two dimensions with C1 conti-
nuity is known as the reduced quintic [10, 43, 44, 45], or Q18, and is depicted in
Figure 11. In each triangular element, the unknown function φ(x, y) is written
as a general polynomial of 5th degree in the local Cartesian coordinates ξ and
η: φ(ξ, η) =

∑20
i=1 aiξ

miηni (where the exponents mi and ni are given in Ta-
ble 1), which would have 21 coefficients were not there additional constraints.
Eighteen of the coefficients are determined from specifying the values of the
function and its first five derivatives: φ, φx, φy, φxx, φxy, φyy at each of the three
vertices, thus guaranteeing that globally all first and second derivatives will be
continuous at each vertex. Since the one-dimensional quintic polynomial along
each edge is completely determined by these values specified at the endpoints,
it is guaranteed that the expansion is continuous between elements.

The remaining three constraints come from the requirement that the normal
derivative of φ at each edge, φn, reduce to a one-dimensional cubic polynomial
along that edge. This implies that the two sets of nodal values completely
determine φn everywhere on each edge, guaranteeing its continuity from one
triangle to the next so that the element is C1. One of these three constraints is
trivial and has been used to reduce the number of terms from 21 to 20 in the
sum.

In imposing these continuity constraints, the expansion is no longer a com-
plete quintic, but it does contain a complete quartic with additional constrained
quintic coefficients to enforce C1 continuity between elements. Thus, the name
“reduced quintic.” If the characteristic size of the element is h, then it fol-
lows from a local Taylor’s series analysis that the approximation error in the
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Table 1: Exponents of ξ and η for the reduced quintic expansion φ(ξ, η) =∑20
i=1 aiξ

miηni .

k mk nk k mk nk k mk nk k mk nk
1 0 0 6 0 2 11 4 0 16 5 0
2 1 0 7 3 0 12 3 1 17 3 2
3 0 1 8 2 1 13 2 2 18 2 3
4 2 0 9 1 2 14 1 3 19 1 4
5 1 1 10 0 3 15 0 4 20 0 5

unknown function, φ− φh, will be of order h5.
Another advantage of this element is that all of the unknowns (or degrees

of freedom, DOF) appear at the vertices, and are thus shared with all the
triangular elements that connect to this vertex. This leads to a very compact
representation with relatively small matrices compared to other representations.
Suppose that we are approximating a square domain by partitioning it into n2

squares or 2n2 triangles. The reduced quintic will asymptotically have N = 6n2

unknowns, or three unknowns for each triangle. This scaling can be verified by
the fact that if we introduce a new point into any triangle and connect it to the
three nearby points, we will have generated two new triangles and introduced
six new unknowns. We contrast this with a Lagrange quartic element which has
the same formal order of accuracy but asymptotically has eight unknowns per
triangle [42].

For a given triangle, if we locally number the unknowns φ, φx, φy, φxx, φxy,
φyy at vertex P1 as Φ1−Φ6, at P2 as Φ7−Φ12, and at P3 as Φ13−Φ18, then we
seek a relation between the polynomial coefficients ai and the Φj . This is done
in two parts. We first define the 20× 20 matrix in each triangle that relates the
18 local derivatives and two constraints to the 20 polynomial coefficients. We
call this matrix T. The 20 rows of T are given by:

φ1 = a1 − ba2 + b2a4 − b3a7 + b4a11 − b5a16

φ1
ξ = a2 − 2ba4 + 3b2a7 − 4b3a11 + 5b4a16

φ1
η = a3 − ba5 + b2a8 − b3a12

φ1
ξξ = 2a4 − 6ba7 + 12b2a11 − 20b3a16

φ1
ξη = a5 − 2ba8 + 3b2a12

φ1
ηη = 2a6 − 2ba9 + 2b2a13 − 2b3a17
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φ2 = a1 + aa2 + a2a4 + a3a7 + a4a11 + a5a16

