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Chapter 1

Introduction

Nuclear fusion reactions is the source of energy of stars, and is the major source of energy in the
visible universe. In stellar objects, gravitational forces confine the fusion fuel, which reaches con-
ditions for nuclear fusion reactions. This route can of course not be followed for energy production
on earth. Therefore, mainly two alternate ways are proposed to date: magnetic confinement, for
instance in ITER (International Thermonuclear Experimental Reactor) project, or inertial laser
confinement, for instance in NIF (National Ignition Facility) or LMJ (Laser MégaJoule) project.
In both cases, the reaction under study is the combination of deuterium and tritium atoms:

D + T −→ 4He + n, (1.1)

which produces an energy of 17.6 MeV, that is, 410 kJ per gram. Reaction (1.1) is the most
favorable (in terms of production of energy) fusion reaction of hydrogen isotopes. In inertial
confinement fusion, the fuel is heated by laser pulses, hopefully reaching condition under which a
significant mass of hydrogen undergoes reaction (1.1). The NIF project, in Livermore, California,
started in 1997, and delivered its first experiment in 2009. It uses 192 high power laser beams.
These lasers are amplified from a single source, along a 300 meters long travel. Then, they are
driven to an experiment chamber, which is a sphere of 10 meters diameter, and concentrated onto
a fuel target, which size is a few millimeters. The LMJ, in Bordeaux, France, is based on the same
concept, with 160 beams. It is expected to be operating in 2014.

1.1 Physical setting

The principle used in a laser facility such as NIF or LMJ is to design a small plastic ball filled
with hydrogen, which is heated by laser beams or soft X-rays. The outer layer is heated first,
and therefore is dilated. The momentum conservation then implies that inner layers of gas are
contracted. Thus, the core of the ball implodes and heats up. This creates a ”hot spot” at the
center of the capsule (see figure 1.4). The fusion reaction then start at the center, and burn out all
the fuel of the capsule (see figure 1.1). Lawson gave in [84] a criterion for reaching nuclear fusion
reactions in a confined plasma. This criterion may be used to indicate the conditions to reach
at the hotspot. It links the density ρ with the temperature T and the confinement time τ . This
criterion reads

ρTτ & 10−5 K · s · g · cm−3.

The validity domain of this criterion is 107K ≤ T ≤ 5 × 108K. The confinement time cannot be
greater than the time for a rarefaction wave to travel through the plasma, τ ≈ R/cs, where R is
the radius of the plasma, and cs the sound speed. This gives the following:

T ≈ 107K, τ ≈ 10−9s, ρR ≈ 0.3g · cm−2.

Such values can be reached at the hot spot during the above-mentionned process of heating a small
ball of fuel. This can be done by direct drive, or by indirect drive.
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Figure 1.1: Scheme of the inertial confinement fusion process.
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Figure 1.2: Direct drive (left) and indirect drive (right)

Direct drive. In this situation, the laser beams are pointed towards the capsule and directly
heat it (see figure 1.2). The advantage here is that all the power of the lasers is used to heat the
capsule. However, the heating is not uniform, therefore the implosion is not spherically symmetric.
Hence, instabilities develop during the process. This may result in a considerable loss of energy.
See figure 1.3.

Indirect drive. In this second approach, the capsule is inside a cavity, or hohlraum, composed
of high-Z material (typically gold). The laser beams point towards the inner boundaries of the
hohlraum. The lasers heat the walls of the hohlraum, which emit X-rays towards the capsule. The
advantage of this approach is two-fold: first, the heating of the capsule is more uniform, which
minimizes hydrodynamical instabilities. Second, X-rays are usually better absorbed by the external
layers of the capsule. However, the main drawback of this approach is that in the process of heating
the inner wall of the cavity, up to 90% of the energy may be lost (see Figure 1.5).

A third approach, which is proposed for instance in the FIREX (Fast Ignition Realization
Experiment) project, consists in imploding a fuel capsule by direct drive, then use another laser to
create a hot spot inside the capsule.
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Figure 1.3: An example of development of hydrodynamical instability during the implosion of a
capsule
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Figure 1.4: Typical hot spot configuration resulting from an implosion: density (green, in g cm−2)
and temperature (red, in K)
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Figure 1.5: Energy loss in the indirect drive IFC process.

The strategy of indirect drive was retained both for the LMJ and NIF projects. We will therefore
concentrate on this approach in the present document.

The procedure described above is of course very delicate, and the use of numerical simulation
is of great importance. It helps understanding the physics and designing the different components
of the target (capsule and hohlraum). To fix the ideas, an LMJ cavity is about 1 cm long and 5
mm large, while the capsule diameter is about 1 mm. At the end of the implosion, that is, when
the fusion reactions are supposed to start, the heart of the target is about 50 to 100 µm large. The
process lasts a few nanoseconds.

As mentionned above, the question of the development of hydrodynamical instabilities is of
crucial importance, since it may have great impact on the number of reactions taking place in the
fuel. Indeed, the main process at work in this kind of experiment is radiative ablation. By nature,
such a process produces an ablation front which is Rayleigh-Taylor unstable. Hence, it is important
for the simulations to capture the development of theses instabilities.

1.2 Modelling

The modelling issues related to inertial confinement fusion are:

1. The laser plasma interaction (LPI): in the hohlraum, all materials are rapidly turned into
plasmas, which present strong and complicated interactions with laser beams.

2. The hydrodynamics of the implosion: it is triggered by a succession of shocks. These result
in Rayleigh-Taylor instabilities which need to be understood.

3. The coupling with radiative transfer: the plasmas emit high energy radiations which heat up
the core of the capsule.

In the present document, we deliberately leave aside the question of LPI, which is not fully under-
stood yet. We will assume that it is properly taken into account by an empirical source term in
the equations of radiation hydrodynamics. For details on LPI, we refer to [129] and the references
therein.

Hydrodynamics

In the following, we adopt the convention that boldface letters indicate vectors (of R
2 or R

3).
Typically, x is a position and u is a velocity. The hydrodynamics of the problem is usually
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assumed to be well described by compressible Euler equations for the ions and electrons:


























Dtρ + ρdiv(u) = 0,

ρDtu + ∇p = Fr,

ρDtEe + pe div(u) − div (χe∇Te) + Wei = Qr + S,

ρDtEi + pi div(u) + div (χi∇Ti) − Wei = 0,

(1.2)

where Dt = ∂
∂t + u · ∇ is the derivative along the flow. The unknowns of this system are the

density ρ(x, t) ∈ R
+ of the plasma, its velocity u(x, t) ∈ R

3 and its pressure p(x, t) ∈ R. We
also have electronic and ionic values: pressures pe(x, t), pi(x, t) ∈ R (with p = pe + pi), energies
Ee(x, t), Ei(x, t) ∈ R (with E = Ee + Ei), and temperatures Te(x, t), Ti(x, t). Here, The terms Fr

and Qr are the radiative sources, and S is an additional source term modelling the laser energy
drop. This set of equations is closed by an adapted equation of state

(Ee, pe, Ei, pi) = F(ρ, Te, Ti). (1.3)

This bi-temperature equation of state is not explicit, and one commonly uses tabulated versions.
However, one may, for the sake of clarity, think of (1.3) as a perfect gas equation of state, in the
spirit of Section 2.7 below. For the sake of simplicity, we do not take into account the contribution
of fusion reactions nor supra-thermic particles, which give additional source terms in (1.2). We
refer to [34] for more details.

The thermal conductivity coefficients χe and χi are usually defined by Spitzer [135] or Hubbard
[69] approximations. These are highly nonlinear functions of the temperature. For instance,

χe ∝ T 5/2
e .

The coupling terms Wei between electrons and ions are given by

Wei = ρCve
me

mi

Te − Ti

τei
, (1.4)

where τei is the charasteristic time of relaxation between electrons and ions, and is proportional

to T
3/2
e [34, 132, 135]. Finally, Fr and Qr are the coupling terms between matter and radiation.

They read

Fr =

∫

S2

∫ ∞

0

Ω(σa(ν) + κTh) Iν(x, t,Ω)dν
dΩ

4π
, (1.5)

and

Qr =

∫

S2

∫ ∞

0

(σa(ν)Iν(x, t,Ω) − σe(ν)Bν(Te)) dν
dΩ

4π
. (1.6)

The values of the terms in the above integrands are made precise in the next paragraph.

Radiative transfer

System (1.2) is coupled with the radiative transfer equation:

ρ

c
Dt

(

Iν

ρ

)

+ Ω · ∇Iν + σa(ν)Iν − σe(ν)Bν(Te) +
1

c
(Ω ⊗ Ω : ∇u)

(

Iν −
∂ (νIν)

∂ν

)

+ κTh

(

Iν −

∫

S2

3

4

(

1 + (Ω · Ω′)
2
)

Iν(Ω′)
dΩ′

4π

)

= 0, (1.7)

where Iν(x, t,Ω) is the specific radiative intensity. It is a function of the frequency ν ∈ R
+, of the

space-time variables (x, t) and of the propagation direction Ω ∈ S2 the unit sphere of R
3. In (1.7),

c is the speed of light, σa is the absorption cross section, σe is the emission cross section, and κTh

is the Thomson scattering coefficient. This equation may be derived by counting up the energy
carried by photons in an elementary volume of the phase space (space, time, frequency, direction)
in the comobile frame. Note that a priori the change of frame is relativistic, but we have used in
(1.7) the fact that u/c is small to simplify the equations. We refer to the textbooks [27, 104, 112]
for details (see also [22, 21]). Let us give some explanations on the different terms in this equation:
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• the first two terms are simple transport terms;

• the third term models the absorption of radiation by matter;

• the fourth term models spontaneous emission of radiation by matter. The quantity Bν(Te)
is the Planckian distribution at Te, that is:

Bν(Te) =
2h

c2

ν3

e
hν

kTe − 1
. (1.8)

This is the radiation emitted by a black body at temperature Te in the vacuum [104, 112]. The
fact that the emission term of (1.7) has the form (1.8) relies on the local thermal equilibrium
(LTE) hypothesis (see [112, 104, 146]);

• the fifth term models the frequency shift due to the change of frame (Doppler effect);

• the last term is the Thomson scattering term, which models the collision of photons with free
electrons.

Note finally that at equilibrium, that is, when u = 0 and ρ is constant, then one should recover
Iν = Bν(Te), therefore

σa(ν) = σe(ν).

We have neglected in the above equation several phenomenons, such as relativistic effects or angular
aberration, which are believed to be negligible in the case of inertial fusion. The question of
Compton scattering is less clear, and it may be included if necessary [27, 104, 112, 146].

To date, an efficient method to treat equation (1.7) in its full generality is not available. How-
ever, two limits of specific interest in themselves may be identified:

1. The free streaming limit, in which the matter is transparent, that is, the coefficients σa, σe

and κTh are sufficiently small. In such a case, Monte Carlo methods are well adapted to solve
(1.7). Such methods are described in [79] for instance.

2. The diffusion limit, in which the matter is opaque, that is, the quantity λ(ν) = (σa(ν) +
κTh)−1, that is, the mean free path in (1.7), is small. In such a case, the radiative transfer
equation is well approximated by a diffusion equation.

Note finally that, as mentionned above, the coupled system (1.2)-(1.7) is a model problem,
which we believe exhibits the main difficulties at hand in the modelling of ICF. However, one needs
to take into account additional equations (in particular neutronics and fusion reactions) in order
to describe correctly the physics of the problem. For the sake of clarity, we stick to the present
simplified case.

Coupling problems

In coupling the above systems (1.2) and (1.7), many problems arise.
First, it is not even known, on a theoretical level, if the system is well posed, globaly in time.

It is proved in [91] for the grey case (that is, when σa and σe do not depend on ν), and [147]
for the general case, that local in time existence holds. See also [72] for related problems. Some
results exist in the case of Navier-Stokes equation instead of Euler equation [17], in the diffusion
approximation. See also [42] for related existence results in dimension one.

Second, one needs to discretize in space equations (1.2)-(1.7). Hence, the discretization of these
various equations should share common features. For instance, if the temperature is assumed to
be constant in a cell for (1.2), it should also be for (1.7). This induces additional constraints on
the corresponding schemes.

Third, appart from the problem of space discretization, one needs to discretize in time the
system (1.2)-(1.7). In this respect, a splitting strategy is often used: at each time step, (1.2) is
solved first, then (1.7) is solved. The error introduced by such a splitting must be studied carefully.
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1.3 Numerical methods

The numerical methods will be developped in the subsequent chapters, so we only give here the
main flavor.

First, one needs to discretize (in time and space), the hydrodynamics part (1.2). This is
developped in Chapter 2 below. In general, as explained in Section 2.1, Lagrangian methods are
prefered for this part.

Second, the discretization of the radiative part (1.7) implies in principle discretization of space-
time variables, and of frequency and propagation direction. Since this is costly, a common approach
is to simplify the model by using diffusion approximation, as explained in Section 3.1.

Note that by doing so, one must face the problem of designing a diffusion scheme on a mesh
which may be highly deformed. This is of course an important issue, which is (partly) studied in
Section 3.3.

