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Current State in Health-Care

Life expectancy is growing in the developing and developed countries
• Improve of the quality and conditions of life,  
• Significantly advances in medicine in terms of prevention & early diagnosis 
• Novel techniques for efficient treatment to a number of diseases that used to be 

uncured in the past

Advances in Prevention & Early Diagnosis
• Improve of the hardware of existing modalities (CT,MR,US) in terms of precision, 

definition and quality when acquiring medical images
• Possible the acquisition of novel non-invasive images/information spaces (f-MRI, 

DT-MRI, …, molecular imaging)
• Better visualization of human organs that provides to the physicians better 

understanding of diseases as well as better signs of detection 
• Improve of the means of processing and visualization of such a rich information 

space 
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Current State in Health-Care

Advances in treatment
• Advances in computational biology, extraction of the DNA chain & new 

drug discoveries, 
• More efficient ways to detect on non-healthy cells and focus the treatment 

on these cells
• More advanced hardware that allows the physicians better understanding 

of diseases,

All these are possible because :
• The cost of acquisition is dropping down 
• Acquisition becomes more frequent, even for prevention
• Evidence comparison using information from different modalities can do a 

much better job than evidence from one modality
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Current Limitations of Health Care

On the other hand

• In developed countries health case becomes an industrial routine with paramedics 
being in charge of the early stage of health exams

• Physicians spend lesser and lesser time with patients and tend to rapidly examine 
the outcome of medical exams, leading to often no-diagnosis at an early stage that 
becomes critical to efficient treatment

• The cost becomes a major issue, we are moving towards two-step health-care and 
therefore certain scans become less attainable unless hardly justified through 
preliminary results

• While hardware continues to evolve (Siemens recently introduced a CT 64 slices 
scanner, Philips their new 3D ultrasound scanner, etc)  the consensus is that soon 
hardware will reach its limitations with marginal improvements in terms of 
performance

• What will make the difference in the future is the means of exploitation of data that 
are now standard packages of hardware 
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Need for Automatic Processing

Understanding and extracting content from images is a primary 
answer to a number of existing limitations of the health-care 
system. 

Automatic Processing of Visual Content can Never Replace the 
Physician in the Health-Chain, it is intended to facilitate his tasks 

Recent advances of computational devices (PCs) have made 
possible the development of complicated mathematical models that
can provide answers to the visual understanding procedure
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Why It will Work?

Computational Vision; that means understanding the environment from 
images is still on an embryonic stage;

Medical Imaging on the other hand is the most established branch of this 
domain with significant advances being made;

• Knowledge of the environment
• Control on the acquisition procedure
• Prior anatomical models that can account for the ill-posedness of the inference 

problems as well as for the lack of information
• Substantial amount of money invested in the domain from health-care providers and 

hardware manufacturers (Siemens, Phillips, General Electric)

Still a lot of progress is to be made, but prototypes exist for assisting 
diagnosis with automatic image extraction techniques 
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An example

Virtual colonoscopy (VC) 
• x rays and computers to produce two- and three-dimensional images of the colon 

(large intestine) from the lowest part, the rectum. The procedure is used to 
diagnose colon and bowel diseases. VC can be performed with computed
tomography (CT), sometimes called a CAT scan, or with magnetic resonance
imaging (MRI). 

Versus:

Conventional colonoscopy (CC), 
• the doctor inserts a colonoscope—a long, flexible, lighted tube—into the patient's 

rectum and slowly guides it up through the colon. Pain medication and a mild
sedative help the patient stay relaxed and comfortable during the 30- to 60-minute 
procedure.

VC is more comfortable than CC colonoscopy
• it does not use a colonoscop, no sedation is needed, and you can return to your

usual activities. VC provides clearer, more detailed images than a conventional x 
ray.
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Some of the Medical Image Modalities

X-ray, Roentgenogram
• is the most basic tool in medical imaging; a two-

dimensional shadow picture is used to examine soft and
bony tissue. 

CT, Computerized Tomograpy
• takes multiple cross sectional roentgenogram in a plane 

perpendicular to the patient. A computer uses 
mathematical operations to construct a 3-D image from
the two-dimensional sections. 

Ultrasound and Echocardiogram
• use sound waves to image organs and view organ

function in real time. The sound waves are reflected
back at differing intensities based on the density and
penetration of the organ. 
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Medical Image Modalities

MRI, Magnetic Resonance Imaging
• creates a magnetic field which coordinates the spin of

hydrogen ions. When the magnetic field is removed, 
the relaxation of spinning is measured. The different
relaxation of the hydrogen ions, which is based on 
water content, is converted into an image. 

Diffusion-tensor MRI, f-MRI

PET, Positron Emission Tomography
• uses radioactive labeled glucose, the primary energy

source of all cells, to monitor organ metabolism. 
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X-rays

Wilhelm Conrad Röntgen (1845-1923)
Nobel Prise in Physics, 1901

• “X” stands for “unknown”

• X-ray imaging is also known as

- radiograph

Courtecy T. Petters
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X-rays

Bertha Röntgen’s Hand 8 Nov, 1895 A modern radiograph of a hand

• Calcium in bones absorbs X-rays the most 

• Fat and other soft tissues absorb less, and look gray 

• Air absorbs the least, so lungs look black on a radiograph

Courtecy T. Petters
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Towards 3D imaging

Mathematical results: 
Radon transformation

1917

Computers can perform 
complex mathematics to 

reconstruct and process images
Late 1960’s:

X-ray imaging
1895

Development of CT
(computed tomography)

1972
•Image reconstruction from 
projection
•Also known as CAT 
(Computerized Axial Tomography)

•"tomos" means "slice" (Greek)

Courtecy T. Petters
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Radon Transformation

•Mathematical transformation (related to Fourier) 
•Reconstruction of the shape of object (distribution  f(x,y)) from  
the multitude of 2D projections

),( θsg

Courtecy T. Petters
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Figure from www.imaginis.com/ct-scan/how_ct.asp

CT imaging
Courtecy T. Petters

http://www.imaginis.com/ct-scan/how_ct.asp
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CT imaging, availability (since 1975)

The EMI-Scanner
Original axial CT image from the 
dedicated Siretom CT scanner circa 1975. 
This image is a coarse 128 x 128 matrix; 
however, in 1975 physicians were 
fascinated by the ability to see the soft 
tissue structures of the brain, 
including the black ventricles for the first 
time (enlarged in this patient)

1974

Axial CT image of a normal brain using a 
state-of-the-art CT system and a 512 x 
512 matrix image. Note the two black 
"pea-shaped" ventricles in the middle of 
the brain and the subtle delineation of 
gray and white matter
(Courtesy: Siemens)

25 years later

Courtecy T. Petters
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Clinical Acceptance of CT!?

Dr James Ambrose 1972
• Radiologist, Atkinson - Morley’s 

Hospital London
• Recognised potential of EMI-scanner

“Pretty pictures, but they will never 
replace radiographs” –
Neuroradiologist 1972

Courtecy T. Petters
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Then ……………and Now

80 x 80 image

3 mm pixels

13 mm thick slices

Two simultaneous slices!!!