φ2
ξ = a2 + 2aa4 + 3a2a7 + 4a3a11 + 5a4a16

φ2
η = a3 + aa5 + a2a8 + a3a12

φ2
ξξ = 2a4 + 6aa7 + 12a2a11 + 20a3a16

φ2
ξη = a5 + 2aa8 + 3a2a12

φ2
ηη = 2a6 + 2aa9 + 2a2a13 + 2a3a17

φ3 = a1 + ca3 + c2a6 + c3a10 + c4a15 + c5a20

φ3
ξ = a2 + ca5 + c2a9 + c314 + c4a19

φ3
η = a3 + 2ca6 + 3c2a10 + 4c3a15 + 5c4a20

φ3
ξξ = 2a4 + 2ca8 + 2c2a13 + 2c3a18

φ3
ξη = a5 + 2ca9 + 3c2a14 + 4c3a19

φ3
ηη = 2c6 + 6ca10 + 12c2a15 + 20c3a20

0 = 5b4ca16 + (3b2c3 − 2b4c)a17 + (2bc4 − 3b3c2)a18

+(c5 − 4b2c3)a19 − 5bc4a20

0 = 5a4ca16 + (3a2c3 − 2a4c)a17 + (−2ac4 − 3a3c2)a18

+(c5 − 4a2c3)a19 − 5ac4a20.

This satisfies Φ′ = TA, where Φ′ denotes the vector of length 20 produced
by stringing together the 18 values of the function and derivatives with respect
to the local Cartesian coordinates ξ and η at the three vertices, and with the
final two elements zero, and A is the vector produced by the 20 polynomial
coefficients. This can be solved for the coefficient matrix by inverting T, thus
A = T−1Φ′. A useful check is to verify that the numerically evaluated deter-
minant of T has the value −64(a+ b)17c20(a2 + c2)(b2 + c2). Since the final two
elements of Φ′ are zero, we can replace T−1 by the 20 × 18 matrix T2 which
consists of the first 18 columns of T−1.

To get the coefficient matrix A in terms of the vector containing the actual
derivatives with respect to (x, y), we have to apply the rotation matrix R. This
is compactly defined in terms of the angle θ appearing in Figure 11 by

R =

 R1

R1

R1

 , (3.16)

where

R1 =


1 0 0 0 0 0
0 cos θ sin θ 0 0 0
0 − sin θ cos θ 0 0 0
0 0 0 cos2 θ 2 sin θ cos θ sin2 θ
0 0 0 − sin θ cos θ cos2 θ − sin2 θ sin θ cos θ
0 0 0 sin2 θ −2 sin θ cos θ cos2 θ

 .
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If we then define the matrix G = T2R, this relates the coefficient matrix directly
to the unknown vector consisting of the function and derivatives with respect
to (x, y), i.e., A = GΦ, or in component notation: ai =

∑18
j=1 gi,jΦj for i =

1, 20. The 20 × 18 matrix gi,j depends only on the shape and orientation of
the individual triangle, and in general will be different for each triangle. The
general expression for the unknown function φ in a given triangle is

φ(ξ, η) =
20∑
i=1

aiξ
miηni =

20∑
i=1

20∑
j=1

gi,jφjξ
miηni ,

=
18∑
j=1

νjφj , (3.17)

where we have defined the basis functions as

νj ≡
20∑
i=1

gi,jξ
miηni ; j = 1, 18. (3.18)

The 18 basis functions for each triangle, as defined by Eq. (3.18), have the
property that they have a unit value for either the function or one of its first
or second derivatives at one vertex and and zero for the other quantities at this
and the other nodes. They also have the C1 property embedded.

All of the integrals that need to be done to define the matrices that occur
in the Galerkin method are of the form of 2D integrals of polynomials in ξ or η
over the triangles. These can either be evaluated by numerical integration [46],
or by making use of the analytic formula:

F (m,n) ≡
∫ ∫

triangle

ξmηndξdη = cn+1

[
am+1 − (−b)m+1

]
m!n!