The last chapter of the present document gives an example of simplified model for describing
the evolution of the ablation front. This model may help in understanding particular phenomena,
such as, for instance, stabilization of long wavelength linear instability.
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Chapter 2

Hydrodynamics

2.1 Lagrangian viewpoint

The hydrodynamic numerical simulation of compressible flows for Inertial Confinement Fusion
[31, 118] makes an important use of Lagrangian methods because they are more adapted than
Eulerian methods. Shortly speaking Eulerian methods are written in the laboratory frame, while
Lagrangian methods are written in the fluid frame. Assets of Lagrangian methods are

• easy discretization of free boundaries (external and internal),

• naturally adapted for multimaterial flows,

• very good accuracy in case the flow is dominated by transport.

However the disadvantages are also important

• the mesh moves with the flow, so the mesh is somehow an unknown of the problem,

• very often spurious displacements of the mesh is observed. Specific algorithms must designed
with care.

• the mathematical theory of Lagrangian systems of conservation laws show they are often
weakly hyperbolic. The theory of weakly hyperbolic systems is not as well understood as the
theory of strongly hyperbolic systems [53, 30, 130]. For example the Eulerian systems of com-
pressible gas dynamics is strongly hyperbolic, while the Lagrangian systems of compressible
gas dynamics is only weakly hyperbolic.

• perhaps the main difficulty is that one has to change his mind, because the Lagrangian frame
is not the observer frame. A detailed analysis shows that the shock relations are the same,
but it is not obvious at first examination.

In spite of the huge difficulties attached with Lagrangian numerical methods, their assets are in
practice a good reason to use them. We observe that Lagrangian methods are widespread for the
numerical simulation of Inertial Confinement flows [99, 16]. Lagrangian schemes for compressible
gas dynamics are traditionally staggered methods [13] which have been derived from the seminal
work of Von Neumann [109], see [23, 13, 25, 24, 50, 43, 116, 145] and references therein. More
recently cell-centered Lagrangian schemes, in the spirit of Godunov’s work for which we refer the
reader to [54, 55, 139, 86], were derived with the idea of having a compatible discretization. The
idea of compatible discretization of partial differential operators is developed in the monograph
[131] for example. It can be used in different settings. For example an new approach is the
Finite Element formulation of Lagrangian hydrodynamics [127]: this method is by construction
staggered and conservative for all physical variables. In the same direction we mention stabilized
and variational multiscale formulations for Lagrangian hydrodynamics, see [126, 125, 123, 124],
where a globally conservative formulation is obtained from a nodal-based finite element method.
The class of method that we present in this section are cell-centered Godunov schemes. We refer to
the recent works [38, 39, 97, 99] A summary of recent research on cell-centered Lagrangian methods
is developed in [37].

13
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2.2 The Euler-Lagrange change of variable in conservation

laws

In this section we detail the algebra of the Euler-Lagrange transformation. To begin with let us
consider the two-dimensional Eulerian system of compressible gas dynamics written as a system of
conservation laws [53, 130, 30]















∂tρ + ∂x(ρu) + ∂y(ρv) = 0,
∂t(ρu) + ∂x

(

ρu2 + p
)

+ ∂y (ρuv) = 0,
∂t(ρv) + ∂x (ρuv) + ∂y

(

ρv2 + p
)

= 0,
∂t(ρe) + ∂x(ρue + pu) + ∂y(ρve + pv) = 0.

(2.1)

We recast this system on the form ∂tU + ∂xf(U) + ∂yg(U) = 0 where the unknown is U ∈ R
4.

Defining F (U) = (U, f(U), g(U)) ∈ R
4×3, the eulerian system (2.1) is also

∇x,y,tF (U) = 0. (2.2)

Of course it is possible to rewrite (2.1) using the convective or material derivative Dt = ∂t+u∂x+v∂y















ρDtτ − ∂xu − ∂yv = 0,
ρDtu + ∂xp = 0,
ρDtv + ∂yp = 0,
ρDte + ∂x(pu) + ∂y(pv) = 0.

(2.3)

This system is very convenient for mechanical interpretation and for the derivation of stagggered
schemes [13, 145, 121] with artificial viscosity. It is completely equivalent to (2.1) for smooth solu-
tions without shocks. Unfortunately ICF flows contain shocks. In this context the mathematical
interpretation of shock solutions to (2.3) is problematic because it is not written in conservative
form. This is why it is worthwhile to spend some time to detail other methods available to write
Lagrangian formulations. The advantage of these alternative formulations is that they are all
conservative, and therefore well suited for a mathematical discussion of shock solutions.

To shorten the notations we set x = (x, y) and X = (X,Y ). Let us consider the Euler-to-
Lagrange change of frame defined by

∂tx(X, t) = u(x(X, t), t) with initialization x(X, 0) = X. (2.4)

Rewriting the eulerian system (2.1) in the Lagrangian frame in function of the variable X is
easy using the algebra of the Piola transformations. We briefly detail the algebra for stationnary
equations in conservation form. Notice that (2.2) is a space-time conservation equation.

Rule 1 A smooth change of variable x 7→ X(x) is such that ndσ = cof (∇Xx)nXdσX . where
cof (M) ∈ R

d×d is the comatrix of M .

Rule 2 A system of conservation laws ∇xF (U) = 0 written in the eulerian variable is trans-
formed in a lagrangian system written with the X variable

∇X . [F (U)cof (∇Xx)] = 0. (2.5)

This is a consequence of rule 1.

Rule 3 One must not forget the Piola’s identity

∇X .cof (∇Xx) = 0. (2.6)

A reason is that the system (2.5) contains a new unknown cof (∇Xx). Therefore the (2.5) needs
new equation to be a closed system (that is a system of conservation laws with the same number
of equations and unknowns).
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2.2.1 Dimension one

We start from (2.2) and we consider the change of coordinates (x, t) 7→ X, t) in R2. The gradient

of the space-time transformation is

(

1 0
u J

)

with the Jacobian J = ∂x
∂X . The comatrix is

cof =

(

J −u
0 1

)

. The Lagrangian system (2.5) is

∇x,t ·









ρ ρu
ρu ρu2 + p
ρe ρue + pu





(

J −u
0 1

)



 = ∂t





ρJ
ρJu
ρJe



+ ∂X





0
p
pu



 = 0.

The Piola identity (2.6) writes
∂tJ − ∂Xu = 0.

It is usual to define the mass variable dm = ρ(x, t)dx = ρ(X, 0)dX which is independent of the
time, to eliminate the density ρJ = ρ(X, 0) and to get the system of conservation laws in the mass
variable







∂tτ − ∂mu = 0,
∂tu + ∂mp = 0,
∂te + ∂m(pu) = 0.

(2.7)

Notice that ρ > 0 is necessary for the validity of the transformation [144]. The Rankine Hugoniot
relations for (2.1) and for (2.7) are physically equivalent.

2.2.2 Dimension two

Our task in this section is to write the Lagrangian equations in dimension two. Let us define
for convenience the components of the deformation gradient F = ∇Xx as A = ∂Xx, B = ∂Xy,
L = ∂Y x and M = ∂Y y.

The algebra of the Euler-Lagrange transformation is as follows. The space-time deformation

gradient is





1 0 0
u A L
v B M



. The comatrix is cof =





J −uM + vL uB − vA
0 M −B
0 −L A



 where the

space Jacobian is J = AM − BL. The product of matrices is








ρ ρu ρv
ρu ρu2 + p ρuv
ρv ρuv ρv2 + p
ρe ρue + pu ρve + pv









cof =









ρJ 0 0
ρuJ pM −pB
ρvJ −pL pA
ρeJ puM − pvL −puB + pvA









.

So the Eulerian system (2.1) is transformed into the Lagrangian system














∂t(ρJ) = 0,
∂t(ρJu) + ∂X(pM) + ∂Y (−pB) = 0,
∂t(ρJv) + ∂X(−pL) + ∂Y (pA) = 0,
∂t(ρJe) + ∂X(puM − pvL) + ∂Y (pvA − puB) = 0.

(2.8)

The Piola’s identities write






∂tJ − ∂X(uM − vL) − ∂Y (vA − uB) = 0,
∂XM − ∂Y B = 0,
−∂XL + ∂Y A = 0.

(2.9)

We notice that (2.8-2.9) is not a closed system of conservation laws.
The Hui’s system [70] is closed. It writes























∂t(ρJ) = 0,
∂t(ρJu) + ∂X(pM) + ∂Y (−pB) = 0,
∂t(ρJv) + ∂X(−pL) + ∂Y (pA) = 0,
∂t(ρJe) + ∂X(puM − pvL) + ∂Y (pvA − puB) = 0,
∂tA = ∂Xu, ∂tB = ∂Xv, ∂tL = ∂V u, ∂tM = ∂Y v, J = AM − BL.

(2.10)
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A second system proposed in [39] is more concerned with the formal symmetry of the fluxes















ρ0∂tτ − ∂X(uM − vL) − ∂Y (vA − uB) = 0, ρ0 = ρJ, τ = 1
ρ ,

ρ0∂tu + ∂X(pM) + ∂Y (−pB) = 0,
ρ0∂tv + ∂X(−pL) + ∂Y (pA) = 0,
ρ0∂te + ∂X(puM − pvL) + ∂Y (pvA − puB) = 0.

(2.11)

The third formulation [51] makes use of the Piola-Kirkhoff tensor

σPK = ρ0∇F|Sε =

(

ρ0
∂ε

∂τ |S

)

∇Fτ = −p

(

M −B
−L A

)

.

It writes in a compact form






∂tF = ∇Xu,
ρ0∂tu = ∇X · σPK ,
ρ0∂te = ∇X · (utσPK).

(2.12)

It is essentially impossible to define simple mass variables in dimension two. If it were possible
then they would exist two independent variables (α, β) such that

dα = ρ0dX and dβ = ρ0dY.

The chain rule implies

∂α =
∂X

∂α
∂X +

∂Y

∂α
∂Y =

1

ρ0
∂X =⇒

1

ρ 0

=
∂X

∂α
and 0 =

∂Y

∂α

and

∂β =
∂X

∂β
∂X +

∂Y

∂β
∂Y =

1

ρ0
∂Y =⇒

1

ρ 0

=
∂Y

∂β
and 0 =

∂X

∂β
.

In this case ∂ρ−1

∂β
= ∂2X

∂α∂β = 0 and ∂ρ−1

∂α
= ∂2Y

∂α∂β = 0. So the density ρ is a constant. This is the

trivial case. It is not possible to define simple mass variables as in dimension one.

2.2.3 Entropy

The Eulerian system (2.1) is endowed with an entropy inequality

∂t(ρS) + ∂x(ρuS) + ∂y(ρvS) ≥ 0 in D′
t,x. (2.13)

In Lagrange variable it writes
ρ0∂tS ≥ 0 in D′

t,X. (2.14)

These inequalities are in fact equality for smooth solutions.
The algebra is detailed for smooth solution of the third formulation. One has from the funda-

mental principle of thermodynamics ρ0∂tε = ρ0

(

T∂tS + ∇F|Sε : ∂tF
)

. Therefore

ρ0T∂tS = −σPK : ∂tF + ρ0∂te − u.ρ0∂tu

= −σPK : ∇Xu − u.∇X · σPK + ∇X · (utσPK) = 0.

2.2.4 Hyperbolicity

Hyperbolicity of systems of conservation laws is fundamental property. Assume for simplicity a
perfect gas equation of state

p = (γ − 1)ρε, γ > 1, e = ε +
1

2
|u|2.

Then the eulerian system of conservation laws (2.1) is hyperbolic. It means that the Jacobian of
the flux has a complete set of real eigenvectors and real eigenvalues. It is a consequence of the fact
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that the mathematical entropy −ρS is a strictly convex functional with respect to the unknowns
(ρ, ρu, ρv, ρe) of the eulerian system. The natural definition of the Lagrangian mathematical en-
tropy is of course −S. So if −S is a strictly convex functional with respect to the unknowns of one
of the Lagrangian systems written above, then this particular Lagrangian system is also hyperbolic.
The problem comes from the fact that the size of Lagrangian systems is greater than the size of
Eulerian systems. Therefore the strictly hyperbolicity of −S is not guaranteed. Let us detailed
this.

In dimension one, the size s of the lagrangian system (2.7) is the same than the original Eulerian
system in dimension one, that is s = 3. One checks easily that −S = − log(ετγ−1) is strictly convex
with respect to τ, u, e. Therefore the lagrangian system (2.7) is hyperbolic.

In dimension two, the situation is less evident because the algebra is tricky and the interpretation
of the results may depend on particular version of the lagrangian chosen for the analysis. It has
been studied for example in [70, 144, 39]. In all cases the result is that lagrangian systems in
dimension greater or equal to two are weakly hyperbolic. A rigorous proof for the system (2.12)
is to found in [51]. Perhaps more important is to understand what are the consequences of weak
hyperbolicity on the one hand for the solution of the Cauchy problem in dimension two and more,
and on the other hand for numerical simulations.

The Cauchy problem of a system of conservation which is only weakly hyperbolic suffers of a
loss of derivatives. That is one is able to show stability inequalities in ad-hoc functional spaces like

‖U(t)‖Hm ≤ C(t) ‖U(0)‖Hm+p .

The integer p > 0 measures the number of derivatives which are loosed by the solution of Cauchy
problem. Such a phenomenon is characteristic of a weakly hyperbolic system. Let us study a
particular Cauchy problem for any lagrangian systems in dimension two. The initial data are

p(X,Y, 0) is a constant, and u(X,Y, 0) = w(Y ), v(X,Y, 0) = 0.