80 sec scan time per slice

80 sec recon time

512 x 512 image
<1mm slice thickness
<0.5mm pixels
0.5 sec rotation
0.5 sec recon per slice
Isotropic resolution
Spiral scanning - up to 16 slices 

simultaneously

Courtecy T. Petters
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30 Years of CT
Courtecy T. Petters
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Some nice input
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Some nice results
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Birth of MRI

Early Thorax Image 
Nottingham

• Electro Marnetic signal emitted (in harmless radio frequensy) 
is acquired in the time domain 

• image has to be reconstructed (Fourier transform)

Courtecy T. Petters
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30 Years of MRI

First brain MR image Typical T2-weighted  MR image

Courtecy T. Petters
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MR Imaging

“Interesting images, but will never be as useful as CT”

• (A different) neuroradiologist, 1982

Courtecy T. Petters



27

MR Imaging      …more than T1 and T2
Courtecy T. Petters

MRA - Magnetic resonance angiography
• images of vessels

MRS - Magnetic resonance spectroscopy
• images of chemistry of the brain and muscle metabolism

fMRI - functional magnetic resonance imaging
• image of brain function

PW MRI – Perfusion-weighted imaging
DW MRI – Diffusion-weighted MRI

• images of nerve pathways
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Magnetic Resonance Angiography

MR scanner tuned to measure only 
moving structures

“Sees” only blood - no static structure

Generate 3-D image of vasculature 
system

May be enhanced with contrast agent 
(e.g. Gd-DTPA)

Courtecy T. Petters
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MR Angiography

Phase-contrast

In-flow

GD-enhanced

GD-enhanced

Courtecy T. Petters
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Diffusion-Weighted MRI

Image diffuse fluid motion in brain
Construct “Tensor image” – extent of 

diffusion in each direction in each voxel
in image

Diffusion along nerve sheaths defines 
nerve tracts.

Create images of nerve 
connections/pathways

Courtecy T. Petters
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Tractography

Superior 
Longitudinal Fasciculus

Short fibres

Temporal fibres

Insula 
fibres

Wernicke’s area
Broca’s area

Long fibres

- Dr. D Jones, NIH USA

“just like Gray’s Anatomy”!

Courtecy T. Petters



32

fMRI

Subject looks at 
flashing disk while 
being scanned
“Activated” sites 
detected and  
merged with 3-D 
MR image

Stimulus

Activation

Courtecy T. Petters
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Hand Activation

Face Activation
Tumour

Slides from Terry Peters

fMRI in Neurosurgery Planning
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Image Formation; Representing Signals in 
the Form of Continuous Functions

Images correspond to a certain spatial and 
temporal resolution; where observations are 
completely independent 

Such resolution is driven from the acquisition and 
differs from one modality to the other

In order to simplify the notation, let us consider the 2D case 
as shown for the CT slice image of the heart

Medical imaging from a mathematical perspective consists of 
recovering inference from the data or recovering some 
qualitative/quantatitative information from the image
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Medical Imaging Paradigm

Model

Optimization
Procedure

Model/Data
Association

Observations
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Example of Medical Imaging Problem

Images correspond to very local measurements
being completely independent 

Simple example: left ventricle extraction in CT images; the solution                                         
can be represented using a set of points

Using this points, one can define the solution through some kind of interpolation strategy

And  try to optimize the position of these points in the image plane, according to the 
lowest potential of an objective functions, like for example the strength of the edges 
over the curve
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Image Formation; Representing Signals in 
the Form of Continuous Functions
Often such a direct linear operator does not exist and therefore, feature extraction is 

reformulated either as a minimization problem; 

That consists of finding the most optimal configuration that minimizes some distance 
between observations and the solution of the problem; 

Or in a probabilistic fashion:

Where certain assumptions on the space of plausible solutions are made and we 
consider the distribution to be known; that is possible in some cases but not for the 
most general medical imaging problems
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Main Challenges

Curse of Dimensionality : find a compromise between the expression power of 
the model and its complexity 

Curse of Non-linearity: the association of the model parameters and the 
observations are highly non-linear

Curse of Non-Convexity: the designed objective function leaves in a high-
dimensional non-convex space 

Curse of Non-Modularity: any solution is hardly portable to another application 
setting or another problem 
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How to Address these challenges

Curse of Dimensionality : Prior Knowledge either through anatomy of machine 
learning techniques towards dimensionality reduction

Curse of Non-linearity: Model Decomposition / Data association allows direct 
support estimation of parameter selection from the images

Curse of Non-Convexity: Regularization terms / dropping out of 
constraints  can improve the optimality properties of the obtained solution 

Curse of Non-Modularity: Model/Data Association/Inference 
Decomposition and use of gradient free methods
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Medical Imaging: Challenges

In the most general case, given an observation f (one or multiple images), mathematical 
imaging consists of defining operators that once applied to these images returns to the 
user a vector of valuable information 

• Images With Improved Quality (denoising)
• Images of smaller size where information has been preserved (compression)
• Image separated in uniform regions (segmentation), & Region of interest in the 

images that corresponds to a given anatomical structure (object extraction)
• Recovering the same structure of particular interest in a number of successive 

images
• Understanding Object Deformation from one image to the next
• Transformations that related images taken from different point of views of the same 

or different modality (registration)
• 3D visualization of the structure of interest (reconstruction from partial views) 
• Measures that allow the differentiation of this image from other images in the 

training set, or from expected statistical patterns (diagnosis)
• Inference between existing mechanical models and images to made such models 

patient-specific (modeling organ behaviour)
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Image Enhancement

Noise is a predominant factor of medical image acquisition in a 
number of modalities 
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Problem Formulation

Additive Noise

Gaussian distribution of the noise

Patch definition 

For

Courtecy N. Azzabou
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State of the Art

Neighborhood filtering 
Sigma, Bilateral,  NL-means , ….

PDE and  Energy minimization based techniques
Anisotropic diffusion and Total variation minimization

Transform domain and Sparse image modeling
Wavelet, bandelet, contourlet, K-SVD …

Statistical Image models and Bayesian framework
MRF models, non parametric models

Courtecy N. Azzabou
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Mathematical Definition of Image 
Enhancement

Let us consider an input signal f that has been corrupted by a white noise model n; white 
models refers to zero mean model

In such a case for a given image location (x,y) we observe g(x,y) 

In order to recover f, given that noise models are unknown we assume that the image in a 
small scale is local smooth, and that noise model affects observations with the same 
way; 

And in that case the optimal filtered value consists of the simple mean value of the 
observations 

That encodes the zero-mean assumption of the noise model; what is known to be mean 
filtering…
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A Data driven and a global image model that encodes 
image structure

Linear image model

The interaction between pixels is expressed using weights

Convex Functional Minimization
Model Presentation

Courtecy N. Azzabou
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Convex Functional Minimization
Model Presentation

Examples of distance used to evaluate the photometric similarity

Distance between image patches

Distance between projection of patches on a subspace determined 
using PCA

Consider the statistical distribution of the distance L2 distance 
between patches

Courtecy N. Azzabou
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Spatial Bandwidth selection : must be adapted to each pixel

Convex Functional Minimization
Spatial Bandwidth Selection

Large spatial bandwidth values for smooth areas

Small  bandwidth values for smooth areas

Why a variable bandwidth ??