(m+ n+ 2)!
. (3.19)

For example, to evaluate the mass matrix, we would have∫ ∫
νi(ξ, η)φ(ξ, η)dξdη =

18∑
k=1

[
20∑
i=1

20∑
l=1

gi,jgl,kF (mi +ml, ni + nl)

]
Φk

≡
18∑
k=1

MjkΦk. (3.20)

The implementation of boundary conditions requires some discussion [47].
Recall that for each scalar variable being solved for, there are six unknowns at
each node corresponding to the function and all its first and second derivatives.
If Dirichlet or Neumann boundary conditions are being applied at a boundary
that is aligned with the x̂ or ŷ axis, the imposition of boundary conditions is
straightforward. Consider homogeneous Dirichlet boundary conditions being
applied at a boundary node where the boundary lies on the x axis. We then
replace the rows of the matrix that correspond to the trial functions νi having
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non-zero values of φ, φx and φxx with a row from the identity matrix of all zeros
but a one on the diagonal, and with zero on the right side of the equation. This
is equivalent to removing these basis functions from the system. If Neumann
conditions were being applied, we would similarly replace the rows corresponding
to φy and φxy. If we define the operator

L{φ} = [φ, φx, φy, φxx, φxy, φyy] , (3.21)

then these conditions are all of the form Li{φ} = C. This is easily implemented
because the basis functions νj at the boundary point satisfy the orthogonality
conditions

Li{νj} = δij . (3.22)

But what if the boundaries are not aligned with the x or y axis? In this
case, if we define the vector corresponding to normal and tangential derivatives
of the solution as

L′{φ} = [φ, φn, φt, φnn, φnt, φtt] , (3.23)

then the boundary conditions we need to impose are of the form L′i{φ} = C.
Here n is the coordinate locally normal to the boundary, and t is locally tangent
to the boundary. We also define the local curvature as κ = n̂ · dt̂/ds where ds is
the arc length along the boundary curve. The derivatives of φ with respect to
the normal and tangential coordinates (n, t) are related to those with respect to
the global coordinates (x, y) at a given boundary point by the transformation

L′i{φ} = MijLj{φ}, (3.24)

where M is the unimodular matrix

M =


1 0 0 0 0 0
0 nx ny 0 0 0
0 −ny nx 0 0 0
0 0 0 n2

x 2nxny n2
y

0 −κny κnx −nxny n2
x − n2

y nxny
0 −κnx −κny n2

y −2nxny n2
x

 . (3.25)

In order to impose a boundary condition on a curved boundary (or even a
straight boundary not aligned with the x̂ or ŷ axis) and for the residual to be
constrained as much as possible, we want to define a set of trial functions µi
at each boundary point that satisfy a similar orthogonality condition to that in
the axis-aligned boundary case, i.e.,

L′i{µj} = δij . (3.26)

The new trial functions must be a linear combination of the old basis functions
since the latter span the solution space, and thus we can write for some matrix
N,

µi = Nijνj . (3.27)
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It follows from Eqs. (3.22), (3.24), (3.26), and (3.27) that Nij = (Mji)−1,

N =


1 0 0 0 0 0
0 nx ny κn2

y −κnxny κn2
x

0 −ny nx 2κnxny −κ(n2
x − n2

y) −2κnxny
0 0 0 n2

x nxny n2
y

0 0 0 −2nxny n2
x − n2

y 2nxny
0 0 0 n2

y −nxny n2
x

 . (3.28)

For each point that lies on the boundary, we therefore substitute the six trial
functions µi for the original six trial functions νi. These boundary vertex trial
functions obey an orthogonality condition on their derivatives with respect to a
local coordinate system (n, t) defined relative to the local boundary orientation.
We then substitute the appropriate rows for rows imposing the boundary con-
ditions as in the case of the coordinate aligned boundaries. Using these linearly
transformed trial functions to impose the boundary conditions is optimal in the
sense that the components of the residual associated with the boundary vertex
are maximally constrained.
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4 Implicit Methods and the M3D-C1 Approach

In this lecture we discuss implicit methods for solving predominantly hyperbolic
systems of equations, and a particular method that is well suited for the MHD
equations being applied to tokamak plasmas. If we denote by U the vector
of unknowns, then a conservative system of equations can be written (in one
dimension) either as

∂U
∂t

+
∂F
∂x

= 0, (4.1)

or, in the non-conservative form

∂U
∂t

+ A · ∂U
∂x

= 0. (4.2)

The matrix A = ∂F/∂U has real eigenvalues for a pure hyperbolic system. Since
the stability analysis we perform is linear, the stability properties of the same
method as applied to either Eq. (4.1) or Eq. (4.2) will be identical. Systems of
linear equations will be of the form Eq. (4.2) from the outset.