The physical solution is of course a pure shear flow

x(X,Y, t) = X + tw(Y ) and y(X,Y, t) = Y.

Therefore

F(t) =

(

1 tw′(Y )
0 1

)

=

(

1 t∂Y u(0)
0 1

)

So the deformation gradient is a function of the Y derivative of the velocity at time t = 0. In
consequence the Cauchy problem suffers for the loss of at least one derivative.

The consequence of this weak hyperbolicity for the stability of numerical discretization of La-
grangian equations is not fully understood.

2.3 Schemes in dimension one

In dimension one, it is sufficient to rely on the theory of the solutions to the Riemann problem in
order to establish a rigorous and efficient basis for the development of numerical schemes.

The basic scheme that one obtains with this method writes














Mj

∆t (τn+1
j − τn

j ) − u∗
j+ 1

2

+ u∗
j− 1

2

= 0,
Mj

∆t (un+1
j − un

j ) + p∗
j+ 1

2

− p∗
j− 1

2

= 0,
Mj

∆t (en+1
j − en

j ) + p∗
j+ 1

2

u∗
j+ 1

2

− p∗
j− 1

2

u∗
j− 1

2

= 0.

(2.15)

where the fluxes are defined by an approximation of the Riemann problem. For example

{

u∗
j+ 1

2

= 1
2 (un

j + un
j+1) + 1

2ρc (pn
j − pn

j+1)

p∗
j+ 1

2

= 1
2 (pn

j + pn
j+1) + ρc

2 (un
j − un

j+1).
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The local acoustic ρc impedance is povided by an approximated formula: for example by (ρc)j+ 1
2

=
1
2

[

(ρc)n
j + (ρc)n

j+1

]

. More robust and accurate formulas for the local impedance are possible. The
mass of cell number j is

Mj = ρ0
j∆x0

j = ρn
j ∆xn

j .

The displacement of the cell is defined by

xn+1
j+ 1

2

= xn
j+ 1

2

+ ∆tu∗
j+ 1

2

.

It is a enlightening classroom exercise to show that all these formulas are compatible.

2.4 Schemes in dimension 2 or 3

In dimension two the situation is much more complicated. Fortunately there is nowadays a revival
of the numerical analysis of multidimensional lagrangian schemes (see references in the introduction
of this chapter). In what follows we use the formalism developed in [35]. We detail an abstract
derivation of cell-centered lagrangian schemes. It can be proved that this method is compatible
with the equations (2.10-2.12). However a fundamental advantage for the practitioner is that it is
based on mesh quantities.

In a Lagrangian computation the mesh moves with the flow. The volume of cell j at time
tk = tk−1 + ∆t is denoted as V k

j . The vertices of the mesh are nodes xk
r ∈ R

d. Let us denote

xk =
(

xk
1 , · · · ,xk

r , · · ·
)

the collection of all vertices. We assume that the volume V k
j is defined as

a function of the vertices xk 7→ Vj(x
k). It means that we have a formula to do so, whatever this

formula is. In the sequel we concentrate on the consequences of this assumption. We also consider
for simplicity the semi-discrete scheme which is continuous in time and fully discrete in space: in
this case the volume is Vj(x(t)).

Let us define the gradient of the volume Vj with respect to the nodal positions xr

Cjr = ∇xr
Vj =

(

∂

∂xr,1
Vj , · · · ,

∂

∂xr,d
Vj

)t

∈ R
d. (2.16)

In dimension one Vj = xj+ 1
2
− xj− 1

2
. So Cj,j+ 1

2
= 1 and Cj,j− 1

2
= −1. Therefore these vectors

Cjr are a multidimensional generalization of the notion of an right and left outgoing normal for
a lagrangian cell. In dimension two Vj =

∑

r
1
2 (xryr+1 − yrxr+1). Therefore the formula (2.16)

implies (after elementary manipulations) the formula used in [39]

Cjr =
1

2
(−yr−1 + yr+1, xr−1 − xr+1)

t
. (2.17)

In any dimension one has by construction

d

dt
Vj = (∇xVj ,x

′) =
∑

r

(Cjr,ur) . (2.18)

The Euler relation for homogeneous functions holds, so

Vj =
1

d
(∇xVj ,x) =

1

d

∑

r

(Cjr,xr) . (2.19)

For all cell j one has
∑

r

Cjr = 0. (2.20)

If the vertex xr is in the interior of the computational domain and the volumes of the cells are
compatible (that is their sum is equal to the total volume) then

∑

j

Cjr = 0. (2.21)
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2.4.1 A nodal solver

The nodal solver is based on two different formulas.

Ingredient 1 We assume a linearized-Riemann-invariant relation in the direction of Cjr

pjr − pj + ρjcj (ur − uj ,njr) = 0. (2.22)

By definition the normal vector njr is such that

njr =
Cjr

|Cjr|
, |njr| =

√

(njr,njr) = 1.

This relation is an approximation of the Rankine Hugoniot relations for shock hydrodynamics in
dimension one, and is commonly used for the design of Godunov solvers.

Ingredient 2 The second formula, needed to construct the nodal solver, expresses that the
sum of all forces around the vertex xr is zero

∑

j

Cjrpjr = 0. (2.23)

This formula is natural in the context of Lagrangian methods because it enforces the conservation
of momentum.

Solution The solution of the set of equations (2.22-2.23) is easy to compute. Using (2.22) one
can eliminate the pressures in (2.23). One gets a linear system

Arur = br. (2.24)

The unknown vector is the node velocity ur ∈ R
d. The matrix is

Ar =
∑

j

ρjcj
Cjr ⊗ Cjr

|Cjr|
∈ R

d×d. (2.25)

By construction Ar = At
r is non negative. If the mesh is non degenerate then Ar > 0. Let us be

more precise. Assume for example that Arur = 0, which implies that

(ur,Arur) =
∑

j

ρjcj
(Cjr,ur)

2

|Cjr|
= 0 =⇒ (Cjr,ur) = 0 ∀j. (2.26)

Due to the equality (2.21) the vectors Cjr are linearly dependent. If the number of these linearly
dependent vectors is greater or equal to d + 1 then it is enough, in the general case, to generate a
basis of R

d, which implies that ur = 0. In summary the general case is that if d + 1 cells connect
to the vertex xr, then the matrix Ar is non-singular. The right hand side is

br =
∑

j

Cjrpj +
∑

j

ρjcj
Cjr ⊗ Cjr

|Cjr|
uj ∈ R

d. (2.27)

The solution of the linear system is
ur = A−1

r br. (2.28)

Once the nodal velocities ur have been calculated, one computes the nodal pressures pjr using (2.22)

pjr = pj + ρjcj (ur − uj ,njr) . (2.29)

2.4.2 A generic Lagrangian scheme in arbitrary dimension

1) At the beginning of the time step one computes the geometrical vectors Ck
jr for all j, r, as a

function of the vertices xk
r .

2) Then one determines the nodal velocities uk
r and the nodal pressures pk

jr using the nodal solver
(2.28-2.29).
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3) It is enough to update the total momentum and the total energy. For the momentum one uses

Mj

uk+1
j − uk

j

∆t
= −

∑

r

Ck
jrp

k
jr. (2.30)

The total energy is updated with

Mj

ek+1
j − ek

j

∆t
= −

∑

r

(

Ck
jr,u

k
r

)

pk
jr. (2.31)

4) Then the vertices are moved
xk+1

r = xk
r + ∆t uk

r (2.32)

and one computes the new volume V k+1
j .

5) Finally the new density in the cell is computed

ρk+1
j =

Mj

V k+1
j

(2.33)

2.5 Some numerical results

A lot of hydrodynamic problem can be studied with numerical methods. We give two simple
examples that were computed with the method presented above. The first one is a isentropic
compression published first by Kidder. The Kidder problem is a strong isentropic compression
with a time τfoc of focalisation. It is representative of the smooth isentropic compression of an ICF
capsule. The second one is an elementary pertubation problem.

2.5.1 The Kidder problem

We give the result of convergence tests for the Kidder problem [77] in 2D and 3D [98, 26, 35].
To run the problem in a reasonnable time in 3D, we use normalized data. A portion of a shell

Figure 2.1: Initial condition and final solution for the Kidder problem. 2D on the left, 3D on the
right. The data are normalized so that the compression factor is exactly 1

2 in both cases.

ri = 0.9 ≤ r ≤ 1 = re is filled with a perfect gas. The adiabatic constant of the gas is γ = 2

in 2D and γ = 5
3 in 3D. At at t = 0, the initial density is ρ0(r) =

(

r2
e−r2

r2
e−r2

i

ργ−1
i +

r2−r2
i

r2
e−r2

i

ργ−1
e

)
1

γ−1

,

with ρi = 1 and ρe = 2. The initial the pressure is p0(r) = ρ0(r)
γ . The initial entropy is uniform

s0 = p0

ργ
0

= 1. The velocity is u0 = 0 at t = 0. The boundary conditions are: sliding walls on

the lateral faces; a given exterior pressure at the internal frontier pi(t) = p0(ri)h(t)−
2γ

γ−1 ; and a

given exterior pressure at the external frontier pe(t) = p0(re)h(t)−
2γ

γ−1 . Let us denote the sound
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speed as c. The solution is known [98] to be an isentropic compression (s = p
ργ = 1) such that the

position at time t > 0 is R(r, t) = h(t)r, where the compression rate is h(t) =
√

1 − t2

τ2
foc

and the

focalisation time is τfoc =
√

(γ−1)(r2
e−r2

i )

2(c2
i−c2

e)
.

In figure 2.1 we display the mesh at t = 0 and at the final time of the simulation tf =
√

3
2 τfoc,

so that the compression rate is h(tf ) = 0.5 in both cases. Therefore the analytical solution at tf
is a shell 0.45 ≤ R ≤ 0.5. In figure 2.2 we compare the analytical position of the external and
internal boundaries with the numerical ones calculated with the low resolution meshes (see below
the definition of M1 and N1) and with the first order scheme.

internal radius

external radiusr

t
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

internal radius

external radiusr

t
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2

2D 3D

Figure 2.2: The analytical solution is the continuous line, the discrete solution is plotted with
symbols. On the left the 2D curves for the mesh M1 and the first order O1 scheme. On the right
the 3D curves for the mesh N1 and the order O1.

Finally we record in table 2.1 the mean value of the external and internal radiuses in function
of the mesh. In 2D we used four meshes: M1 is a 10 × 10 = 100 cells mesh, that is 10 sectors and
and 10 layers; M2 is 20×20 = 400 cells; M3 is 40×40 = 1600 cells; and finally M4 is 80×80 = 6400
cells. In 3D we use three meshes: the first mesh N1 has 10 sectors per facets and 5 layers, since
the exterior and interior boundary are designed with 3 square meshes, then the total number of
cells is 3 × 5 × 10 × 10 = 1500 cells; then we double the number of cells in each direction, that N2

is a 12000 cells mesh; and finally N3 is a 96000 cells mesh. The order is one (O1) or two (O2).

dimension mesh order ri(tf ) re(tf ) order ri(tf ) re(tf )

2 M1 O1 0.4223 0.4820 O2 0.4343 0.4880
2 M2 O1 0.4392 0.4937 O2 0.4458 0.4966
2 M3 O1 0.4453 0.4975 O2 0.4487 0.4991
2 M4 O1 0.4478 0.4989 O2 0.4495 0.4997

convergence order ≈ 1.09 ≈ 1.18 ≈ 1.37 ≈ 1.58

3 N1 O1 0.4133 0.4833 O2 0.4269 0.4885
3 N2 O1 0.4339 0.4929 O2 0.4422 0.4963
3 N3 O1 0.4424 0.4967 O2 0.4472 0.4987

convergence order ≈ 1.08 ≈ 1.10 ≈ 1.47 ≈ 1.50

Table 2.1: Convergence of the numerical solution towards the exact solution, in function of the
order of the scheme (O1 and O2) and of the mesh. The order of convergence is systematically
computed with the two last meshes in the list (that is M3M4 or N2N3).

We observe convergence of the numerical solution to the exact one in 2D and 3D. The accuracy
of the numerical solution computed with the second order scheme O2 is similar or better than the
acurracy of the O1 scheme with the mesh just coarser in the list. The experimental order of the
convergence is ≈ 1 for O1, and is ≈ 1.5 for the second order extension O2.



22 CHAPTER 2. HYDRODYNAMICS

2.5.2 A perturbation problem

ICF flows are very sensitive to hydrodynamic perturbation. That is a even very small initial
pertubation may have a dramatic influence on the solution. The reason is that ICF flows are quite
close to instability, so that the growth rate of the perturbations may be large. Numerical methods
are very useful to quantify the influence these perturbations. Here we illustrate with the result of
a very simple numerical simulation done by E. Franck during his Master 2.

Figure 2.3: The mesh at t = 0 is displayed on the left. The perturbation is a n = 16 mode. On
the right the result at time tf = 10−9s. On this simulation the growth rate of the perturbation is
reasonnable.

2.6 Numerical analysis

The numerical analysis of Lagrangian is difficult, most probably because of the complexity of
such algorithms. One may distinguish between basic conservation formulas, compatibility with the
entropy principle and convergence. Compatibility with the entropy principle may be interpreted
as a stability principle, but it is not completely clear.