Courtecy N. Azzabou
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Alternating minimization

Minimization with respect to U

Minimization with respect to

Convex Functional Minimization
Spatial Bandwidth Selection

Courtecy N. Azzabou
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Problem formulation

Minimizing the following constrained problem

Under the constraint

Euler Lagrange equation using the Lagrange multiplier 
updated as

Convex Functional Minimization
Color Image Denoising 

Courtecy N. Azzabou
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Some Results
Courtecy N. Azzabou
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Model-free Segmentation

frame partition according to a given feature space is a core 
component of imaging, vision & graphics

Model-free Grouping
Edge Detection, Geometric Flows, Snakes, Clustering, MRFs, Graph Theory

Model-based Grouping
Deformable Templates, Active Shape/Appearance Models, etc,
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Segmentation

Evolve an initial curve towards the lowest potential of a cost function that is a 
compromise between data-driven attraction terms and internal constraints 

Internal term stands for curve smoothenss
The image term guides the curve towards the desired image properties
External term can stand for prior knowledge or user interaction
One can minimize this cost function and 
recover a way of deforming the curve towards 
the lowest potential of the cost function
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On the Propagation of Curves

Snake Model (1987) [Kass-Witkin-Terzopoulos]

• Planar parameterized curve C:R-->RxR
• A cost function defined along that curve

• The internal term stands for regularity/smoothness along the curve and has two 
components (resisting to stretching and bending)

• The image term guides the active contour towards the desired image properties
(strong gradients)

• The external term can be used to account for user-defined constraints, or prior 
knowledge on the structure to be recovered

• The lowest potential of such a cost function refers to an equilibrium of these terms
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Active Contour Components

The internal term…

• The first order derivative makes the snake behave as a membrane
• The second order derivative makes the snake act like a thin plate

The image term…

• Can guide the snake to 

– Iso-photes ,   edges 
– and terminations

Numerous Provisions…: balloon models, region-snakes, etc…
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Optimizing Active Contours 

Taking the Euler-Lagrange equations:

That are used to update the position of an initial curve towards the 
desired image properties

• Initial the curve, using a certain number of control points as well as a set of 
basic functions, 

• Update the positions of the control points by solving the above equation
• Re-parameterize the evolving contour, and continue the process until 

convergence of the process… 
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Pros/Cons of such an approach

Pros
• Low complexity
• Easy to introduce prior knowledge 
• Can account for open as well as closed structures
• A well established technique, numerous publications it works
• User Interactivity

Cons
• Selection on the parameter space and the sampling rule affects the final 

segmentation result
• Estimation of the internal geometric properties of the curve in particular higher order 

derivatives
• Quite sensitive to the initial conditions, 
• Changes of topology (some efforts were done to address the problem)
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Level Set: The basic Derivation
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The Level Set Method

Osher-Sethian (1987)
• Earlier: Dervieux, Thomassett, (1979, 1980)

Introduced in the area of fluid dynamics

Vision and image segmentation
• Caselles-Catte-coll-Dibos (1992) 
• Malladi-Sethian-Vermuri (1994)

Level Set Milestones
• Faugeras-keriven (1998) stereo reconstruction
• Paragios-Deriche (1998), active regions and grouping 
• Chan-Vese (1999) mumford-shah variant
• Leventon-Grimson-Faugeras-etal (2000) shape priors 
• Zhao-Fedkiew-Osher (2001) computer graphics
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The Level Set Method

Let us consider in the most general case the following form of curve 
propagation:

Addressing the problem in a higher dimension…

The level set method represents the curve in the form of an implicit surface:

That is derived from the

initial contour according

to the following condition:
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The Level Set Method

Construction of the implicit function

And taking the derivative with respect to time (using the chain rule)

And we are DONE…

(1)



62

The Level Set Method
Let us consider the arc-length (c) parameterization of the curve, then taking the 

directional derivative of                in that direction we will observe no change: 

leading to the conclusion that the       is ortho-normal to C where the following 
expression for the normal vector

Embedding the expression of the normal vector to:

the following flow for the implicit function is recovered:

(2)
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Some nice animations
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Level Set Method (the basic derivation)

Where a connection between the curve propagation flow and the flow deforming the 
implicit function was established

Given an initial contour, an implicit function is defined and deformed at each pixel 
according to the equation (2) where the zero-level set corresponds to the actual 
position of the curve at a given frame

Euclidean distance transforms are used in most of the cases as embedding function
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Geodesic Active Contours
[Caselles-Kimmel-Sapiro:95, Kichenassamy-Kumar-etal95]

Connection between level set methods and snake driven optimization

The geodesic active contour consists of a simplified snake model without second 
order smoothness 

That can be written in a more general form as 

Where the image metric has been replaced with a monotonically decreasing 
function: 
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Geodesic Active Contours
[Caselles-Kimmel-Sapiro:95, Kichenassamy-Kumar-etal95]

Leading to the following more general framework…

, 

One can assume that smoothness as well as image terms are equally important and with some 
“basic math”

That seeks a minimal length geodesic curve attracted by the desired image properties…
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Geodesic Active Contours

That when minimized leads to the following geometric flow: 

• Data-driven constrained by the curvature force
• Gradient driven term that adjusts the position of the contour when close to the real 0bject 

boundaries… 

By embedding this flow to  a level set framework and using a distance transform as 
implicit function, 
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Some nice animations
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Level Sets in imaging and vision…
the region-driven case 
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The Mumford-Shah framework
[chan-vese:99, yezzi-tsai-willsky-99]

The original Mumford-Shah framework aims at partitioning the image into (multiple) classes 
according to a minimal length 

curve and reconstructing the noisy signal in each class

Let us consider - a simplified version - the binary case and the fact that the reconstructed signal 
is piece-wise constant

Where the objective is to reconstruct

the image, using the mean values for the

inner and the outer region

Tractable problem, numerous solutions…
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The Mumford-Shah framework
[chan-vese:99, yezzi-tsai-willsky-99]

Taking the derivatives with respect to piece-wise constants, it 
straightforward to show that their optimal value corresponds to the means 
within each region:

While taking the derivatives with respect and using the stokes theorem, the 
following flow is recovered for the evolution of the curve:

• An adaptive (directional/magnitude)-wise balloon force
• A smoothness force aims at minimizing the length of the partition

That can be implemented in a straightforward manner within the level set 
approach
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The Mumford-Shah framework –
Criticism  & Results

Account for multiple classes? Quite simplistic model, quite often the means are not a 
good indicator for the region statistics? Absence of use on the edges, boundary 
information
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Geodesic Active Regions
[paragios-deriche:98]

Introduce a frame partition paradigm within the level set space that can 
account for boundary and global region-driven information

KEY ASSUMPTIONS
• Optimize the position and the geometric form of the curve by measuring information 

along that curve, and within the regions that compose the image partition defined by 
the curve:

(input image)           (boundary)                (region)
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Geodesic Active Regions

We assume that prior knowledge on the positions of the objects to be 
recovered is available - - as well as on the expected intensity 
properties of the object and the background 
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Geodesic Active Regions

Such a cost function consists of:
• The geodesic active contour
• A region-driven partition module that aims at separating the intensities properties of the two 

classes (see later analogy with the Mumford-Shah) 

And can be minimized using a gradient descent method leading to:

Which can be implemented using the level set method as follows…
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Some nice animations
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…REMINDER… 
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Level Set & Geometric Flows

While evolving moving interfaces with the level set method is quite 
attracting, still it has the limitation of being a static approach

• The motion equations are derived somehow, 
• The level set is used only as an implementation tool…

• That is equivalent with saying that the problem has been somehow
already solved…since there is not direct connection between the approach 
and the level set methodology
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Level Set: Optimization space
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Level Set Dictionary

Let us consider distance transforms 

as embedding function 

One can introduce the Dirac distribution
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Level Set Dictionary

Using the Dirac function and integrating within the image domain, one can estimate the 
length of the curve:

While integrating the Heaviside Distribution within the image domain

Such observations can be used to define regional partition modules as follows according 
to some descriptors 

That can be optimized with respect to the level set function (implicitly with respect to a 
curve position)
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Level Set Optimization