If all the eigenvalues of the matrix A, λA, are close together in magnitude,
it is generally not worthwhile to use an implicit method for a purely hyperbolic
problem. The reasons for this are as follows: It requires more computational
work per time step using an implicit method compared to that required for
an explicit method. This difference becomes greater as the rank of the matrix
A increases or especially when working in two or higher dimensions. Also, to
take advantage of the unconditional stability of the implicit method, we would
need to significantly violate the CFL condition so that δt � δx/|λA|. Since
the truncation error is normally of the same order in both δt and δx, this
would imply that the O(δt2) term would dominate in the truncation error and
thus solutions using larger time steps would be less accurate than those with
smaller time steps. This is in contrast to a Crank–Nicolson implicit solution
of a diffusion equation where the time step can be increased from δt ∼ δx2 to
δt ∼ δx without substantially increasing the overall truncation error.

Another possible disadvantage of implicit methods applied to hyperbolic
equations is that they result in an infinite signal propagation speed. Physically,
all information is propagated along the characteristics, which corresponds to a
finite velocity of propagation. An explicit finite difference method normally has
a domain of dependence that very closely resembles the domain of dependence
of the physical system, while the domain of dependence of the implicit method
is totally different.

Explicit finite difference methods are also ideally suited to pure hyperbolic
problems with with a wide range of characteristic velocities but where interest
lies in phenomena associated with the fastest wave speed (or equivalently, the
largest eigenvalue λA). However, in a strongly magnetized plasma we normally
have the situation where there are multiple characteristic velocities that differ
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Figure 12: Characteristics for the Alfvén wave (dotted) and the fast magne-
toacoustic wave (solid) are shown in this schematic diagram. (a) Space-time
plot for fully explicit method. (b) Same for partially implicit method where the
time step is at CFL limit for the Alfvén wave.

widely, and where primary interest lies not with the fastest wave speed (which is
the fast magnetoacoustic wave which compresses the strong background field),
but rather with the slower Alfvén wave, which is nearly incompressible [49]. The
situation is then as depicted in Figure 12, where we draw the characteristics
associated with the fast wave as a solid line, and those associated with the
slower shear Alfvén wave with a dotted line.

Figure 12a illustrates the space-time points in an explicit calculation where
the time step is determined by the CFL condition for the fast wave. It is seen
that it takes many time steps for the shear Alfvén wave to traverse one zone
spacing. In contrast, Figure 12b shows the same characteristics but with a time
step chosen so that the CFL condition is just satisfied for the shear Alfvén wave.
It is seen that the CFL condition for the fast wave is strongly violated and so an
implicit treatment is needed, at least for the eigencomponents associated with
the fast wave.

There are also many situations where there are additional terms in the equa-
tions, such as resistivity, that lead to even longer time scales that need to be
followed, for example the slow growth of a resistive instability in a fusion de-
vice [14, 15, 16]. In these cases, the CFL time step restriction based on the
fast wave would be much too restrictive and some form of implicit solution is
required. The next two sections describe some different approaches to solving
the implicit system in multiple dimensions. These methods are aimed at pro-
ducing efficient algorithms for studying plasma motion that is associated with
other than the fastest characteristic.