Lemma 2.6.1 The scheme is conservative in total mass, total momentum and total energy.

Exercise: Prove this from (2.15) in dimension one, and from (2.23), (2.30) and (2.31) in dimension
two.

Lemma 2.6.2 The semi-discrete scheme is compatible with the entropy principle

S′
j(t) ≥ 0.

Exercise: Prove this in dimension one from the semi-discrete equations derived from (2.15). In
dimension two prove it from (2.18) and the semi-discrete version of (2.30-2.31). A detailed solution
is in [35].

The characteristic length of a mesh is h. For the next result we assume that a sequence
of meshes, indexed by h, is regular and that the numerical solution is bounded in BV∩L∞

[36]independantely of h.

Theorem 2.6.3 [36] Assume standard regularity assumptions à la Lax. Assume the numerical
solution converges in L1 to some limit as h → 0. Then the limit is a weak solution to the Euler
system (2.1).

Another assumption is needed to prove the theorem. It writes
∑

r

Cjr ⊗ xr = VjId.

It is true for almost all meshes used in practical simulations. It is in particular true is the volume
of the cell can be computed in a way which is compatible with the existence of a reference element.

These properties are also satisfied with the cell-centered schemes developed in [97, 99]. These
methods are very close to the one presented above.
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2.7 Multi-temperature models

Multi-temperature models are fundamental for the numerical simulation of ICF flows. In what
follows we detailed one case, which is concerned with the adaptation in dimension one of the
scheme (2.15) to the two temperatures Ti − Te system (1.2).

The system (1.2) was written in a quasi-Lagrange formulation. So one needs to rewrite in
a conservative way. Actually it is possible to do this for the hyperbolic left part of the system.
Convenient manipulations of (1.2) give















∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x

(

ρu2 + p
)

= 0,
∂t(ρSe) + ∂x (ρuSe) = 0,
∂t(ρe) + ∂x(ρue + pu) = 0,

(2.34)

where the total energy is e = εi + εe + 1
2u2, the total pressure p = pi + pe is for simplicity the sum

of the ionic pressure pi = (γi − 1)ρεi and of the electronic pressure pe = (γe − 1)ρεe. It is easy to
show that −ρ(Si + Se) is a strictly convex mathematical entropy (this is also the case for −ρSi).
So smooth solutions satisfy ∂t(ρSi) + ∂x(ρuSi) = 0. Discontinuous solutions with shocks satisfy

∂t(ρSi) + ∂x(ρuSi) ≥ 0. (2.35)

As a consequence the ionic entropy increases at shocks while the electronic entropy is constant as
shocks

S+
i > S−

i , S+
e = S−

e .

Exercise: prove it.
This behavior is absolutely fundamental: it explains that ions and electrons behave differently

at shocks. In summary physical considerations show that (2.34) is the correct eulerian system of
conservation laws to analyze for the two temperature Ti − Te model.

In Lagrange variable in dimension one, one gets














∂tτ − ∂mu = 0,
∂tu + ∂mp = 0, p = pi + pe,
∂tSe = 0,
∂te + ∂m(pu) = 0.

Set

ρ2c2
i = −

∂pi

∂τ |Si
, ρ2c2

e = −
∂pi

∂τ |Se
and ρ2c2 = −

∂pi

τ |Si
−

∂pe

τ |Se

The sound speed of the lagrangian system is ρc where

c2 = c2
i + c2

e. (2.36)

Numerical scheme

The natural Lagrangian scheme is now






















Mj

∆t (τn+1
j − τn

j ) − u∗
j+ 1

2

+ u∗
j− 1

2

= 0,
Mj

∆t (un+1
j − un

j ) + p∗
j+ 1

2

− p∗
j− 1

2

= 0,

(Se)
n+1
j − (Se)

n
j = 0,

Mj

∆t (en+1
j − en

j ) + p∗
j+ 1

2

u∗
j+ 1

2

− p∗
j− 1

2

u∗
j− 1

2

= 0.

(2.37)

The full Ti-Te system with source terms

A simplified eulerian Ti − Te system with source terms writes














∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + pi + pe) = 0
∂tρεi + ∂xρuεi + pi∂xu = 1

τei
(Te − Ti)

∂tρεe + ∂xρuεe + pe∂xu = 1
τei

(Ti − Te) + ∂x(Ke∂xTe).

(2.38)
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The relaxation time is τei. The electronic diffusion coefficient is Ke. We assume that

εi = CviTi et εe = CveTe.

As indicated before, a more rigorous way to write this is















∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + pi + pe) = 0
∂tρSe + ∂xρuSe = 1

τeiTe
(Ti − Te) + 1

Te
∂x(Ke∂xTe)

∂tρe + ∂x(ρue + piu + peu) = ∂x(Ke∂xTe),

. (2.39)

where the unknowns are the density ρ, the momentum ρu , the electronic entropy ρSe and the
total energy ρe.

Numerical solution based on a splitting strategy

It is very convenient to split the numerical solutions in two stages. The first stage is for the
hydrodynamic part, the second stage is for solving the source terms















∂tρ = 0
∂tρu = 0
∂tρεi = 1

τei
(Te − Ti)

∂tρεe = 1
τei

(Ti − Te) + ∂x(Ke∂xTe).

(2.40)

It can be done with an implicit linear solver in case the gas is described by perfect gas equations
of state.

A simple Ti − Te numerical result

The numerical simulation displayed in figure 2.4 has been calculated with tabulated coefficients τei

and Ke. The boundary condition on the right part of the domain is prescribed velocity condition
(piston condition). Such a oundary condition is quite reasonnable in the context of direct drive.
We plot the ionic temperature Ti and the electronic temprerature Te.

We observe that the ionic part of the gas is violently heated because of the shock which prop-
agates from the right to the left. On the other hand the electronic temperature is continuous
everywhere. The temperature relaxation is visible behind the shock. In front of the shock a pre-
hating phenomenon is visible. This calculation shows the great importance of shocks for ICF flows
in the context of direct drive.
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Figure 2.4: The ionic temperature is the discontinuous curve. The electronic temperature is the
continuous curve. The initial temperature is the blue curve (225 000 K).
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Chapter 3

Radiative transfer

This chapter is devoted to numerical simulations of radiative transfer equation (1.7). More specif-
ically, we are going to focuse mainly on the diffusion limit. Then we review theoretical results on
these kind of equations, together with some explicit solutions, which are representative of radia-
tive ablation. Special attention is devoted to the diffusion limit and its discretization on distorted
meshes. Finally, we also review higher order models, together with asymptotic preserving schemes.

3.1 Radiative transfer equation

We go back to the equation of radiative transfer (1.7), and assume for the sake of simplicity that
there is no coupling with hydrodynamics. Using that σa = σe, the equation thus reads

1

c

∂Iν

∂t
+ Ω · ∇Iν + σa(ν) (Iν − Bν(Te))

+ κTh

(

Iν −

∫

S2

3

4

(

1 + (Ω · Ω′)
2
)

Iν(Ω′)
dΩ′

4π

)

= 0, (3.1)

where Iν(x, t,Ω) is the specific radiative intensity, and depends on the space variable x, the time t,
the frequency ν and the direction of propagation Ω ∈ S2. In addition to this equation, we need to
assume conservation of the energy, namely the last two equations of (1.2), which we rewrite here,
assuming that hydrodynamic variables u and ρ are trivial:

∂Ee

∂t
− div (χe∇Te) + γei (Te − Ti) = S +

∫

S2

∫ ∞

0

σa(ν) (Iν(x, t,Ω) − Bν(Te)) dν
dΩ

4π
, (3.2)

∂Ei

∂t
− div (χi∇Ti) − γei (Te − Ti) = 0 (3.3)

In (3.1), (3.2) and (3.3), the coefficients σa, κTh, χe, χi and γei depend on the variables, and in
particular on Te. Therefore, system (3.1)-(3.2)-(3.3) is (highly) nonlinear, even if the equation of
state linking (Ee, Ei) with (Te, Ti) is linear. Let us also recall the value of the Planckian distribution:

Bν(T ) =
2h

c2

ν3

e
hν
kT − 1

, (3.4)

for which we have the equality
∫ ∞

0

Bν(T )dν =
ac

4π
T 4, (3.5)

where a = 8π5k4

15h3c3 is the black-body constant.

Equation (3.1) is completed by an initial condition I0
ν and adapted boundary conditions. These

conditions may be of several type (here, D is the domain of simulation, and for x ∈ ∂D, n(x) is
the outward normal):

27
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1. Incoming flux condition:

∀x ∈ ∂D, ∀Ω / Ω · n(x) ≤ 0, Iν(x, t,Ω) = Iext
ν (x, t,Ω), (3.6)

for some given function Iext
ν .

2. Albedo conditions:

∀x ∈ ∂D, ∀Ω / Ω · n(x) ≤ 0, Iν(x, t,Ω) =
1 − ω

2π

∫

Ω′·n>0

Iν(x, t,Ω′)dΩ′, (3.7)

where ω ∈ [0, 1] is the albedo coefficient.

3. Reflexion conditions:

∀x ∈ ∂D, ∀Ω / Ω · n(x) ≤ 0, Iν(x, t,Ω) = Iν (x, t,Ω − 2(Ω · n)n) . (3.8)

In equation (3.1), the mean free path is equal to

λ =
1

σa + κTh
.

As mentionned in the introduction, treating (3.1) in its full generality is for now not possible,
since it amounts to discretizing the variables (x, t,Ω, ν) ∈ R

3 ×R
+ × S2 ×R

+. However, two limit
cases can be identified in which (3.1) can be replaced by simpler equations. These two regimes
correspond to the free streaming limit in which λ is large, and the diffusion limit in which λ is
small. In the first case, the materials we deal with are transparent, whereas in the second case,
they are opaque.

3.1.1 Free streaming limit

This regime is justified if λ is small compared to the variation of the radiative energy density, that
is,

λ =
1

σa(ν) + κTh
≪

Iν

|∇Iν |
, and τ =

λ

c
≪

Iν
∣

∣

∂Iν

∂t

∣

∣

. (3.9)

In this limit, the equation is close to the free streaming equation, that is,

∂I

∂t
+ cΩ · ∇I = 0.

An efficient method for simulating such an equation is Monte Carlo method. We do not develop
this aspect here, and refer to [34] and [79] for details.

3.1.2 Diffusion limit

This regime corresponds to the hypothesis that

λ =
1

σa(ν) + κTh
≫

Iν

|∇Iν |
, and τ =

λ

c
≫

Iν
∣

∣

∂Iν

∂t

∣

∣

. (3.10)

Note that this may happen either if σa is large, or if κTh is large. We consider in the present
case the second possibility. In such a case, the radiative energy density is almost isotropic, hence
we assume that a good approximation is given by

Iν(Ω) =
1

4π
cEν +

3

4π
Ω · Fν , (3.11)

where Eν and Fν are independent of Ω, and are thus equal to the first and second moment of Iν ,
respectively:

Eν =
1

c

∫

S2

Iν(Ω)dΩ, Fν =

∫

S2

ΩIν(Ω)dΩ. (3.12)
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Hence, taking the first and second moment of equation (3.1), one gets:



















∂Eν

∂t
+ div(Fν) + cσa(ν)

(

Eν −
4π

c
Bν(Te)

)

= 0,

1

c

∂Fν

∂t
+

c

3
∇Eν + (σa(ν) + κTh) Fν = 0.

(3.13)

This system is usually called the ”P1 system”, since we have used a P1 approximation of I as
a function of Ω to obtain it. In order to simplify further (3.13), we also use a non-relativistic
hypothesis: assuming that |∂tIν |/|∇Iν | ≪ c, we infer that |∂tFν | ≪ c2|∇Eν |. This simplifies the
second line of (3.13) into

Fν = −
c

3(σa(ν) + κTh)
∇Eν , (3.14)

so that we finally have

∂Eν

∂t
− div

(

c

3(σa(ν) + κTh)
∇Eν

)

+ cσa(ν)

(

Eν −
4π

c
Bν(Te)

)

= 0. (3.15)

Note that (3.15) is drastically different in nature from (3.13). Indeed, (3.13) is hyperbolic, hence
exhibits finite propagation speed, whereas (3.15) is parabolic, and thus has infinite speed propaga-
tion.

Let us point out that the definition (3.12) implies that

|Fν | ≤ cEν ,

a condition which is clearly not ensured by equality (3.14). Therefore, when such a condition is
violated, one usually uses flux limitors in order to restore it [105, 114, 87, 140, 88, 107]. We will
come back to this issue in Section 3.2 below.

3.1.3 Boundary conditions in the diffusion limit

Equation (3.15) should be complemented by adapted boundary conditions. However, conditions
(3.6), (3.7) and (3.8) are not easily adapted to diffusion boundary conditions. Let us give the
example of incoming flux boundary condition (3.6): we multiply this equation by |Ω · n| and
integrate over the half sphere Ω · n ≤ 0, finding

∫

Ω·n≤0

|Ω · n|Iν(x, t,Ω)dΩ =

∫

Ω·n≤0

|Ω · n|Iext
ν (x, t,Ω)dΩ := F in

ν (x, t),

where F in
ν is the incoming flux, and is a datum. Then, we use (3.11), together with (3.14), finding

c

4π
Eν

∫

Ω·n≤0

|Ω · n|dΩ +
3

4π

(

−
c∇Eν

3 (σa(ν) + κTh)

)

·

∫

Ω·n≤0

|Ω · n|ΩdΩ = F in
ν .