And given that : 

An adaptive (directional & magnitude wise) flow is recovered for the propagation of 
an initial surface towards a partition that is optimal according to the regional 
descriptors…

The same idea can be used to introduce contour-driven terms…
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Some nice animations
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Level Set Optimization 

and optimize them directly on the level set space

Curve-driven terms:

Global region-driven terms:

According to some image metrics…defined along the curve and within the regions 
obtained through the image partition according to the position of the curve, that 
can be multi-component but is representing only one class
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Multi-Phase Motion

PROS
• Taking the level set method to another level
• Dealing with multiple (multi-component) objects, and multiple tasks
• Introducing interactions between shape structures that evolve in parallel

CONS

• Computationally expensive
• Difficult to guarantee convergence 
• Numerically unstable & hard to implement
• Prior knowledge required on the number of classes and in some cases on their 

properties…

PARTIAL SOLUTION: The multi-phase Chan-Vese model
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Introduce classification according to a combination of all level sets at a 
given pixel

LEVEL SET DICTIONARY

• Class 1:
• Class 2:
• Class 3:
• Class 4:

And therefore by taking these products one can define a modified version of the 
mumford-shah approach to account with four classes while using two level set 
functions…

Multi-Phase Motion  [vese-chan:02]
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Multi-Phase Motion
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Image Segmentation in the form of a labeling 
problem

Let us consider an image composed of m classes

Segmentation consists of finding a partition

That separates this classes…if we assume that each class has a characteristic 
function; or some measure that can account if a given observation belong to 
this class; 

That consists of associating to each pixel the class that is best supported by the 
observation;
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Markov Random Fields

See segmentation in a probabilistic manner

Let       be the image domain,     be a discrete set of labels (random variables) that 
are associated with this domain and      the information space associated with     
that can either be the image itself or high-dimensional data recovered from the 
image after applying certain filter operators… 

Let us also consider a discrete neighborhood system    living on where each pixel 
is associated with its for direct neighbors: 

Then image segmentation into a certain number of classes is equivalent with 
associating each element of the domain      to a label from the set 

Such a decision should be supported by the data      and has to be locally consistent 
(neighborhood pixels should be assigned mostly the same label)
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Discrete MRF optimization

Given:
• Objects      from a graph
• Discrete label set 

• Assign labels (to objects) that minimize MRF energy:
edgesobjects

pairwise potentialunary potential

• MRF optimization ubiquitous in vision (and beyond)
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MRFs and Optimization

– Graph‐cut based techniques such as a‐expansion:
Min cut/max flow, etc

Belief Propagation Networks generalized by TRW methods 
– Message‐passing techniques:

• The above statement is more or less true for almost all state‐
of‐the‐art MRF techniques

– Deterministic Methods:
Iterated Conditional Modes/Highest Confidence First

– Non‐Deterministic Methods:
Mean‐field and Simulating Annealing, etc
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Max-Flow/Min-Cut Theorem

For any network having a single origin and a single destination node,

the maximum possible flow from origin to destination equals the

minimum cut value for all the cuts in the network.

If we want to find the minimum cut, we can compute the maximum 
flow and look for the cut(s) that separate origin and destination by 
cutting through bottlenecks of the network.
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson



10
5

Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Example: Ford & Fulkerson
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Markov Random Fields & Segmentation

Therefore, segmentation is equivalent with recovering a labeling where the 
posterior density given the data is maximized while smoothness characterized the 
decision process

that under conditional independence on the labeling process leads to

Where the first term measures the fitness of the data associated at   with the label          
and the second term penalizes discontinuities on the labeling process at the local 
neighborhood scale 

• This is done through direct comparison between the label of each pixel and the labels of the 
neighborhood pixels 
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Markov Random Fields

In the simplistic case where each hypothesis is represented using a Gaussian 
distribution and the only information is the data itself one can simplify the model in 
the following way

Where                at the simplest case is a binary function equal to 1 when the labels 
are different (thus increasing the cost of such a labeling)  and equal to 0 when they 
are the same

Minimizing the cost function with respect to the labeling vector is equivalent with 
solving the segmentation problem,  

Such an approach does not take into account natural discontinuities of the image 
like transitions between two different classes and therefore will fail on the classes 
boundaries
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Markov Random Fields

One can modify the cost function to account for the image discontinuities 

Where                       is a boundary indicator often defined in the following manner;

Such a modification will downsize the effect of introducing a discontinuity in areas 
where the gradient is strong that eventually means boundaries between two 
different classes  

One can minimize this cost function towards global/local minimum
• Simulated annealing 
• Combinatorial Optimization (Graph cuts)
• Mean-field annealing (Iterated conditional Modes, Highest Confidence First)
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Bone Segmentation

@ Y. Boykov, UWO
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kidney Segmentation

@ Y. Boykov, UWO
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Liver Segmentation

@ Y. Boykov, UWO



11
6

Knowledge-based Segmentation
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Knowledge-based Object Extraction

Objective: 
recover from the image a structure 
of a particular – known to some extend 
– geometric form

Methodology
• Consider a set of training examples 
• Register these examples to a common pose
• Construct a compact model that expresses the 

variability of the training set
• Given a new image, recover the area where the 

underlying object looks like that one learnt

Advantages of doing that on the LS space: 
• Preserve the implicit geometry
• Account with multi-component objects…
• … all wonderful staff you can do with the LS
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Active Shape Models

Learning: recover a geometric form of an object from a training set
• Register a set of training examples to a common pose
• Recover a probabilistic notion of a model that involves a small number of 

parameters from the training set 

Segmentation: find in an image a region that refers to the same object 
according to some intensity properties while respecting the prior 
knowledge

• Find a global transformation between an average model and the image that 
positions the model to the most prominent desired image

• Deform the model locally within the bounds of the probability density function – the 
one has learnt – to better account for local deformations of the object

• Do that in an incremental manner, iterate between extraction of interesting features 
and model fitting 
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Some Definitions (Modeling aspect)

Training Set:                                    that refer to n shapes in a discrete form using a 
finite number of control points

Registered Training Set                                     where an one-to-one correspondence 
has been recovered between all shapes for each control point

Average Model: 

An orthogonal basis  of modes of variation       such that one can reproduce the 
training set through a global transformation     of the average model and a linear 
combination (a set of parameters     ) of the principal modes of variations?
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Some nice animations
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Definition & Registration of the Training Set

Ground truth provided by the user,

Manual approach
• Parameterization of the contour: user-defined criteria, 

compromise low complexity and fair approximation 
of the shape of the target

• Registration: done in an implicit manner through the 
user by point clicking

Automatic approach
• Parameterization of the contour: according to the number of samples in the training set
• Registration: done separately using various point-matching registration techniques or distance 

transforms 

Model Building: Singular Value Decomposition of the Registered training set
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Building the Model

Once training samples have been registered one can estimate the average model:

that explicitly assumes one-to-one correspondences between the control points of 
each sample

And use it to recover the relative variation of the training set from the mean shape 
through a simple subtraction process:

If we assume that the training set follows a Gaussian distribution, then one can use 
the subtracted results to define the covariance matrix of this distribution

Then by concatenating    and performing singular value decomposition on this matrix 
one can recover the most prominent directions of variation
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Complete Model

Consists of the average shape      and the principal modes of variations     

that can be used to represent any element of the training set through a linear 
combination of the average model and the principal modes of variations:

Such a task is equivalent with finding the set of parameters that best approximate 
any given shape