50



4.0.2 θ-Implicit Method

We first consider an implicit method for the hyperbolic system of Eq. (4.2) that
is similar to the θ-implicit and Crank–Nicolson methods for parabolic equations,

Un+1
j −Un

j

δt
+ A ·

[
θ

(
Un+1
j+1 −Un+1

j−1

2δx

)
+ (1− θ)

(
Un
j+1 −Un

j−1

2δx

)]
, (4.3)

where 0 ≤ θ ≤ 1 is the implicit parameter. Von Neumann analysis yields for
the amplification factor

r =
1 + is(θ − 1)

1 + isθ
, (4.4)

where s = (δtλA/δx) sin θk, with λA being each of the eigenvalues of the matrix
A. We see that |r| ≤ 1, implying unconditional stability, for 0.5 ≤ θ ≤ 1.0. For
θ = 0.5 we have |r| = 1, implying no dissipation, and the method described by
Eq. (4.3) is centered in both space and time and therefore has a truncation error
T∆ = O(δx2, δt2). In this sense, it is analogous to the Crank–Nicolson method
for parabolic equations.

The θ-implicit method as described by Eq. (4.3) uses the quasi-linear form of
conservation equations, and does not deal with any non-linearity present in A.
If A is a strongly non-linear function of U, or if we wish to solve the problem
in conservation form, the method can be modified in several ways. One obvious
way is to update the solution to a provisional time, (n + 1)∗, to evaluate the
matrix A at this time, and then repeat the update of the solution from time n
to (n+ 1) but using some linear combination of A at time n and (n+ 1)∗.

A straightforward linearization technique can also be used to apply the θ-
implicit method to the conservative formulation of a hyperbolic system as given
by Eq. (4.1) in one dimension [50]. We first Taylor expand Fn+1 in time about
Fn

Fn+1 = Fn + An ·
(
Un+1 −Un

)
+O(δt2). (4.5)

Applying the θ-implicit method to the system of conservation equations, Eq. (4.1),
and rearranging terms gives[

I + θδt
∂

∂x
An

]
·Un+1 =

[
I + θδt

∂

∂x
An

]
·Un − δt

∂F
∂x

∣∣∣∣n . (4.6)

Note that the derivative is acting on A · U for both bracketed terms. If A
is a constant matrix, Eq. (4.6) is equivalent to Eq. (4.3) if centered spatial
difference operators are used. For θ = 1/2, the method is seen to be time and
space centered and thus have a truncation error O(δx2, δt2).

4.0.3 Method of Differential Approximation

Here we describe an approach for solving stiff hyperbolic systems that is based
on the method of differential approximations [51] and is now used in several
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contemporary multidimensional MHD codes [10, 52]. We start by considering
the model second-order hyperbolic system in one dimension given by:

∂v

∂t
= c

∂ω

∂x
, (4.7)

∂ω

∂t
= c

∂v

∂x
. (4.8)

Here, the wave speed, c, is assumed to be a constant for simplicity. These can
be combined to give the single second-order equation,

∂2v

∂t2
= L(v), (4.9)

where we have introduced the linear second-order spatial operator,

L(v) ≡ c2
∂2

∂x2
v. (4.10)

Consider now the following algorithm for advancing the system in time:

(
1− θ2δt2L

)
vn+1 =

(
1− αδt2L

)
vn + δtc

(
∂ω

∂x

)m
(4.11)

ωm+1 = ωm + δtcφ

(
∂v

∂x

)n+1

+ δtc(1− φ)
(
∂v

∂x

)n
. (4.12)

We have introduced the implicit parameters θ, α, and φ and the time step δt.
The derivatives are to be replaced by centered finite difference (or spectral or
finite element) operators. For θ = α = 0 and φ = 1, the algorithm described by
Eqs. (4.11) and (4.12) is just the explicit leapfrog method.

To examine the numerical stability of the general case, we make the substi-
tutions

∂

∂x
→ −ike,

L → −c2k2
e ,

where ke = −(1/δx) sin θk is the effective wavenumber when the centered finite
difference operator is substituted for the spatial derivative. Letting vn+1 = rvn

and ωm+1 = rωm, the amplification factor r can then be determined from the
quadratic equation

(1 + θ2D)(r − 1)2 +D(θ2 + φ− α)(r − 1) +D = 0, (4.13)

where we have defined D ≡ δt2c2k2
e . Equation (4.13) has roots

r =
1 + 1

2D
(
θ2 − φ+ α

)
± i

√
D +

[
θ2 − 1

4 (θ2 + φ− α)2
]
D2

1 + θ2D
, (4.14)
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for which

|r|2 =
1 + (1 + α− φ)D

1 + θ2D
(4.15)

when the quantity within the square root in Eq. (4.16) is non-negative. There
are two cases that are of interest.