Hence,

Eν +
2

3 (σa(ν) + κTh)

∂Eν

∂n
=

4

c
F in

ν . (3.16)

This boundary condition is usually referred to as ”Marshak boundary condition”. The quantity
ℓ = 2

3(σa(ν)+κTh) is called the extrapolation length.

It is of course important to know the validity of this approximation. We have seen that a good
criterion is (3.10) for (3.15) to hold. As far as (3.16) is concerned, one may argue that the following
inequality should hold:

F out
ν (x, t) :=

∫

Ω·n≥0

|Ω · n|Iν(x, t,Ω)dΩ ≥ 0.
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Hence, using (3.11) and (3.14) again in this inequality, we find

Eν −
2

3(σa + κTh)

∂Eν

∂n
≥ 0. (3.17)

This condition gives an indication about the validity of boundary condition (3.16).

Condition (3.16) may be a poor approximation in some situations. Indeed, if the incoming flux
is not isotropic, since by nature the radiative intensity Iν is isotropic, the solution of (3.1) will
develop a boundary layer. This boundary layer is not taken into account here. A possibility is
to carry out an asymptotic analysis in order to compute it properly, and then use it to derive an
adapted boundary condition. We refer to [29, 128, 57] for more details on this subject.

3.2 Mathematical analysis

3.2.1 Existence results for the radiative transfer equation

The original system of radiative transfer (3.1) coupled with an energy equation similar to (3.2)-
(3.3) (that is, (3.2)-(3.3) with Te = Ti), was proved to be well posed in [103] and [56]. These results
have been improved by [94], and more recently by [115]. Let us cite here main result of [56]:

Theorem 3.2.1 (F. Golse, B. Perthame, [56]) Assume that D is a smooth convex domain of
R

3, that Te = Ti = T and χe = χi = 0 and S = 0 in (3.2)-(3.3), which are therefore replaced by

Cv
∂T

∂t
=

∫

S2

∫ ∞

0

σa(ν) (Iν(x, t,Ω) − Bν(T )) dν
dΩ

4π
, (3.18)

where we have assumed perfect gas equation of state. Assume in addition that the following as-
sumptions hold:

(i) σa(ν, T ) > 0 for all ν > 0 and T > 0;

(ii) ∀ν > 0, T 7→ σa(ν, T ) is of class C1 in (0,∞);

(iii) ∀ν > 0, T 7→ σa(ν, T ) is nonincreasing, and T 7→ σa(ν, T )Bν(T ) is nondecreasing;

(iv) ∀ν > 0, σa(ν, T )Bν(T ) −→ 0 as T → 0;

(v) the application T 7→ σa(ν, T )Bν(T ) is continuous from L1(D) to L1(D × (0,∞));

(vi) the boundary condition Iext in (3.6) satisfies 0 ≤ Iext
ν (x, t,Ω) ≤ Bν(T ext), for some fixed

T ext > 0, and

(vii) the initial conditions (I0, T 0) are in L1(D) × L1(D × S2 × (0,∞)).

Then, problem (3.1)-(3.18) with boundary condition (3.6) and initial condition (I0, T 0) has a global
mild solution.

In addition, if there exists Tmax > 0 (respectively Tmin > 0) such that







T 0 ≤ Tmax,
I0 ≤ Bν(Tmax),
Iext ≤ Bν(Tmax),



respectively







T 0 ≥ Tmin,
I0 ≥ Bν(Tmin),
Iext ≥ Bν(Tmin),





then we have

∀x ∈ D, ∀t > 0,

{

T ≤ Tmax,
I ≤ Bν(Tmax),

(

respectively

{

T ≥ Tmin,
I ≥ Bν(Tmin)).

)
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We refer to [56] for the details, and in particular for the notion of mild solutions.

Some comments are in order about this result.

First, it is pointed out in [56] that assumption (vi) on the boundary condition is not necessary
for the above result to hold, and that a sufficient condition is

∫

∂D

∫

Ω·n<0

∫ ∞

0

∣

∣Iext
ν

∣

∣ |Ω · n|dνdΩdx < ∞.

However, (vi) is physically relevent and allows for finer regularity results.

Second, some regularity results are also given in [56] under additional assumptions. In partic-
ular, BV bounds are proved.

Third, the same kind of result is proved in [115], still with Te = Ti and a perfect gas equation
of state, but with a diffusion coefficient χ = χe + χi 6= 0.

Finally, we point out that hypothesis (iii) is not physically relevent [28, 104, 112, 11], but allows
to prove accretiveness of the semi-group associated to (3.1). When dropping such an assumption,
the same result is only proved for a simpler system [11].

3.2.2 Rigorous justification of the diffusion limit

In Subsection 3.1.2, we have given a formal justification for the diffusion limit of (3.1). We are now
going to give a more explicit derivation based on Hilbert expansion. We are thus lead to finding
a limit in which (3.1) does converge in a certain mathematical sense to (3.15). For this purpose,
a common assumption is that the unknowns (energy and temperature) vary slowly in time and
space. This is equivalent to using a rescaling [80, 128, 11] of the form

t 7→ ε2t, x 7→ εx, (3.19)

where ε is a small parameter. This kind of assumption was also present in a different form in
[112, 44, 100, 117]. Therefore, we are lead to study the following equation:

ε

c

∂Iν

∂t
+ Ω · ∇Iν +

σa(ν)

ε
(Iν − Bν(T ))

+
κTh

ε

(

Iν −

∫

S2

3

4

(

1 + (Ω · Ω′)
2
)

Iν(Ω′)
dΩ′

4π

)

= 0, (3.20)

in the limit ε → 0. Here, we have set T = Te = Ti in order to simplify the problem. Assuming in
addition a perfect gas equation of state, the energy conservation for matter is thus (3.18), which
we recall here:

εCv
∂T

∂t
=

∫

S2

∫ ∞

0

σa(ν)

ε
(Iν(x, t,Ω) − Bν(T )) dν

dΩ

4π
(3.21)

The following theorem was proved in [80] and [10] (see also [11, 12]):

Theorem 3.2.2 (Diffusion approximation, [80, 10]) Assume the hypotheses of Theorem 3.2.1
are satisfied, and that

∃p > 1, ∃C > 0, ∃σm > 0, ∃θ > 0, ∀T ∈ (0, θ), ∀ν > 0, σm ≤ σa(ν, T ) ≤ CT−1/p.
(3.22)

Let (Iε
ν , T ε) ∈ C0

(

R
+, L1(D × R

+ × S2)
)

×C0
(

R
+, L2(D)

)

be the unique solution of (3.20)-(3.21),
with boundary conditions (3.6), with

Iext
ν (x, t,Ω) = Bν

(

T ext(x, t)
)

,

where T ext is the boundary condition for (3.21), and with initial conditions

I0
ν (x,Ω) = Bν

(

T 0(x)
)

,
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where T 0 is the initial condition for (3.21). Assume in addition that the compatibility condition
T ext(x, 0) = T 0(x) is satisfied on ∂D. Then up to extracting a subsequence, we have the conver-
gences, for any t∗ > 0:







T ε −→
ε→0

T in L2 ((0, t∗) ×D) ,

Iε
ν −→

ε→0
Bν(T ) in L2

(

(0, t∗) ×D × S2 × R
+
)

,

where T is the unique solution of the Rosseland equation:

1

c

∂

∂t

(

CvT + acT 4
)

− div

(

1

3σR(T )
∇
(

acT 4
)

)

= 0, (3.23)

where
1

σR(T )
=

(∫ ∞

0

B′
ν(T )dν

)−1 ∫ ∞

0

B′
ν(T )

σa(ν, T ) + κTh
dν, (3.24)

and T satisfies the same boundary and initial conditions as T ε.

We do not give the complete proof of this result here, but the Hilbert expansion argument: we
assume that

Iν = I0 + εI1 + ε2I2 + . . . ,

T = T 0 + εT 1 + ε2T 2 + . . . .

Inserting these expansions into (3.20) - (3.21), and identifying the corresponding powers of ε, we
find:
order ε−1 :

σa(ν)
(

I0
ν − Bν(T 0)

)

+ κTh

(

I0
ν −K(I0

ν )
)

= 0, (3.25)

where we have denoted by K the Thomson scattering operator, namely

K(I)(Ω) =

∫

S2

3

4

(

1 + (Ω · Ω′)
2
)

I(Ω′)
dΩ′

4π
.

Here we point out that the spectrum of the operator K is included in [0, 1] (see Lemma 3.2.4 below).
Hence, rewriting (3.25) as

σa(ν) + κTh

κTh
I0
ν −K(I0

ν ) = σa(ν)Bν(T 0),

it is clear that it has at most one solution. Since Bν(T 0) is a solution, we infer

I0
ν = Bν(T 0). (3.26)

order ε0:
Ω · ∇I0

ν + σa(ν)
(

I1
ν − B′

ν(T 0)T 1
)

+ κTh

(

I1
ν −K(I1

ν )
)

= 0. (3.27)

We divide this equation by σa + κTh, take its gradient and multiply by Ω. Integrating the result
with respect to Ω, we have

∫

S2

Ω · ∇I1
ν (x, t,Ω)dΩ = −4π div

(

1

3(σa(ν) + κTh)
∇I0

ν

)

. (3.28)

order ε1:

1

c

∂I0
ν

∂t
+ Ω · ∇I1

ν + σa(ν)

(

I2
ν − B′

ν(T 0)T 2 − B′′
ν (T 0)

(

T 1
)2

2

)

+ κTh

[

I2
ν −K(I2

ν )
]

= 0, (3.29)

and

Cv
∂T 0

∂t
=

∫

S2

∫ ∞

0

σa(ν)

(

I2
ν (x, t,Ω) − B′

ν(T 0)T 2 − B′′
ν (T 0)

(T 1)2

2

)

dΩdν = 0. (3.30)
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Integrating (3.29) with respect to Ω and ν, and summing the result with (3.30), we find

1

c

∂

∂t

(

CvT 0 + ac(T 0)4
)

+

∫

S2

∫ ∞

0

Ω · ∇I1(x, t,Ω)dν
dΩ

4π
,

which, with the help of (3.28), gives (3.23).

The above computations, although formal, give the main lines of the proof of Theorem 3.2.2.
We refer to [10] for the details.

We then point out that the above argument is clearly also valid if one starts from the diffusion
approximation (3.15) instead of (3.20). Actually, the technical details of the proof are even simpler.
We therefore may state the following result:

Theorem 3.2.3 Under the hypotheses of Theorem 3.2.2, if (Eε
ν , T ε) is a solution to the system

(3.15)-(3.21), that is,



















ε

c

∂Eν

∂t
− div

(

1

3(σa(ν) + κTh)
∇Eν

)

+
σa(ν)

ε

(

Eν −
4π

c
Bν(Te)

)

= 0,

εCv
∂T

∂t
=

c

4π

∫ ∞

0

σa(ν)

ε

(

Eν(x, t) −
4π

c
Bν(T )

)

dν,

(3.31)

with the same form of boundary and initial conditions as in Theorem 3.2.2. Then, up to extracting
a subsequence, we have the convergences, for any t∗ > 0,







T ε −→
ε→0

T in L2 ((0, t∗) ×D) ,

Eε
ν −→

ε→0
Bν(T ) in L2 ((0, t∗) ×D × R

+) ,

where T is the unique solution of the Rosseland equation (3.23).

Hence, gathering the results of Theorem 3.2.2 and Theorem 3.2.3, we see that the model (3.31)
is a good approximation of the radiative transfer model. This gives a rigourous justification for the
use of (3.31). This model takes into account the fact that in ICF experiments, radiation is almost
isotropic, whereas its spectrum may be different from a Planckian distribution.

Another way to justify rigourously the model (3.31) is to use a different scaling of the coefficients
in (3.20), namely

ε

c

∂Iν

∂t
+ Ω · ∇Iν + εσa(ν) (Iν − Bν(T )) +

κTh

ε

(

Iν −

∫

S2

3

4

(

1 + (Ω · Ω′)
2
)

Iν(Ω′)
dΩ′

4π

)

= 0.

This correspond to assuming, in addition to the scaling (3.19), that σa ∝ ε2κTh. Then, an asymp-
totic analysis gives, as a limit model, (3.31), but with a different diffusion coefficient, namely

χr =
1

3κTh
.

Such an analysis is presented in [21]. Finally, in order to justify the actual value of the diffusion
coefficient in (3.31), one argues that the hypothesis on σa and κTh imply κTh ≈ κTh + σa.

Note that in the above derivation, we have deliberately left aside the question of boundary layer
in the diffusion approximation. For this, we refer to [128] and [57], simply pointing out that if the
boundary condition is not Planckian, then one needs to compute a boundary layer, that is, assume
a solution of the form

Iε
ν(x, t,Ω) = I0

ν

(x · n

ε
,x, t,Ω

)

+ εI1
ν

(x · n

ε
,x, t,Ω

)

+ . . . ,

near the boundary, where n is the outward normal to the boundary. Inserting this kind of expansion
into the radiative transfer equation, and using the same kind of computation as above, one is lead
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to study Milne’s problem in order to derive a boundary condition for Rosseland equation (3.23).
Details for this may be found in [128, 57, 29].