The number of retained components is determined according to the magnitude of 
the eigen values
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Some nice animations
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Segmentation Concept

In the case of segmentation, one can assume that the object observed in the image 
belongs to the family of shapes generated by the training set, where its exact 
position is unknown as well as its exact form

• Changes on the object pose require finding 
a global transformation between the mean 
model and the image

• exact localization of the object requires defining 
appropriate image features that can guide both the 
global transformation as well as the local deformations
towards the object position…

That consists of estimating 
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Segmentation

If we assume that the true object position is known         , then recovering these 
parameters is trivial since one has to minimize the distance between the model 
and the actual position

That is equivalent with solving a linear system with more constraints than the 
number of unknown variables, and can be done in a straightforward manner

Such a system is recovered through a

least square optimization and there-

fore can be very sensitive to outliers…

One can address such a limitation    through a robust minimization
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the Solution

Calculus of variations with respect to the unknown parameters

Where                           are the parameters of the transformation (3 for rigid, 4 for 
similarity, 6 for affine)

Such a system has low dimensionality and a unique, closed form solution where the 
number of constraints is greater to the number of unknowns to be
recovered…(each control point creates refers to two equations, one at the 
horizontal and one at the vertical direction)
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Some nice animations
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Finding Correspondences…(the simple 
case)

However the true position of the object is unknown and the  one to be recovered and 
the notion of exact correspondences for the model control points is ambiguous

One can assume that object boundaries refer to discontinuities on the image plane, 
therefore given an initial position of the active shape, one can seek for the closest 
edge at every control point of the model: 

Simple edge detectors can be used, the only issue to be addressed is the search 
area…
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More nice animations
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Knowledge-based Segmentation 
[leventon-faugeras-grimson-etal:00]

Concept: Alternate between segmentation 

& imposing prior knowledge

• Learn a Gaussian distribution of the 
shape to be recovered from a training 
set directly at the space of implicit functions

– The elements of the training set are registered
– A principal component analysis is use to recover 

the covariance matrix of probability density function of this set
• ALTERNATE

– Evolve a let set function according to the geodesic active contour
– Given its current form, deform it locally using a MAP criterion so it fits better 

with the prior distribution 
– Until convergence…
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Knowledge-based Segmentation 
[leventon-faugeras-grimson-etal:00]

Limitations:
• Data driven & prior term are decoupled
• Building density functions on high dimensional spaces is an ill posed 

problem,
• Dealing with scale and pose variations (they are not explicitely addressed)
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Knowledge-based Segmentation 
[chen-etal:01]

Concept level:

• Use an average model as prior in its implicit function
• For a given curve find the transformation that projects it closer to the zero-level set of the implicit 

representation of the prior
• For a given transformation evolve the curve locally towards better fitting with the prior…
• Couple prior with the image driven term in a direct form…

Issues to be addressed: 
– Model is very simplistic (average shape) – opposite to the leventon’s case where it was too 

much complicated…
– Estimation of the projection between the curve and the model space is tricky…not enough 

support…data term can be improved…
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Knowledge-based Segmentation 
[chen-etal:01]
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Knowledge-based Segmentation 
[tsai-yezzi-etal:01]

At a concept level, prior knowledge is modeled through a Gaussian 
distribution on the space of distance functions by performing a singular 
value decomposition on the set of registered training set,

The mumford-shah framework determined at space of the model is used to 
segment objects according to various data-driven terms

The parameters of the projection are recovered at the same time with the 
segentation result…

• A more convenient approach than the one of Leventon-etal
• Which suffers from not comparing directly the structure that is recovered with the 

model…
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Knowledge-based Segmentation 
[paragios-rousson:02]

Prior is imposed by direct comparison between the model and evolving 
contour modulo a similarity transformation…

The model consists of a stochastic level set with two components,
• A distance map that refers to the average model
• And a confidence map that dictates the accuracy of the model

Objective: Recover a level set that pixel-wise looks like the prior modulo 
some transformation
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Model Construction

From a training set recover the most representative model;

If we assume N samples on the training set, then the distribution that expresses at a 
given point most of these samples is the one recovered through MAP

Where at a given pixel, we recover the mean and the variance that best describes 
the training set composed of implicit functions at this point, where the mean 
corresponds to the average value

Constraints on the variance to be locally smooth is a natural assumption 
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Imposing the (Static) Prior

Define/recover a morphing function “A” that creates correspondence 
between the model and the prior

In the absence of scale variations, and in the case of global 
morphing functions one can compare the evolving contour with the
model according to 

That modulo the morphing function will evolve the contours towards 
a better fit with the model
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Static Prior (continued)

Where the unknowns are the morphing function and the position of the level set

Calculus of variations with respect to the position of the interface are straightforward:

The second term is a constant inflation term aims at minimizing the area of the 
contour and eventually the cost function and can be ignored…since it has no 
physical meaning.
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Static Prior, Concept Demonstration
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Static Prior (continued)

One can also optimize the cost function with respect to the unknown parameters of 
the morphing function

Leading to a nice “self-sufficient” system of motion equations that update the global 
registration parameters between the evolving curve and the model

However, the variability of the model was not considered up to this point and areas 
with high uncertainties will have the same impact on the process
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Some Results
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Taking Into Account the Model Uncertainties

Maximizing the joint posterior (segmentation/morphing) is a quite attractive criterion 
in “inferencing”

Where the Bayes rule was considered and given that the probability for a given prior 
model is fixed and we can assume that all (segmentation/morphing) solutions are 
equally probable, we get

Under the assumption of independence...within pixels…and then finding the optimal 
implicit function and its morphing transformations is equivalent with 
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Taking Into Account the Model Uncertainties

That can be further developed using the Gaussian nature of the model 
distribution at each image pixel

A term that aims at recovering a transformation and a level set that when 
projected to the model, it is projected to areas with low variance (high 
confidence)

A term that aims at minimizing the actual distance between the level set 
function and the model and is scaled according to the model confidence…

– would prefer have a better match between the model and level set in areas 
where the variability is low, 

– while in areas with important deviation of the training set, this term will be less 
important
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Taking the derivatives…

Calculus of variations regarding the level set and the morphing 
function:

The level set deformation flow consists of two terms:
• that is a constant deflation force (when the level set function collapses, 

eventually the cost function reaches the lowest potential)

• An adaptive balloon (directional/magnitude-wise) force that 
inflates/deflates the level set so it fits better with the prior after its 
projection to the model space…In areas with high variance this term 
become less significant and data-terms guide the level set to the real 
object boundaries...
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Some medical results
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Implicit Active Shapes 
[rousson-paragios:03]

The Active Shape Model of Cootes et al. is quite popular to object extraction. Such 
modeling consists of the following steps:

Let us consider a training set      of      registered surfaces (implicit representations 
can also be used for registration [4]). Distance maps are computed for each 
surface:

The samples      are centered with respect to the average representation        :
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Implicit Active Shapes 
[rousson-paragios:03]

Training set:

The principal modes of variation are recovered through Principal Component 
Analysis (PCA). A new shape     can be generated from the  (m)  retained modes:
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The model…
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The prior

A level set function that has minimal distance from a linear from the model space…

The unknown consist of:
• The form of the implicit function 
• The global transformation between the average mode and the image, 
• The set of linear coefficients that when applied to the set of basis functions provides the optimal 

match of the current contour with the model space

And are recovered in a straightforward manner using a gradient descent method…
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Some nice results…
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Some nice results…
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Some nice results…
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Going Beyond PCA

In the registration process
each element was
associated with
uncertanties measures, 

Such measures indicate 
the quality of the samples 
at a local scale and 
should be used when 
building models
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Non-parametric density approximations

Opposite to Gaussian assumptions, kernels can do a better job in the approximation 
of non-linear functions. 