For the Caramana method [51], we set φ = 1 and α = θ2. From Eq. (4.15),
this yields |r|2 = 1 for any D, as long as θ ≥ 1

2 . Thus the method is linearly
stable and non-dissipative for θ ≥ 1

2 . Truncation error analysis shows the time
discretization error to be second-order in δt for any stable value of θ. This
method has the additional feature that the multiplier of the operator L is the
same on both sides of Eq. (4.12), so that in steady state, when vn+1 = vn, the
operator will have no affect on the solution.

For the split θ-implicit method, we set φ = θ and α = θ(θ − 1). This is
what one would obtain if both Eqs. (4.7) and (4.8) were time differenced using
the θ-implicit method, and then the differenced form of Eq. (4.8) was used
to algebraically eliminate ωn+1 from the differenced form of Eq. (4.7). The
amplification factor is |r|2 = 1 + (1 − 2θ)D/(1 + θ2D), which is less than or
equal to 1 (and hence stable) when θ ≥ 1

2 . The quantity within the square root
in Eq. (4.14) is exactly D for this method, which is assumed to be positive. Note
that |r|2 = 1 only when θ = 1

2 for this method. The truncation error analysis
for this method is exactly the same as it would be for the θ-implicit method,
yielding second-order accuracy only for θ = 1

2 .
In each of these algorithms, the operator

(
1− θ2δt2L

)
needs to be inverted

each time step. However, this is a well-conditioned symmetric diagonally dom-
inant operator, and so iterative methods should perform well on this. Also, we
see that the two equations, Eqs. (4.11) and (4.12), can be solved sequentially,
and so the associated sparse matrix equation is only for a single scalar variable.
Both of these features offer clear advantages over the unsplit θ-implicit method
discussed in Section 4.0.2.

To obtain the operator L for the ideal MHD equations, we start with the
momentum equation, again ignoring for simplicity the density and convective
derivative terms, assumed small. Denoting time derivatives with a dot, i.e.,
u̇ ≡ ∂u/∂t, we have

ρ0u̇ +∇p =
1
µ0

[(∇×B)×B] . (4.16)

Time differentiating gives

ρ0ü +∇ṗ =
1
µ0

[(
∇× Ḃ

)
×B + (∇×B)× Ḃ

]
. (4.17)

Next, we take the ideal MHD components of the magnetic field and pressure
equations:

Ḃ = ∇× [u×B] , (4.18)
ṗ = −u · ∇p− γp∇ · u. (4.19)
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We substitute for Ḃ and ṗ from Eqs. (4.18) and (4.19) into Eq. (4.16), whereby
in analogy with Eq. (4.9), we can identify

L (u) ≡ 1
µ0
{∇ × [∇× (u×B)]} ×B

+
1
µ0
{(∇×B)×∇× (u×B)}

+ ∇ (u · ∇p+ γp∇ · u) . (4.20)

We note that this is equivalent to the ideal MHD operator introduced in Bern-
stein, et. al. [53].

Applying the Caramana method to this equation gives the following equation
to advance the velocity to the new time level{

ρ0 − θ2δt2L
}
un+1 =

{
ρ0 − θ2δt2 L

}
un

+ δt

{
−∇p+

1
µ0

[(∇×B)×B]
}n+ 1

2

. (4.21)

When finite difference or finite element methods are used to discretize the spatial
operators in Eq. (4.21), it becomes a sparse matrix equation for the advanced
time velocity un+1. When this sparse matrix equation is solved, the new velocity
can be used to advance the magnetic field and pressure according to Eqs. (4.18)
and (4.19), which now take the form:

Ḃ = ∇×
[(
θun+1 + (1− θ)un

)
×B

]
, (4.22)

ṗ = −
(
θun+1 + (1− θ)un

)
· ∇p

−γp∇ ·
(
θun+1 + (1− θ)un

)
. (4.23)

A von Neumann stability analysis shows this method to be linearly stable for
all δt as long as θ ≥ 1/2. We also note that it gives accurate solutions in steady
state when the terms in Eq. (4.21) on the two sides of the equation which involve
the operator L cancel.