We give now the proof of the following, which was used in the sketch of the proof of Theo-
rem 3.2.2:

Lemma 3.2.4 Consider the Thomson operator K, defined by

K(I) =
3

4

∫

S2

(

1 + (Ω · Ω′)2
)

I(Ω′)
dΩ′

4π
.

This operator is a bounded operator self-adjoint operator on L2(S2), its spectrum consists of a finite
set of eigenvalues, is included in [0, 1], and 1 is a simple eigenvalue of K, with eigenvector I = 1.

Proof: it is clear that K is bounded. In addition, applying Fubini’s Theorem, one easily proves
that it is self-adjoint. Moreover, it is clear that Ran(K) is included into the space of polynomial of
degree lower than 2 in Ω, which is of finite dimension. Hence, its spectrum consists of a finite set
of eigenvalues. Further, K(1) = 1, and, if (λ, I) is an eigenpair of K, with

∫

I = 0, we have

λI = K(I) =
3

4

∫

S2

(Ω · Ω′)2I(Ω′)
dΩ′

4π
.

We then compute, denoting by 〈·, ·〉 the scalar product of L2(S2), and ‖·‖ the corresponding norm,

λ‖I‖2 = 〈K(I), I〉 =
3

16π

∫

S2

∫

S2

(Ω · Ω′)2I(Ω′)I(Ω)dΩ′dΩ

=
3

16π

3
∑

i=1

3
∑

j=1

∫

S2

ΩiΩjI(Ω)dΩ

∫

S2

Ω′
iΩ

′
jI(Ω′)dΩ′ =

3

16π

3
∑

i=1

3
∑

j=1

(∫

S2

ΩiΩjI(Ω)dΩ

)2

≥ 0,

and

〈K(I), I〉 =
3

16π

∫

S2

∫

S2

(Ω · Ω′)2I(Ω′)I(Ω)dΩ′dΩ ≤
3

16π

(∫

S2

I

)2

≤
3

4
‖I‖2,

where we have used Cauchy-Schwarz inequality. This proves that λ ∈ [0, 3/4], which implies that
λ = 1 is a simple eigenvalue. �

3.2.3 Marshak waves

Now that we have asserted the the validity of the model (3.31), or its equivalent three-temperature
model, that is, (3.15) coupled with (3.2)-(3.3), let us give a few words about qualitative behaviour
of solutions to such a system.

In order to do so, and since we are only interested here in qualitative behaviour, we are going to
simplify the system. Indeed, the main feature of (3.31) is that it is a nonlinear diffusion equation,
which is already the case of (3.23). One may thus expect that it is sufficient to study (3.23). Still,
let us simplify further this model in order to be able to carry out explicit computations: we study
the equation

∂u

∂t
− div (um∇u) = 0, (3.32)

for some constant m > 0. This crude approximation is justified by the fact that σR(T ), for T
large, behaves like a power of T [104]. We look for non-negative solutions u of (3.32) on the whole
space. Such an equation has been extensively studied, especially in link with flow in porous media
[83, 6, 7, 110, 78, 76, 18, 8, 142]. It is well known that one can compute explicit solutions which
are travelling wave. Indeed, looking for solutions of the form

u(x, t) = (ct − xi)
α
+, (3.33)

where c ∈ R, α > 0 i ∈ {1, 2, 3} and xi is the ith coordinate of the vector x, one finds that u is a
solution to (3.32) if

c = α =
1

m
. (3.34)
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Figure 3.1: Front propagation (3.33) with m = 1
α = 3

In (3.33), we use the notation a+ for the positive part of a, that is, a+ = 1
2 (|a| + a). Let us check

that (3.33) is solution under the condition (3.34). Indeed, in such a case, we have

u(x, t) =

(

t

m
− xi

)
1
m

+

,
∂u

∂t
=

1

m2

(

t

m
− xi

)
1
m

−1

+

, ∇u = −
1

m

(

t

m
− xi

)
1
m

−1

+

ei,

where ei is the ith vector of the canonical basis. Hence,

div (um∇u) =
1

m
div

[

(

t

m
− xi

)
1
m

+

ei

]

=
1

m2

(

t

m
− xi

)
1
m

−1

+

,

hence u is a solution to (3.32).

The solution (3.33) is referred to as ”Marshak wave” in the literature [27, 112, 104]. It is more
involved in general for an equation similar to (3.23) [27, 136, 113], but the same kind of behavior
(that is, propagation of the front at finite velocity) is still present. Further, it gives an analytical
solution in a very particular situation, which is a good test for numerical methods. Note finally
that it may be generalized to more complicated situations [83].

3.2.4 Flux limitation

When using the diffusion approximation (3.15), we assume implicitly that the flux Fν is given by
(3.14). However, as pointed out in Subsection 3.1.2, it is clear from the definition (3.12) that the
inequality

|Fν | ≤ cEν

must be satisfied. This is not ensured by (3.15). Hence, the notion of flux limitation has been
introduced to circumvent this difficulty [105, 114, 87, 140, 88, 107, 74]. The idea is the following:
instead of using formula (3.14) to define the flux, one uses a non linear function of ∇Eν which
satisfies the following:

Fν

cEν
= X(|Rν |)Rν , Rν =

1

σa(ν) + κTh

∇Eν

Eν
, (3.35)

where X : R
+ −→ R

+ is a function satisfying |X(r)| ≤ 1/r. Moreover, we want to recover the
diffusion limit, which corresponds to |Rν | → 0 (see (3.10)), and in which case we should have
X = X(0) = 1/3, according to (3.14). Another nice property is to recover the free streaming limit.
In such a case, we have |R| → ∞, according to (3.9). Moreover, solving explicitly the free streaming
equation (forgetting about boundary condition for a while) gives Iν(x, t,Ω) = I0

ν (x − cΩt), hence,
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according to (3.12), Fν = Rν/|Rν |. Hence, in order to recover both asymptotic regimes, we are
lead to impose















X(r) ∼
1

r
as r → ∞,

X(r) →
1

3
as r → 0.

(3.36)

The first line of (3.36) correspond to the free streaming limit (3.9), and the second one to the
diffusion limit. In addition, the corresponding diffusion equation now reads

∂Eν

∂t
− div (cEνX(|Rν |)Rν) + cσa(ν) (Eν − Bν(Te)) = 0, (3.37)

where Rν is defined by (3.35). Two commonly used limitors X are given by

X(r) =
1

3 + r
, and X(r) = min

(

1

r
,
1

3

)

.

The first one is called harmonic limitor, while the second one is refered to as ”sharp cut-off”. Many
other possibilities have been proposed in the literature. We refer to [105, 114, 87, 88] among others
for details.

Let us finally point out that, under physical considerations, a similar limitation of the flux may
be applied to electronic and ionic conduction terms, through the definition of χe and χi in (3.2)
and (3.3), respectively. It is commonly admitted that one needs a nonlocal limitation in order
to get physically relevent fluxes. The study of these limiters is beyond the scope of the present
document, and we refer to [122, 95, 96] for corresponding details.

3.3 Numerical schemes

We now turn to numerical methods used to simulate the radiative transfer equation in the diffusion
limit. In principle, one should study (3.15) coupled with (3.2) and (3.3). A natural choice is to
split the resolution into first solving (at each time step) (3.15), and then use its result to solve
(3.2)-(3.3). Therefore, in order to simplify the presentation, we are going to study the discretization
of (3.15), in which we consider Te as fixed. We thus recall it for the sake of completeness:

∂Eν

∂t
− div

(

c

3(σa(ν) + κTh)
∇Eν

)

+ cσa(ν)

(

Eν −
4π

c
Bν(Te)

)

= 0. (3.38)

3.3.1 Multigroup approximation

The first variable in which we are going to discretize (3.38) is the frequency ν. For this purpose,
we define a set ν1 < ν2 < · · · < νNg−1 of Ng − 1 frequencies, and consider the Ng corresponding
groups defined by

Gk = [νk−1, νk], 1 ≤ k ≤ Ng, (3.39)

with the convention that ν0 = 0 and νNg
= ∞. Defining Ek as the radiative energy in each group

(i.e the integral of Eν over Gk), and integrating (3.38) over the group k, we find

∂Ek

∂t
− div

(

∫ νk

νk−1

c

3 (σa(ν) + κTh)
∇Eνdν

)

+ c

∫ νk

νk−1

σa(ν)Eνdν − 4π

∫ νk

νk−1

σa(ν)Bν(Te)dν = 0.

In order to simplify this equation, we are going to make the assumption that Eν is not far from
being equal to Bν(Te). Therefore, the equation becomes

∂Ek

∂t
− div

(

c

3σR
k

∇Ek

)

+ cσP
k

(

Ek − bkaT 4
e

)

= 0, (3.40)
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where we have set

1

σR
k

=

(

∫ νk

νk−1

B′
ν(Te)dν

)−1
∫ νk

νk−1

B′
ν(Te)

σa(ν, Te) + κTh
dν, (3.41)

σP
k =

(

∫ νk

νk−1

Bν(Te)dν

)−1
∫ νk

νk−1

σa(ν, Te)Bν(Te)dν, (3.42)

and

bk =

∫ νk

νk−1

Bν(Te)dν

acT 4
e

4π

=

∫ νk

νk−1

Bν(Te)dν

∫ ∞

0

Bν(Te)dν

. (3.43)

Of course, the choice of the coefficients in (3.40) is not obvious. Actually, it relies on the strong
hypothesis that (as far as these coefficients are concerned) Eν ≈ Bν(Te). However, if the sizes
of the groups are sufficiently small, then such an assumption almost does not change the values
of the coefficients. Further, these values ensure that the equilibrium is respected, namely that if

Ek =
acT 4

e

4π bk, then ∂tEk = 0.

3.3.2 Time and space discretization

Time discretization

For the time discretization, since all equations we have to solve contain diffusion terms, a natural
choice is to use an implicit or semi-implicit discretization. Then the resolution of the coupled
system is splitted into first solving (3.40) implicitly, that is

En+1
k − En

k

∆t
− div

(

c

3σR
k

∇En+1
k

)

+ cσP
k

(

En+1
k − bka(Tn

e )4
)

= 0, (3.44)

where all the coefficients are computed in an explicit way, that is, using the variables at time step
n. Here, ∆t is the time step. Then, one solves the ionic and electronic equations, for which an
implicit scheme is used.

Space discretization

Considering (3.44), we are thus lead to discretize it in the space variable. Here, it is important
to recall that the system is coupled to hydrodynamics. The corresponding scheme uses piecewise
constant thermodynamic variables. Hence, finite volume methods are a natural choice for this.

Let us also recall that the prefered choice for the hydrodynamics is a lagrangian scheme. Hence,
the mesh may be highly deformed by the flow, especially if hydrodynamics instabilities are present.
An example of such a mesh is given in Figure 3.2. Starting from a regular mesh, we end with a
highly deformed one, some of the cells having very poor aspect ratio. Thus, the question is:

Define a finite volume scheme for piecewise constant unknown of an elliptic equation on deformed
meshes.

In order to make precise this question, let us define a model problem: we want to solve the
equation

− div(D∇u) = f in D, (3.45)

with adapted boundary conditions (say, Dirichlet boundary conditions u|∂D = uext.) We thus want
to solve this problem with a piecewise constant unkwnon u and data f and D on a deformed,
possibly unstructured, mesh. The properties we want the scheme to satisfy are the following:

1. the scheme should be convergent, hopefully of order 2;

2. the scheme should be stable;
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Figure 3.2: An exemple of mesh produced by a lagrangian simulation in the case of develpment of
instability: beginning of simulation (left) and end of simulation (right)
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3. the scheme should satisfy the (discrete) maximum principle;

4. the scheme should be linear;

5. the matrix produced by the scheme should be symmetric;

6. one should recover the five point scheme (see below) on an orthogonal mesh.

These properties are more or less given from the most important to the less important. However,
this order is highly subjective and may be thought of differently. For instance, one may think
that convergence at order two may (or may not) be dropped in favor of satisfying the maximum
principle.

We are first going to study the most simple scheme, that is, the five-point scheme, and show
why it fail to satisfy item 1 (although it does satisfy items 2 to 5). Then we will very briefly review
some scheme proposed in the literature, and focuse in particular on a very natural and simple one
which satisfies all the above properties except that it is convergent only at order one.

Before going on with the presentation of these schemes, we give some notation. We stick to the
two-dimensional case, for the sake of simplicity, and assume quadrangular meshes. However, all
the following is also valid for general polyhedron meshes. The mesh will be denoted by T , and is
a set of cells, generically denoted by K. This mesh covers the simulation domain D:

D =
⋃

K∈T
K.

The boundary between a cell K and one of its neighbouring cells L will be denoted by K|L:

K|L = K ∩ L.

We define nK|L as the unit vector which is orthogonal to K|L towards L. Hence, nK|L = −nL|K .
For each K ∈ T , we denote by xK ∈ K the ”center” of K. This can be the center of mass of the
cell K, or some different point, depending on the scheme we define. In the following, we always
assume that xK is the center of mass of K. Of course, we do not assume that for two neighbouring
cells K and L, the segment [xK ,xL] is orthogonal to K|L. This property ensures the diffusion
finite volume scheme to have good properties (see [49] and the references therein), but the meshes
we consider here are not sufficiently regular for this property to hold.