The idea is to express the density as a combination of these kernels where the 
importance of the kernel is dictated from the uncertainties measures of the 
registration process.
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Non-parametric Prior models & 
segmentation with Uncertainties

Integration between image and prior shape terms :

The prior model refers to a hybrid estimator :

The solution as well as the uncertainties estimates are jointly propagated

The prior term becomes far less important in areas 

and in the direction of weak uncertainties
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Segmentation with non-parametric prior

The image term aims at separating the histograms between the object and the
background:

We can minimize this cost using a gradient 

descent method while the Hessian matrix of the

cost function can provide information on

the quality of the solution that integrate

both shape and image information
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Segmentation with non-parametric prior & 
uncertainties estimation
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Optical Flow Estimation / Deformable 
Registration

f                                    g

Let us consider two images (f,g) that are the projections of a real 3-D 
scene observed by a camera or acquisitions of the same organ part
Let us consider (for simplicity we assume that the camera is static) 
some moving objects that are part of this scene and move in an 
independent fashion,
Optical flow estimation consists of recovering a motion field (3D or
2D) that explains the motion of these objects in time
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Image Formation

The Pinhole Model

What we really observe is a view of a three-dimensional environment, each 
pixel can be thought of as representing the “appearance” of a particular 
portion of this environment. 

Such “appearance” is measured through the amount of incident light from 
the corresponding direction.

In practice the measurement depends on the camera’s radiometric and 
colorimetric response as well as the surface properties of the objects in 
the scene,
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Optical Flow Definition

Let us a 3D patch (s) at time t and its projection to the image
according to some camera model

Let us consider the same 3D patch (s) at time t+1 and its projection      
to            a new image according to the some camera model where 
either the camera has moved or the object has moved or both 
therefore

Optical Flow consists of recovering a motion vector             that 
explains the 2D motion of the 3D patch (s) in time:
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Basic Idea of Intensity-based Registration

Image registration as an optimization problem

Target and source Image:

Transformation:

Image metric:
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The Aim of Registration…

…is to recover the transformation which involves

• the definition of a transformation type

• the definition of a image metric

• the definition of an optimization strategy
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Energy Formulation

Data term based on image metric
(e.g. SSD)

Smoothness constraints due to the ill-posedness
(e.g. penalizing gradients of the displacement field)
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Optical Flow Estimation

One can perform estimation through the optimization of 

a cost function
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Optical Flow Constraint

Where 

One can consider a Taylor expansion of the constraint

That will lead to the follow constraint on the estimation of the optical flow, the famous 
Horn-Schunck equation [1981]

PROBLEM:
• number of constraints is lower than the number of unknown variables

SOLUTION
• Consider the problem in subspaces  with more than one constraints
• Consider regularization constraints when recovering dense motion fields
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The Lucas-Kanade approach

Let us consider the image divided into a certain number equal size of patches 
(blocks)

One can consider that

each block has constant

velocity in the image

plane and therefore

the same constraint 

should be applicable to all pixels within the image blob

The lucas-kanade method consists of estimating optical flow for each block by 
solving a linear system of through the calculus of variations
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The Lucas-Kanade approach

That can lead to a 

linear inference problem

where 
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Introducing Regularization Constraints

In the most general 

One can define the optical flow constraint in the entire image domain: 

Solving ill-posed problems is a frequent problem in computer vision

Since quite often the scenes that we do observe are smooth, one can assume that 
the optical flow estimates (the displacement of these scenes) are smooth

Or 
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Introducing Regularization Constraints

Such a smoothness constraint can be integrated with the optical flow constraint 
leading to the following objective function… 

One can optimize this cost function:
• Partial Differential Equations & Gradient Descent Methods
• Mean-field/simulated Annealing and Dynamic Programming, Graph-based Optimization 

techniques…

PROBLEMS: 
• the cost function is not convex 
• the initial conditions are quite important
• Sensitive to the initial conditions, non-robust behaviour
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Introducing Robustness to the Process

Standard least square estimators suffer from outliers…

One can replace the error-two norm with more appropriate error norms like 

Where is a bounded error function and the optimization of the new objective function 
turns out to be equivalent with a re-weighted least square approach

Such an approach is far more appropriate for motion estimation where the number of 
constraints is marginal to the number of variables to be recovered.
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Parametric Motion Models

Let us consider the case where motion is observed because of the change of the 
position of the camera…

In that case the changes we observe in the images can be somehow modeled using 
a global transformation between the two views, In other words one can assume a 
motion model

That consists of a limited number of parameters 

If we consider planar patches of constant depth, one can say that their motion can 
be approximated using such a simplistic model, or
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Examples of Parametric Models

Similarity 

Consists of a scale (zoom in/out), translation and rotation

Affine

That is an extension of the similarity model  
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Parametric/Global Registration

One now can reformulate the problem of motion estimation using these parametric 
models 

Such objective function refers to 4-6 unknown parameters (the parameters of the 
motion model) while one constrain can be recovered for every pixel of the image

In the case of similarity model, recovering these parameters is equivalent with 
solving the following linear system
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Multi-Scale Approaches

Smooth the input images and create a pyramid

Consider the images at the lowest scale and 

estimate motion in this scale 

Use this estimation as an initial guess 

for the next scale, and re-estimate the 

flow

Repeat the process until convergence
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Motivation for the Use of MRFs

• Most common approach is gradient descent

BUT:

• Optimization of non-convex objective functions is difficult (many 
local minima) 

• Introduction of arbirtry metric is not possible (sensitive to the 
derivative of the cost function) 

• Computational complexity is an issue
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Discrete Labeling Problem

Markov Random Field formulation with pairwise interactions

Unary potentials (matching):

Pairwise potentials (smoothness):

p q r

s t u

v w x

p q r

s t u

v w x

Nodes

Edges
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Dimensionality Reduction

• Linear combination of control points

• e.g. Free-Form Deformations (Sederberg et al. 1986; Rueckert et al. 1999), or 
THIN PLATE SPLINES, etc...
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(Weighted) Block Matching

• Redefinition of data term w.r.t. control lattice

• Pixel-wise image metrics weighted by normalized basis functions
• image points closer to a control point gain more influence on its 

matching energy

• Statistical image metrics (e.g. mutual information, cross correlation)
• evaluation of image metric in local patches centered at the control points
• block size depends on control lattice resolution
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From a Continuous to a Discrete Model

Let us consider a predefined ordered set of displacements

Associated with a set of labels

Then, the problem of image registration can be expressed as follows

That is associate to each node of the deformation, a displacement that once used along with 
interpolation method, optimizes the similarity metric between the target and the transformed 
source. 

Where each node of the transformation domain is associated with a particular cost, and when 
the set of labels yields to infinity, we have a formulation that is almost equivalent to the 
continuous one
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Registration via Block Matching

Simple iterative algorithm:

1. Find control point displacements that minimize the matching energy

2. Interpolate dense displacement field

3. Warp source image

Our solution:

• Cast the problem as a discrete labeling of a Markov Random Field

• Use efficient global optimization techniques
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Search Space Discretization

Consider a discrete set of labels and a quantized version of the
displacement space

Max

Steps

+X-X

+Y

-Y

Dense sampling

+X-X

+Y

-Y

Sparse sampling
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MRF hardness

MRF pairwise potential

MRF hardness

linear

exact global 
optimum

arbitrary

local optimum

metric

global optimum 
approximation 

Move left in the horizontal axis,

But we want to be able to do that efficiently, i.e. fast

and remain low in the vertical axis 
(i.e., still be able to provide approximately optimal solutions)

Courtecy N. Komodakis



18
5

How to handle MRF optimization?