Non-ideal terms such as resistivity and viscosity can be added to Eqs. (4.21)–
(4.23) by treating them implicitly and this will not affect the form of the operator
in Eq. (4.20) or the numerical stability. The challenge in this method is to find
an efficient method for inverting the matrix corresponding to the operator on
the left in Eq. (4.21). This is presently an area of active research.

4.0.4 The Vector Fields

In describing unstable motions of a low β ≡ 2µ0p/B
2 plasma with a strong back-

ground magnetic field, such as a tokamak, it is essential to employ high-accuracy
spatial representations. One approach [52] is to represent the velocity and mag-
netic fields by their cylindrical coordinate projections and use high-order finite
elements to accurately compute the product terms. Another approach [48] is
to represent the velocity and magnetic fields in terms of stream functions and
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potentials that exhibit analytic cancelations in the asymptotic large-guide-field
limit.

Consider the following forms for the velocity field and magnetic vector po-
tential:

u = R2∇U ×∇φ+ ωR2∇φ+R−2∇⊥χ, (4.24)
A = R2∇φ×∇f + ψ∇φ− F0 lnRẐ. (4.25)

Here (R,φ, Z) form a cylindrical coordinate system, the subscript ⊥ indicates
“perpendicular to ∇φ”, i.e., in the (R,Z) plane, and F0 is a constant which
represents an externally imposed toroidal magnetic field. The velocity is thus
determined by the three scalar functions (U, ω, χ). The magnetic vector poten-
tial is defined by the two scalar functions (f, ψ), the constant F0, and the gauge
condition ∇⊥ ·R−2A = 0.

The magnetic field is given by B = ∇×A, or

B = ∇ψ ×∇φ−∇⊥
∂f

∂φ
+ F∇φ. (4.26)

= ∇ψ ×∇φ−∇∂f
∂φ

+ F ∗∇φ. (4.27)

Here,we have defined F ≡ F0 +R2∇2
⊥f and F ∗ ≡ F0 +R2∇2f . The first term

in the velocity representation, Eq. (4.24), represents motion in a 2D toroidal
plane that does not compress the background toroidal field, the second term
represents the motion in the toroidal direction, and the third term, which is
normally very small, represents compressible motion in the toroidal plane. Note
that it is orthogonal to the first term in that the inner product of those two
terms vanishes when integrated over the torus.

To see that the first velocity term does not compress the background toroidal
field, we can substitute u = R2∇U × ∇φ and B = F0∇φ into the ideal-MHD
field evolution equation, Eq. (1.38), and compute the toroidal component:

∇φ · ∂B
∂t

= ∇φ · ∇ × [u×B]

= ∇φ · ∇ ×
[(
R2∇U ×∇φ

)
× (F0∇φ)

]
(4.28)

= F0∇ · [∇φ×∇U ]
= 0

We are thus able to eliminate this possibly large error term associated with
anomalous compression of the externally imposed toroidal field analytically from
the equations, resulting in a large increase in accuracy. The velocity field asso-
ciated with this first term always dominates over that associated with the third
term in Eq. (4.24).

4.0.5 Projections

When using a velocity representation such as that in Eq. (4.24), it is also im-
portant what projections one takes of the momentum equation. When applying
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the Galerkin finite element method, one operates on the momentum equation
with a differential operator, multiplies by the finite element νi, and integrates
over all space to obtain the weak form of the equation. Consider the following
annihilation operators applied to the modified momentum equation, Eq. (4.21),
and then integrated by parts:∫

dτνi∇φ · ∇⊥ ×R2(4.21) →
∫
dτR2∇⊥νi ×∇φ · (4.21) (4.29)∫

dτνiR
2∇φ · (4.21) →

∫
dτνiR

2∇φ · (4.21) (4.30)

−
∫
dτνi∇⊥ ·R−2(4.21) →

∫
dτR−2∇⊥νi · (4.21) (4.31)

The boundary terms from the integration by parts are assumed to vanish
here. By comparing the integrands on the right in Eq. (4.29)-(4.31) with the
form of the velocity in Eq. (4.24), we see that after the integration by parts,
these projection operators are equivalent to taking the inner product of the
momentum equation, Eq. (4.21), separately with each of the three terms in the
velocity field, but with the trial function νi replacing each of the three scalar
functions (U, ω, χ). This property leads to an energy-conserving set of discrete
equations, to two energy-conserving subsets of reduced equations, and to self-
adjoint energy terms, called partial energy terms, being introduced into the
implicit time advance [48].