Five-point scheme The starting point of all finite volume schemes is to integrate (3.45) over a
cell K and use Green’s formula:

∫

∂K

D∇u · n = −

∫

K

f. (3.46)

Hence, the main question is, using an approximation of u which is constant on each cell, how can
we compute an approximation of its gradient, or more precisely an approximation of its flux accross
the boundary of a cell K (left-hand side of (3.46)). Let us assume for a while that D = 1, which
allows to write

∫

∂K

∂u

∂n
= −

∫

K

f. (3.47)

A natural choice to approximate the flux is to use a Taylor approximation of the gradient on
the boundary between two cells. Hence, considering two cells K and L, we write

∀x ∈ K|L, ∇u(x) ≈
u(xL) − u(xK)

|xL − xK |

xL − xK

|xL − xK |
,

hence
∂u

∂nK|L
≈

u(xL) − u(xK)

|xL − xK |

xL − xK

|xL − xK |
· nK|L =

u(xL) − u(xK)

|xL − xK |
cos(θK|L), (3.48)

where θK|L is the angle between nK|L and the segment [xK ,xL] (see figure 3.3). Hence, setting
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Figure 3.3: Taylor approximation of the flux accros K|L.
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Figure 3.4: Cells K and L with the corresponding vector nK|L

uK = u(xK) and fK = f(xK), one ends up with the formula, valid for any K ∈ T :

|K|fK =
∑

L∈N (K)

ℓ(K|L)
uK − uL

|xK − xL|
cos(θK|L), (3.49)

where N (K) denotes the set of neighouring cells of K, θK|L is the angle between the [xK ,xL] and
nK|L, and ℓ(K|L) is the length of the edge which is shared by K and L. Note that the matrix
corresponding to the system (3.49) is an M-matrix. Hence, this scheme satisfies a discrete version
of the maximum principle. However, we will show that it is not consistent. Indeed, consider two
neighbouring cells K, L as in figure 3.4: y is the middle point of K|L, and θ = θK|L = π

2 − ϕ.
Hence, computing the approximation of the flux (3.48), we have, using a Taylor expansion around
y,

u(xL) − u(xK)

|xL − xK |
cos(θK|L) =

∂u

∂x1
(y) sin(ϕ) + O(h).

We can also compute explicitly:

∇u(y) · n =
∂u

∂x1
(y) sin(ϕ) −

∂u

∂x2
(y) cos(ϕ).

Hence, we see that, as far as ϕ 6= π
2 , the approximation (3.48) cannot be consistent. This is

corroborated by simple numerical experiments.

Some other schemes The fact that the five-point scheme is not convergent on deformed meshes
has been known for a long time. Therefore, the definition of a scheme adapted to such a situation
has been a very active field of research for some thirty years. Let us give now a (very brief) overview
of the methods which have been proposed to date.

• One of the first finite volume scheme in the framework of arbitrary mesh is the Kershaw
scheme, presented in [75]. Roughly speaking, it consists in using additional neighbouring
cells to compute the approximate flux. This scheme is of order 2, produces a symmetric
matrix,1 but does not satisfy the maximum principle.

1if D is symmetric
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• In the same vein, the diamond scheme was proposed in [32]: the gradient in the tangential
direction is approximated using the values of the unknown at the nodes. For each node, the
value of the unknown is computed using an interpolation on the cells containing this node.
This scheme is not widely used since it produces a non-symmetric matrix, which in some
situations is badly conditioned.

• Another approach is to use a mixed finite element method to solve the diffusion equation.
By doing so, one introduces additional degrees of freedom, namely the value of the unknown
on the faces of the cells. Then, using a hybrid formulation, one eliminates the cell-centered
values and solves the system giving these new degrees of freedom. An example of such a
scheme is described in [5]. This scheme is of order 2, produces a symmetric matrix,2 but does
not satisfy the maximum principle.

• More recently, the discrete duality finite volume method (DDFV) was proposed in [67, 63,
64, 65, 66]. Here again, one introduces additional degrees of freedom to improve the approxi-
mation of the gradient. These additional degrees of freedom are defined on a dual mesh. The
global system (originial and additional unknowns) is then solved as whole. This scheme is of
order 2, produces a non-symmetric matrix, and does not satisfy the maximum principle.

• Another method is called the Mimetic Finite Difference [20, 19, 93], and is based on imitating
the properties of the original continuum differential operators such as, for instance, Green
formula. Here, the flux of each face is introduced as an unknown, and the global system
(centered values and fluxes) is solved. Such a scheme is convergent of order 2, produces a
symmetric matrix,2 but does not satisfy the maximum principle.

• The scheme using stabilization and harmonic interfaces (SUSHI) method [48] is based on an
idea similar to the diamond scheme. However, a ”stabilization” term is added to the discrete
gradient, which improves the consistency. It is convergent of order 2, produces a symmetric
matrix,2 and does not satisfy the maximum principle.

• The multipoint flux approximation (MPFA), proposed by [15, 1], also introduces additional
degrees of freedom on the boundary of the cells, but possibly at several points at each face.
These additional degrees of freedom are used to compute more precisely the numerical flux,
and then are eliminated by imposing the continuity of the flux on each face. These schemes
are convergent of order 2 (except on random meshes), produce non-symmetric matrices, and
do not satisfy the maximum principle.

• In [40], a similar strategy was used to derive a nonlinear scheme, which is convergent at order
2 and satisfies the maximum principle.

• The finite difference scheme of [85] aims at using consistent (for the second derivative) for-
mulas, by allowing a larger stencil. This scheme produces a symmetric matrix,2 is convergent
of order 1, and satisfies the maximum principle.

• The ”Laplacian Integration” (LapIn) scheme, proposed in [134], uses the Voronöı mesh in
order to recover orthogonal properties. A kind of five-point finite volume scheme is then used
on this secondary mesh. The scheme is convergent at order 1, produces a symmetric matrix,2

and satisfies the maximum principle.

Let us conclude by indicating that the above list is by no means exhaustive. Moreover, some
of these methods show very similar behaviour, and may become equivalent in some situations. See
[143] for details. Finally, we point out that a similar review was given in [14].

LapIn scheme We are now going to explain in details the method LapIn (Laplacian Integration),
proposed in [134, 133]. The idea is to use a secondary mesh instead of the one imposed by the
hydrodyanmics scheme. The main advantage of this scheme is that it satisfies the maximum
principle, while being linear. However, this comes at the price of letting down convergence at order

2if D is symmetric
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Figure 3.5: Construction of the Voronöı cell around a point xK
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Figure 3.6: Example of a distorted mesh (left) and the corresponding Voronöı mesh (right)

2. Here again, we use the above notation, namely T is the mesh (the set of cells), K|L = K ∩ L
is the common boundary of cells K and L, and xK is the center of mass of K. We will detail the
scheme only with homogeneous Neumann boundary conditions, in order to avoid technicalities. It
is however possible to include different boundary conditions.

To the set of points {xK , K ∈ T }, we associate its Voronöı mesh. This mesh is defined as
follows:

∀K ∈ T , K̃ = {x ∈ D,∀L 6= K, |x − xK | ≤ |x − xL|} . (3.50)

This is explained in figure 3.5 In other words, the new cell K̃ is the set of points which closer to
xK than to any other center of mass. See figure 3.6 for an example of such a mesh.

We then write down a finite volume scheme on the new mesh. The advantage is that any segment
[xK̃ ,xL̃] of two neighbouring (in the Voronöı mesh) cell centers is orthogonal to the corresponding
face. Hence, the approximation of the flux by the five-point scheme becomes consistent.

Let us first focus on the case of the Laplace operator (i.e the diffusion coefficient is constant).
Then, we use the standard finite volume approach to write:

|K̃|f(xK̃) ≈

∫

K̃

−∆u =

∫

∂K̃

∂u

∂n

= −
∑

L̃∈N (K̃)

∫

K̃|L̃

∂u

∂n
≈

∑

L̃∈N (K̃)

ℓ(K̃|L̃)
u(xK) − u(xL)

|xK − xL|
.

Assuming that f(xK̃) ≈ f(xK), we thus have a finite volume scheme for Laplace’s operator.
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Now, if the coefficient diffusion is not constant, assuming that it is sufficiently smooth, we write:

−div(D∇u) = −D∆u −∇d · ∇u = −
1

2

(

D∆u + ∆(Du)
)

−
1

2

(

∇D · ∇u − div(u∇D)
)

= −
1

2

(

D∆u + ∆(Du)
)

+
1

2
u∆D.

Hence, up to the addition of a diagonal operator, the operator −div(D·) is equal to the symmetric
part of the operator −D∆. Hence, having computed the Laplace operator on the Voronöı mesh,
one easily computes −div(D·) by multiplying the previous one by D, then taking its symmetric
part, and finally adding up a diagonal operator.

Finally, the scheme may be summarized as follows:

1. compute the Voronöı mesh T̃ ;

2. compute the matrix corresponding the discretization of −∆ on T̃ , which we call MT̃ (−∆);

3. multiply each line of MT̃ (−∆) by the corresponding coefficient D(xK)|K|/|K̃|;

4. symmetrize the matrix;

5. add up on the diagonal a term so that the sum of each line is zero.

By doing so, we have explicitly constructed an M−matrix, so the maximum principle of this scheme
is respected. Moreover, should the original mesh be a Voronöı mesh, then the scheme would reduce
to classical finite volume schemes [137, 106, 49], which are known to be convergent at order two.
However, if this is not the case, since we have assumed that

f(xK) ≈ f(xK̃),

in the above scheme, and since this equality is valid up to an error of order h (the size of the mesh),
we end up with an order one scheme on general meshes.

This scheme has been tested on simple cases, and numerical study of convergence indicates an
order between 1 and 2, depending wether the center of mass of cells K are close to those of the
Voronöı cells or not. We refer to [134, 133] for other details on this scheme.

As an example, let us consider the following test case, borrowed from [134]:
{

−∆u + ω2u = ω21x1≤0 in D = (−1, 1)2,
∂nu = 0 on ∂D,

(3.51)

with ω = 1. The solution of this problem is explicit, and depends only on x1:

u(x) =

{

1 − cosh(ω(x1+1))
2 cosh(ω) , if x1 < 0,

cosh(ω(x1−1))
2 cosh(ω) if x1 > 0.

Figure 3.7 gives the result of the five-point scheme (in blue) and of the DDFV scheme [65] (in
red), when using a Kershaw-type mesh (figure 3.6 left). The first does not have any overshoot (or
undershoot), but is inaccurate. The second one is accurate, but has overshoots and undershoots.
On the contrary, as shown in figure 3.8, the LapIn scheme is more accurate than the five-point
scheme, and satisfies the maximum principle.

3.4 Higher order models

Going back to the radiative transfer equation, since the materials in the capsule are almost transpar-
ent (at least at the beginning of the simulation), one should note that the diffusion approximation
is questionable. Nevertheless, flux limiters allow to extend the validity of this approximation to this
case. However, a natural question is: can we find a different way carry out such a computation?

The first possibility is to solve directly the radiative transfer equation. For this, mainly two
methods are available:
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Figure 3.7: Test case (3.51) with Kershaw mesh. Five-point scheme (blue), and DDFV (red)
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Figure 3.8: Test case (3.51) with Kershaw mesh. LapIn scheme
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• Monte Carlo methods: these are not adapted to implosion simulations, because they are
very sensitive to hydrodynamical instabilities. Thus, statistical noise prevents any reliable
computation.

• Discrete ordinate methods. These methods consists in discretizing the angular variable, using
a piecewise constant approximation [108, 9, 45, 90, 104]. However, such methods are very
expensive, hence cannot be used in realistic computations.

Beside these two possibilities, another approach is to use an approach similar to the one de-
scribed in Subsection 3.1.2. Indeed, instead of assuming a P1 approximation for the radiative
intensity, one can use a polynomial expansion of higher degree. In order to simplify the presen-
tation, we restrict ourselves to the one-dimensional case, although the generalization to higher
dimensions is not a problem. In this case, we replace the angular variable Ω ∈ S2 by µ ∈ [−1, 1],
which is the azimuthal angle [28]. Hence, (3.1) becomes

1

c

∂Iν

∂t
+ µ

∂Iν

∂x
+ σa(ν) (Iν − Bν(Te)) + κTh

(

Iν −
1

2

∫ 1

−1

Iν(µ′)dµ′
)

= 0. (3.52)

We assume a development of Iν on the basis of Legendre polynomials:

Iν(x, t, µ) =
∑

n≥0

Jn(x, t, ν)Pn(µ). (3.53)

Using the induction relation of the Legendre polynomials, we find

1

c

∂Jn

∂t
+

∂

∂x

(

n + 1

2n + 1
Jn+1 −

n

2n + 1
Jn−1

)

+ (σa(ν) + κTh) Jn

= σa(ν)Bν(Te)δn0 + κThδn0J0,

with the convention that J−1 = JN+1 = 0. This may be seen as a hierarchy of coupled equations.
This is called the PN approximation [81, 82], since (3.53) corresponds to assuming that Iν is a
polynomial of degree N with respect to µ. Note that in the case N = 1, we recover the system
(3.13). For N larger than 1, the system is a more precise approximation of (3.1). It is however
more difficult to solve, since it contains (dn+1 − 1)/(d − 1) unknowns, where d is the dimension
(this value is N + 1 if d = 1). Moreover, it assumes that Iν is a smooth function of Ω (or µ in
dimension one), and therefore is a poor approximation in the free streaming limit. Indeed, in this
limit, Iν is a Dirac mass as a function of Ω.