Unfortunately, discrete MRF optimization is extremely 
hard (a.k.a. NP‐hard)

E.g., highly non‐convex energies

So what do we do?
Is there a principled way of dealing with this problem?

Well, first of all, we don’t need to panic.
Instead, we have to stay calm and RELAX!

Actually, this idea of relaxing may not be such a bad 
idea after all…
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The relaxation technique

Very successful technique for dealing with difficult optimization problems 

Practical assumptions:
Relaxed problem must always be easier to solve

Relaxed problem must be related to the original one

It is based on the following simple idea:
try to approximate your original difficult problem with 
another one (the so called relaxed problem) which is easier 
to solve
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The relaxation technique 

true optimal 
solution

optimal solution to 
relaxed problem

feasible set

relaxed 
problem

Courtecy N. Komodakis
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How do we get a convex relaxation?

• By dropping some constraints 
(so that the enlarged feasible set is convex)

• By modifying the objective function 
(so that the new function is convex)

• By combining both of the above
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Linear programming (LP) relaxations

Optimize linear function subject to linear constraints, i.e.:

• Very common form of a convex relaxation, because:

• Typically leads to very efficient algorithms
(important due to large scale nature of problems 
in computer vision)

• Also often leads to combinatorial algorithms

Courtecy N. Komodakis
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Example 1: Primal-dual schema
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The primal-dual schema
Say we seek an optimal solution x* to the following 
integer program (this is our primal problem): 

(NP-hard problem)

To find an approximate solution, we first relax the 
integrality constraints to get a primal & a dual linear 
program: 

primal LP: dual LP:

Courtecy N. Komodakis
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The primal-dual schema

Goal: find integral-primal solution x, feasible dual solution y such that their primal-dual 
costs are “close enough”, e.g., 

Tb y Tc x

primal cost of 
solution x

primal cost of 
solution x

dual cost of 
solution y

dual cost of 
solution y

*Tc x

cost of optimal 
integral solution x*

cost of optimal 
integral solution x*

*f≤
T

T

c x
b y

*
*f≤

T

T

c x
c x

Then x is an f*-approximation to optimal solution x*Then x is an f*-approximation to optimal solution x*

Courtecy N. Komodakis
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The primal-dual schema

1Tb y 1Tc x

sequence of dual costssequence of dual costs sequence of primal costssequence of primal costs

2Tb y … kTb y
*Tc x unknown optimumunknown optimum

2Tc x…kTc x

k
*

k f≤
T

T

c x
b y

The primal-dual schema works iteratively

Global effects, through local improvements!

Instead of working directly with costs (usually not easy), 
use RELAXED complementary slackness conditions (easier)

Different relaxations of complementary slackness
Different approximation algorithms!!!

Courtecy N. Komodakis
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Standard LP-relaxation for MRFs

only one label per object

consistency between
xpp’(l,l’) and xp(l), xp’(l’)

xp(l) = 1 label l assigned to object p
xpp'(l,l’) = 1 labels l,l’ are assigned to objects p, p’

xp(l) = 1 label l assigned to object p
xpp'(l,l’) = 1 labels l,l’ are assigned to objects p, p’
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The primal-dual schema for MRFs
During the PD schema for MRFs, it turns out that:

each update of 
primal and dual 

variables

each update of 
primal and dual 

variables

solving max-flow in 
appropriately 

constructed graph

solving max-flow in 
appropriately 

constructed graph

Max-flow graph defined from current primal-dual pair (xk,yk) 
(xk,yk) defines connectivity of max-flow graph
(xk,yk) defines capacities of max-flow graph

Resulting flows tell us how to update both:
the dual variables, as well as
the primal variables

Max-flow graph is thus continuously updated

for each iteration of 
primal-dual schema
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Computational efficiency
MRF algorithm only in the primal domain (e.g., a-expansion)

primalk primalk-1 primal1
…

primal costs

dual1

fixed dual cost
gapk

STILL BIG Many augmenting paths per max-flowMany augmenting paths per max-flow

Theorem: primal-dual gap = upper-bound on #augmenting paths
(i.e., primal-dual gap indicative of time per max-flow)
Theorem: primal-dual gap = upper-bound on #augmenting paths
(i.e., primal-dual gap indicative of time per max-flow)

dualkdual1 dualk-1
…

dual costs
gapk

primalk primalk-1 primal1
…

primal costs
SMALL Few augmenting paths per max-flowFew augmenting paths per max-flow

MRF algorithm in the primal-dual domain (Fast-PD)
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Beyond Pairwise Energies: Efficient 
Optimization for Higher-order MRFs

Courtecy N. Komodakis
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Discrete MRF optimization

Given:
• Objects      from a graph
• Discrete label set 

• Assign labels (to objects) that minimize MRF energy:
edgesobjects

pairwise potentialunary potential

• MRF optimization ubiquitous in vision (and beyond)

Courtecy N. Komodakis
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Introduction

MRFs extremely popular in vision and beyond
• Stereo matching, optical flow, segmentation, object recognition, image 

completion, …
• Computer graphics, pattern recognition, …

• MRF optimization
– Large amount of work over the last years

– A success story

– But mostly for pairwiseMRFs

Courtecy N. Komodakis
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Introduction

Why do we need higher-order MRFs?
• Pairwise MRFs often unable to provide a faithful modeling

(e.g., compare global optimum vs ground truth) 

• Higher‐order potentials
– Can capture multiple interactions 

– Allow for far more expressive priors

– Much more accurate modeling

Courtecy N. Komodakis
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Introduction

Unfortunately not much work on higher-order MRFs
• Mostly over the last few years (e.g., [Lan et al. 06], [Potetz 07], [Kohli et al. 07, 

08], [Werner 08])

• Reasons?
– Hardness 
(much more difficult problems to optimize)

– Computational cost 
(typically prohibitive, e.g., exponential with clique size)

Courtecy N. Komodakis
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Contributions of this work

• Powerful optimization framework for high‐
order MRFs
– Relies on dual decomposition

– Extremely general

– Extremely flexible 
(easily adaptable to the problem’s structure)

– Leads to efficient algorithms that provide high‐
quality solutions

Courtecy N. Komodakis
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Optimization of high-order MRFs

Hypergraph
• Nodes 
• Hyperedges/cliques

• High‐order MRF energy minimization problem

high‐order potential
(one per clique)

unary potential
(one per node)

hyperedges

nodes

Courtecy N. Komodakis
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Optimization of high-order MRFs

To handle the problem in full generality, we will rely on dual decomposition
[Komodakis et al. 07]

• Master  = coordinator  (has global view)
Slaves   = subproblems (have only local view)

Courtecy N. Komodakis
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Optimization of high-order MRFs

To handle the problem in full generality, we will rely on dual decomposition
[Komodakis et al. 07]

• Master  = (i.e., MRF on hypergraph G)

Courtecy N. Komodakis
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Optimization of high-order MRFs

To handle the problem in full generality, we will rely on dual decomposition 
[Komodakis et al. 07]

• Set of slaves  =
(MRFs on sub‐hypergraphs Gi whose union covers G)

Courtecy N. Komodakis
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Optimization of high-order MRFs

To handle the problem in full generality, we will rely on dual decomposition
[Komodakis et al. 07]

• Optimization proceeds in an iterative fashion via
master‐slave coordination

Courtecy N. Komodakis
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“Hey, Slaves, …”

Master sends to slaves current unary potentials
and requests them to optimize their problems 

mastermaster

…G1 G2 Gn

slave MRFs

1GU
2GU

nGU

{ }iGU

master 
talks to 
slaves

Courtecy N. Komodakis



21
1

“What is it that you want master?”