The partial energy terms come from the inner product of the velocity-like
terms, on the right in Eqs. (4.29)-(4.31), with the ideal MHD operator L in
Eq. (4.21), which is defined in Eq. (4.20). These add to the mass matrix,
improving its condition number.

Similar projections and integrations are performed with the magnetic field
advance equation, with the projection operators being given by:∫

dτνi∇φ · ∇⊥ × (4.22) →
∫
dτ∇⊥νi ×∇φ · (4.22) (4.32)∫

dτνi∇φ · (4.22) →
∫
dτνi∇φ · (4.22) (4.33)

As in the discussion following Eq. (4.31), if we compare the integrands on the
right in Eqs. (4.32) and (4.33) with the form of the magnetic field in Eq. (4.27),
we see that these projection operators are equivalent to taking the inner product
of the magnetic field evolution equation, Eq. (4.22), with the first and third
terms in the magnetic field, but with the trial function νi replacing the scalar
quantities ψ and F ∗. In this case, there is no need to take the third projection,
which would be

−
∫
dτνi∇⊥ · (4.22) →

∫
dτ∇⊥νi · (4.22), (4.34)

since the divergence constraint on the magnetic field assures that this is satisfied.
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Figure 13: Integration volume is the triangular wedge between two toroidal
planes.

4.0.6 An Appropriate Finite Element Basis

When the projection operators defined in Section 4.0.5 are applied to the mod-
ified momentum equation, Eq. (4.21), and the forms of the vector fields given
by Eq. (4.24)-(4.27) are used, the resulting equations contain 4th order spacial
derivatives of the scalar variables. As discussed in Section 3.1.2, this requires
the use of C1 finite elements.

An appropriate set of 3D C1 basis functions can be formed by taking ten-
sor products of the Q18(R,Z) 2D basis functions defined on a triangle in Sec-
tion 3.2.1 with the set of 1D Hermite cubic polynomial basis functions Φi(φ)
defined in Section 3.1.3. Thus, if we denote by νj(R,Z) the 2D basis functions
defined at the nodes of the 2D triangles, we form 3D basis functions as follows:

Ei,j(R,φ, Z) = νj(R,Z)Φi(φ). (4.35)

There are two Hermite basis functions associated with each toroidal plane
φ = φk. They each extend over a single mesh spacing in φ in each direction,
[φk − h, φk + h]. Since Φ1(x) has zero derivative at local coordinate x = 0 and
Φ2(x) has zero value at x = 0, the basis function Ei,j has the simple physical
interpertation that E1,j is the value of the 3D function at that plane and E2,j

is the value of the toroidal derivative of the 3D function at that plane. The
3D integration volume is the triangular wedge between two toroidal planes as
depicted in Figure 13. In the volume bounded by planes k and k+1 and a given
triangle, shown in the figure, we can express each scalar variable such as U in
terms of 72 time-varying scalars:

U(R,φ, Z) =
18∑
j=1

νj(R,Z)
[
U1
j,kΦ1(φ/h) + U2

j,kΦ2(φ/h)

+ U1
j,k+1Φ1(φ/h− 1) + U2

j,k+1Φ2(φ/h− 1)
]

(4.36)

With these conventions, the standard Galarkin method is applied, turning the
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differential equations into discrete matrix equations which are then solved using
standard iterative methods [3].

A computer code based on these methods has recently been developed [48]
and early applications show excellent accuracy and efficiency properties [54] for
linear calculations. Extension to fully nonlinear calculations is in progress.
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