Another possibility is to use the discrete ordinate method, which assumes that Iν is a piecewise
constant function of Ω. See for instance [108] and the references therein. Finally, let us also
mention a different closure method, called the M1 method, which consists in writing down the
two first moments of equation (3.1), which involve Eν , Fν (as defined by (3.12)), and the second
moment

Pν =
1

c

∫

S2

Ω ⊗ ΩIν(Ω)dΩ,

which is called the radiative pressure tensor:


















∂Eν

∂t
+ div(Fν) + cσa(ν)

(

Eν −
4π

c
Bν(Te)

)

= 0,

1

c

∂Fν

∂t
+ cdiv(Pν) + (σa(ν) + κTh) Fν = 0.

(3.54)

In order to close this system, we need to express Pν as a function of Fν and Eν . The P1 approx-
imation correspond to Pν = 1

3Eν , but many other closures are possible. Such a closure is usually
based on entropy minimization [41, 89, 62, 33, 108, 141].

Note that if one solves these kind of hyperbolic systems (that is, PN or M1) using an explicit
scheme, then, as is apparent in the second line of (3.54), the CFL condition involves the speed of
light c, and is therefore very restrictive. Hence, it is mandatory to use an implicit scheme.

Moreover, important issue is to use a numerical scheme which recovers the diffusion limit. This
is called an ”asymptotic preserving” scheme. It is a priori not obvious for a given hyperbolic
scheme to satisfy such a property. We refer to [22, 60, 73, 58, 59, 2] for details on this issue.
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Chapter 4

Hele-Shaw models

4.1 Introduction

The material presented below has been developed in collaboration with H. Egly and R. Sentis.
An ablation front is where a steep temperature gradient enters in a hydrodynamic zone. The

consequence is a very strong rocket effect, which is in fact favorable for the compression of the
thermonuclear fuel in ICF experiments [92]. It has been observed, Takabe et al. [138], that the ab-
lation phenomena stabilized long wavelength linear instabilities. Further theoretical and numerical
studies enlighten the ablation Rayleigh-Taylor instabilities in linear regime, see for example [101].
An important difficulty is to model ablation fronts. For the the simulation of ablation instabilities
in the non linear regime, one must account for compressible Euler model with thermal conduction.
Direct Numerical Simulation of this kind of problem is very heavy and tricky, indeed it leads to deal
with wavelengths at different scales; moreover one addresses low Mach number flows, then explicit
numerical schemes for the hydrodynamics part would be stable only with a strong constraint on
the time step therefore it would be necessary to perform a lot of time steps and there is a risk that
numerical diffusion would be as important as the physical diffusion. In some situations, shortly
described in the following, it is possible to model ablation fronts with a simplified Hele-Shaw type
model [46, 47]. According to the works of J. Sanz and others [111, 119, 120, 4], the idea is to
model the evolution of the temperature (to power n) with a Poisson equation solved on a domain
corresponding to the hot region and a zero Dirichlet boundary condition on a moving ablation
front. Afterwards the coupling with hydrodynamics flow is insured via a Bernoulli like equation.

The starting point is the compressible Euler model







∂tρ + ∇.(ρu) = 0
∂tρu + ∇.(ρu ⊗ u) + ∇p = 0
∂t(ρe) + ∇.(ρue + pu) −∇.(κnTn∇T ) = 0

(4.1)

written in the domain Ω described in figure 4.1 corresponding to a spherical shell. The total
energy e is given by e = E + 1

2 |u|
2 where E is the internal energy; T denotes the temperature and

p = (γ − 1)ρE = ρT the pressure; so E = CvT. The two first equations are related to the evolution
of the density ρ and the velocity u, the third one is the total energy balance with a non linear heat
flux, it reads also

∂t(ρE) + ∇.(ρuE) + p∇.u −∇.(κnTn∇T ) = 0

The energy equation has to be supplemented by a boundary condition on the external boundary
Γe which is a non-homogeneous Neumann condition (related to the heating of the spherical shell by
a thermal flux) and by a Dirichlet condition on the inner boundary Γc. On the external boundary
Γe, since the velocity is outwards, there is no boundary condition for the equations of the density
and of momentum.

We make some remarks which are at the basis of the modeling.
• In the experiments we have in mind, the material is initially cold and dense and is ablated

by the thermal flux at a surface denoted by Γf (t) called ”ablation front”; this surface is moving

47
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Γc
Γe

Γf (t)

Γc
Γe

Γf

Cold region

Hot region

Fluid velocity

Ablation front velocity

Figure 4.1: ICF convergent geometry. A heat flux comes from the external boundary Γe, so that
an ablation front Γf propagates towards the center of the shell. The front Γf may be considered as
a moving frontier. Notice the equivalence with Cartesian geometry.

Γc

Γt

Γf (t)

Γb

Γe

Cold region Hot region

Fluid velocity
Ablation front velocity

Figure 4.2: A zoom near the ablation front Γf which propagates towards the left of the domain.

and propagates inwards. In the neighborhood of Γf the density varies with a sharp gradient from
the cold region where ρ ≃ ρc (with ρc constant) to the hot region where ρ ≪ ρc; and there the
temperature varies from T ≃ Tc to the hot level T ≫ Tc. This is represented in figure 4.3 which is
a cut along the radial direction. The subscript .c refers to the cold region.

• As shown in figure 4.1, it may be assumed that the geometry is locally planar, at least for
the sake of simplicity to perform the following change of referential. One must account for the fact
that a first shock have traveled through the ablative matter and a reflective shock travels from the
inner boundary Γc towards the external one. Then the ablative matter is driven with a macroscopic
velocity umacro; this velocity has a direction normal the boundaries Γc, is oriented inwards and its
modulus is a given function which is assumed to depend smoothly on the time variable. We will
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ρc

Tc ρe

Te

xc xf (t) xe
x

Ablation front velocity

Figure 4.3: Radial cut, shape of density and thermal fields. The velocity of the front is Γ̇f (t) < 0

now state the system in the referential which moves with this velocity and we define x′ by

x′ = x −

∫ t

0

umacro(τ)dτ.

Now denoting by the primes (·′) the quantities evaluated in the moving referential

u′(t, x′) = u(t, x) − umacro, ρ′(t, x′) = ρ(t, x), T ′(t, x′) = T (t, x).

One gets after elementary manipulations






∂tρ
′ + ∇′.(ρ′u′) = 0

∂tρ
′u′ + ∇′.(ρ′u′ ⊗ u′) + ∇′p′ = ρ′g

∂t(ρ
′E ′) + ∇.(ρ′u′E ′) + p′∇.u′ −∇′(κnT ′n∇T ′) = 0

(4.2)

where we have introduced the acceleration g = ∂
∂tumacro.

4.2 The quasi-isobar model

On the schematic representation of figure 4.3, the ablative front is a singular surface where both
the density and the temperature have very strong gradients; figure 4.3 is a cut of the map of these
quantities along the radial direction. But we may assume that the pressure which is proportional
to the product of the density and the temperature has a much smaller gradient, then it is approxi-
matively constant across the ablation front. This fact corresponds to the quasi-isobar assumption
which is related to the low Mach number approximation; we address this approximation now.

Using the Lagrangian derivative and dropping the primes, system (4.2) reads as











(∂t + u · ∇)ρ + ρ∇.u = 0
ρ(∂t + u · ∇)u + ∇p = ρg

1

γ − 1
(∂t + u · ∇)p +

γ

γ − 1
p∇.u −∇.(κnTn∇T ) = 0.

(4.3)

Heuristically, the low Mach number approximation may be viewed as follows; see the appendix for
a quick justification, see also [3] or [61] for a more rigorous analysis. First we assume that the
pressure p = ρT is roughly constant that is to say, after a good scaling we set

ρT = 1.

Secondly we introduce the variation of pressure P : the system to be solved reads as






(∂t + u.∇)ρ + ρ∇.u = 0
ρ(∂t + u.∇)u + ∇P = ρg
∇ · (u − nTn∇T ) = 0.

(4.4)

The last equation means that the velocity is the sum of a thermal velocity and a vortex velocity
which is divergence-free, that is to say u = utherm + uvort, with

utherm = nTn∇T and ∇.uvort = 0. (4.5)
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The density equation may be recast as

∂t
1

T
+ ∇.(

1

T
nTn∇T ) + ∇.(

1

T
uvort) = 0

Therefore, multiplying the impulse equation by T and using the notation θ = Tn and ν = 1/n,
this model reads as















∂tθ
−ν + uvort.∇θν + ∆θ = 0,

∂tu + u.∇u + θν∇P = g,
u = θν∇θ + uvort,
∇.uvort = 0.

(4.6)

The sources of this system are the acceleration g and the thermal flux at the external boundary.
The system has four independent unknowns θ, u, P and uvort. The pressure P may be understood
as the Lagrange multiplier associated to the free divergence constraint ∇.uvort = 0. In the sequel
we denote θref a characteristic value of the temperature (to n-th power) in the external part of
the simulation domain. Lastly, notice that the ablation phenomena is very sensitive to small
perturbations, that is to say the ablation front propagation is unstable in nature. This is why we
need to carefully describe the initial conditions. At t = 0, in the cold region, one assumes that
ρ ≈ ρc is almost constant and the temperature also θ ≈ θc. Moreover, we have

θc/θref = ε ≪ 1 (4.7)

The vortex velocity uvort can be considered as small in a first step. Thus, in the following section
we withdraw this term. Then the equation for the temperature reduces to ∂tθ

−ν + ∆θ = 0.
Convenient boundary conditions must be imposed on both parts Γc and Γe of the simulation
domain; the normal external thermal flux is a data b0 which depends slowly on time. So we have
to address the equation







∂
∂t (θ−ν) + ∆θ = 0,
θ = θc, x ∈ Γc,
∂nθ = b0, x ∈ Γe.

(4.8)

As usual, ∂n = ∂/∂n denotes the normal derivative.

4.3 Hele-Shaw models

The idea is to model the temperature field Θ ≥ 0 in a moving domain, so that Θ = 0 is the
equation of the ablation front. It can be proved that, in a quasi-incompressible regime relevant if
the gas is modeled by a perfect gas equation of state and the structure of the ablation front is the
one displayed in figure 1.4, the following Hele-Shaw model is relevant







−∆Θ = 0, x ∈ Ωhot,
∂nΘ = v, x ∈ Γe,
Θ = 0, x ∈ Γf ,

(4.9)

ẋ(t) = −∇Θ + uvort, x(t) ∈ Γf(t), (4.10)

where uvort = ∇∧ ϕ is defined by ∆ϕ = TV and

∂tV + ∇. (uthermV) = S1, x ∈ Ω. (4.11)

The thermal velocity is utherm = nTn∇T . The source term is S1 =
(

g · n⊥|Γf

)

δΓf (t). A rigorous
justification in dimension on is in [46, 47]. We quote the works of Gil and Quiros[52] to justify
the approximation of (4.8) by (4.9) in dimension strictly greater than one. To our knowledge, the
mathematical theory of such models in the context of ICF flows is not understood yet. The first
method published for the numerical solution of the Hele-Shaw equation seems to be [68].
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Figure 4.4: This numerical result was obtained by H. Egly [46] using the Fat Boudary Method of
Ismail and Maury [102, 71]. The ablation front a five different times (top: t = 10, 80 and 140,
bottom: t = 140, 180 and 220). The gravity is g = 1000. At t = 0 the front is discretized with 100
markers with a mode 12. The results show first the development of an instability first in a linear
regime, and then in a non linear regime.
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[18] Brézis, Häım and Crandall, Michael G. Uniqueness of solutions of the initial-value problem
for ut − ∆ϕ(u) = 0. J. Math. Pures et Appl., 58:153–163, 1979.

[19] Franco Brezzi, Annalisa Buffa, and Konstantin Lipnikov. Mimetic finite differences for elliptic
problems. ESAIM, Math. Model. Numer. Anal., 43(2):277–295, 2009.

[20] Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov. Convergence of the mimetic
finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal.,
43(5):1872–1896, 2005.

[21] C. Buet and B. Després. Grey radiative hydrodynamics – hierarchy of models and numerical
applications. In C. Berthon, C. Buet, J.-F. Coulombel, B. Després, J. Dubois, T. Goudon,
J. E. Morel, and R. Turpault, editors, Mathematical models and numerical methods for ra-
diative transfer, volume 28. Société mathématique de France, 2009.
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[26] Carré, G. and Del Pino, S. and Pichon Gostaf, K. and Labourasse, E. and Shapeev, A. V. .
Polynomial Least-Squares reconstruction for semi-Lagrangian Cell-Centered Hydrodynamic
Schemes. ESAIM-Proc, 28:100–116, 2009.

[27] Castor, J. I. Radiation Hydrodynamics. Cambridge University Press, 2004.

[28] S. Chandrasekhar. Radiative transfer. (International Series of Monographs on Physics)
Oxford: Clarendon Press; London: Oxford University Press. XIV, 394 p. , 1950.
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