Slaves obey to the master by solving

and sending back to him the resulting minimizers

mastermaster

…G1 G2 Gn

slave MRFs

1GU
2GU

nGU

{ }iGx

mastermaster

…G1 G2 Gn

slave MRFs

1Gx
2Gx

nGxmaster 
talks to 
slaves

slaves 
respond 
to the 
master

Courtecy N. Komodakis
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Optimization of high-order MRFs

mastermaster

…G1 G2 Gn

slave MRFs

1GU
2GU

nGU

• Master collects minimizers and reupdates { }iGU

master 
talks to 
slaves

slaves 
respond 
to the 
master

mastermaster

…G1 G2 Gn

slave MRFs

1Gx
2Gx

nGx

Courtecy N. Komodakis
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Optimization of high-order MRFs
Process repeats until convergence

(many variations of the above basic scheme possible)

At the end, a solution can be extracted by, e.g., copying the slave minimizers

master 
talks to 
slaves

mastermaster

…G1 G2 Gn

slave MRFs

1GU
2GU

nGU slaves 
respond 
to the 
master

mastermaster

…G1 G2 Gn

slave MRFs

1Gx
2Gx

nGx

Courtecy N. Komodakis
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Optimization of high-order MRFs
Courtecy N. Komodakis

Slaves, i.e.,               can be freely chosen by the user as long as                       
(provides great flexibility) 

i iG G= U

MRF
iG

• For each choice of slaves, master solves a (possibly 
different) dual relaxation
• Sum of slave energies = lower bound on MRF optimum
• Dual relaxation = maximum such bound

• User only needs to focus on how to solve the slaves 
(rest are taken care by the framework)

• Choosing more difficult slaves   tighter lower bounds
tighter dual relaxations

⇒
⇒
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Generic optimizer for high-order MRFs

Uses the following simple choice of slaves: 
• One slave per clique 
• Corresponding sub-hypergraph :

• Resulting slaves often easy (or even trivial) to solve even 
if global problem is complex and NP‐hard 
– widely applicable algorithm

• Corresponding dual relaxation is an LP
– Generalizes well known LP relaxation for pairwise
MRFs (at the core of most state‐of‐the‐art methods)

Courtecy N. Komodakis
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Signal reconstruction

corrupted signal (red) 
original signal (blue)

Gaussian filter result

Courtecy N. Komodakis
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Signal reconstruction

our result with 4th‐order 
truncated potential

bilateral filter result

Courtecy N. Komodakis



21
9

Random      Potts model

Random  Potts model on 50x50 grid with 10 labels

Courtecy N. Komodakis
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Nikos Paragios

http://vision.mas.ecp.fr
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Diffusion Tensor Imaging in 
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Brownian Motion in the human body

Isotropic Diffusion in fluids

Anisotropic Diffusion in the human body

BUT after averaging over the voxel: isotropic

Only in very structured tissues anisotropic diffusion is measured
Isotropic Anisotropic

Images from S. Mori
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Anisotropic Diffusion in Muscle

Very structured tissue in muscle

=> Using DTI to reconstruct muscle structure

=> 20-50 fibers per voxel
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Motivation for the project (I)

Why is the knowledge about structure 
important?

• Mechanical behavior depends strongly on muscle 
architecture

Why using DTI?
• “Standard” imaging modalities do not give 

information about the architecture
• Biopsys have several disadvantages: 

– Local
– No measurements over time possible
– No in vivo measurements

DTI is the only approach available to non-
invasively study the three-dimensional 
architecture of muscle
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Motivation for the project (II)

Muscular Diseases (Myopathy):
• Muscle cells are replaced by fat cells
• Lower performance of the muscle

How is the evolution of the disease? 

How much muscle performance rests?

healthy Non-healthy
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Image Acquisition

Diffusion Weighted Echo-Planar Imaging with: 
• Siemens Symphony 1,5 T 
• 12 gradient directions
• b-value:  0 s/mm2 and    450 s/mm2

• Effective voxel size:  1.8 x 1.8 x 7.8 mm3 later     1.8 x 1.8 x 5.6 mm3

• Volume:                     23 x 23 x 15.6 cm3  later     23 x 23 x 11.2 cm3 

• Acquisition matrix:    128 x 128 x 20

Images taken at CHU-Henry Mondor Hospital (Créteil, Paris)
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Mathematical Model

Basser proposed to use an ellipsoid to model anisotropic Gaussian Diffusion 

Ellipsoids are described by a 3x3 symmetric positive-definite matrix (6 DOF)

=> Each voxel has to measured from at least 6 non-collinear directions

Stejskal-Tanner imaging sequence to measure diffusion

Spins that have completed a location change due to the Brownian motion during the 
time period Δ will get different phase shifts by the two gradient pulses
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Effect of regularization

With α = 0

With α = 0.5
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Segmentation

Segmentation of muscle groups and ill/heatlhy

Segmentation approaches
• on T1 / T2 slides: manually (time consuming), serving 

as ground truth
• in tensor space: automatically, → next slides
• in fiber space: automatically grouping similar fibers 

together → fiber clustering
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Analysis in Fiber Space – Muscle Groups

Pennation angle in different muscles
• Nonpennate, Unipennate, Bipennate

Calculation not possible because tendon 
plates were not identified

Calculation of tensor angle show a equal 
distribution for muscle groups
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Cluster Analysis in Fiber Space – M.G.

Automatic segmentation into muscle groups

Difficult because of low quality of fiber field and complexity of task
• Linear regression with alignment in curve space 
• Alignment in time and curve space failed

9 classes7 classes
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Cluster Analysis in Fiber Space – M.G.

Finding tendon plate in bipennate muscle (Soleus)

Using JCA with a linear regression model and 3 classes
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Brain Registration Segmentation

@R. Deriche, INRIA
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Diffusion-Tensor Imaging
@R. Deriche, INRIA
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Shape Registration with Uncertainties on 
Implicit Spaces 
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Live Demonstration (part 2)
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Application to 3D Segmentation - ICA
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Liver Segmentation Using Sparse 3D 
Models with Optimal Data Support
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Some Visual Results
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Some Visual Results
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Other applications of this model
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Future Work

Introducing statistical behavior to the model, 
• either through modeling the distribution of the interpolation matrix,
• or through the distribution of the key contours among training examples 

such that using the same interpolation matrix can fully describe the 
training set,

Joint optimization on the model complexity (rank of the subspace) 
and the corresponding parameters through discrete optimization,

Investigation of generalized/non-linear interpolation methods to 
increase the capacity of the model toward capturing local variation,

Use of the model to deal with application of no-image support, like 
the segmentation of the T1 images of the muscle, 
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Heart Modeling

@C. Perskin, D. Mqueen, NYU
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Future

More and more data to be treated…

More and more computational power

Better and better image quality

Need for better and better mathematical models

Future : Introducing anatomical properties to the existing mathematical models, or 
developing better anatomical models;

Helping the physicians, improve performance of diagnosis and being able to provide 
solutions to new emerging problems 
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