
logo

Estimation, Model Selection and Optimal Design
in Mixed E�ects Models

Applications to pharmacometrics

Marc Lavielle1

1INRIA Saclay

Cemracs 2009 - CIRM



logo

Outline

1 Introduction

2 Some pharmacokinetics-pharmacodynamics examples

3 Regression models

4 The mixed e�ects model

5 Estimation in NLMEM with the MONOLIX Software

6 Some stochastic algorithms for NLMEM



logo

Some examples of data
Pharmacokinetics of theophylline
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Some examples of data
Viral loads (HIV)
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Some examples of data
Daily seizure counts (epilepsy)
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

yij ∈ R is the jth observation of subject i ,

N is the number of subjects

ni is the number of observations of subject i .

The regression variables, or design variables, (xij) are known,

The individual parameters (ψi ) are unknown.
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

The (ψi ) and the (εij) are modelized as sequences of random
variables.

The goal of the modeler is to develop simultaneously two kinds of
models:

(1) The structural model f

(2) The statistical model
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

(1) The structural model f : We are not interested with a purely
descriptive model which nicely �ts the data, but rather with a
mechanistic model which has some biological meaning and
which is a function of some physiological parameters.

Examples:

compartimental PK models,
viral dynamic models,
. . .
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

(2) The statistical model aims to explain the variability observed
in the data:

the residual error model: distribution of (εij)
the model of the individual parameters: distribution of (ψi )

ψi = h(Ci , β, ηi )

Ci is a vector of covariates
β is a vector of �xed e�ects
ηi is a vector of random e�ects
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

ψi = h(Ci , β, ηi )

Some statistical issues:

Estimation:

estimate the population parameters of the model
estimate the individual parameters

Model selection and model assessment:

Select and assess the �best� structural model f ,
Select and assess the �best� statistical model

Optimization of the design :

Find the optimal design (xij)
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Pharmacokinetics and Pharmacodynamics (PK/PD)

Pharmacokinetics (PK): �What the body does to the drug�

Pharmacodynamics (PD): �What the drug does to the body�
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Pharmacokinetics and Pharmacodynamics (PK/PD)
The therapeutic window

Concentrations must be kept high enough to produce a desirable
response, but low enough to avoid toxicity.
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Pharmacokinetics and Pharmacodynamics (PK/PD)
An example PKPD data
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One compartment PK model
intravenous administration
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intravenous administration and �rst-order elimination

dose D (t=0)→ DRUG AMOUNT Q(t) → elimination (rate ke)

dQ

dt
(t) = −kQ(t) ; Q(0) = D

Q(t) = De−kt

C (t) =
Q(t)

V
=

D

V
e−ke t

C (t) : concentration of the drug,
V : volume of the compartment
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intravenous administration and nonlinear elimination

dose D (t=0)→ DRUG AMOUNT Q(t) → nonlinear elimination

dQ(t)

dt
= − Vm Q(t)

V ∗ Km + Q(t)

C (t) =
Q(t)

V

(Vm,Km) : Michaelis-Menten elimination parameters,
V : volume of the compartment.
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One compartment PK model
oral administration
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oral administration, �rst-order absorbtion and elimination

dose D at time t=0

absorption (rate ka)→ DRUG AMOUNT Q(t) → elimination (rate ke)

dQa

dt
(t) = −kaQa(t) ; Qa(0) = D

dQ

dt
(t) = kaQa(t)− keQ(t) ; Q(0) = 0

Qa(t): amount at absorption site.

C (t) =
Q(t)

V
= D

ka
V (ka − ke)

(
e−ke t − e−kat

)



logo

Two compartments PK model
intravenous administration
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Two compartments PK model
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Two compartments PK model

dQa

dt
(t) = −kaQa(t),

dQc

dt
(t) = kaQa(t)− keQc(t)− k12Qc(t) + k21Qp(t),

dQp

dt
(t) = k12Qc(t)− k21Qp(t).

Qa(t): amount at absorption site, Qa(0) = D.

Qc(t): amount in the central compartment, Qc(0) = 0.

Qp(t): amount in the peripheral compartment, Qp(0) = 0.
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An example of pharmacodynamic model

EMax model:

E (t) = Emax×
C (t)

C50 + C (t)

C E

0 0
C50 Emax/2
∞ Emax
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The regression model

yj = f (xj , β) + εj , 1 ≤ j ≤ n

n is the number of observations.

The regression variables, or design variables, (xj) are known,

The vector of parameters β is unknown.

- linear model: f is a linear function of the parameters β
- non linear model: f is a non linear function of the parameters β
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The regression model
The statistical model

yj = f (xj , β) + εj

Here, the only random variable is the vector of residual errors
ε = (εj).

The simplest statistical model assumes that the (εj) are
independent and identically distributed (i.i.d) Gaussian random
variables:

εj ∼i .i .d . N (0, σ2)

Problem: estimate the parameters of the model θ = (β, σ2).
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Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a popular statistical
method used for �tting a statistical model to data, and
providing estimates for the model's parameters.

For a �xed set of data and underlying probability model,
maximum likelihood picks the values of the model parameters
that make the data "more likely" than any other values of the
parameters would make them
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Maximum Likelihood Estimation

Consider a family of continuous probability distributions
parameterized by an unknown parameter θ, associated with a
known probability density function pθ.

Draw a vector y = (y1, y2, . . . , yn) from this distribution, and then
using pθ compute the probability density associated with the
observed data,

pθ(y) = pθ(y1, y2, . . . , yn)

As a function of θ with y1, y2, . . . , yn �xed, this is the likelihood
function

L(θ; y) = pθ(y)
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Maximum Likelihood Estimation

Let θ? be the �true value� of θ.

The method of maximum likelihood estimates θ? by �nding the
value of θ that maximizes L(θ; y).

This is the maximum likelihood estimator (MLE) of θ:

θ̂ = Argmax
θ
L(θ; y)
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Maximum Likelihood Estimation
Some properties of the MLE

Under certain (fairly weak) regularity conditions, the MLE is
"asymptotically optimal":

The MLE is asymptotically unbiased: E (θ̂) −→
n→∞

θ?

The MLE is a consistant estimate of θ? (LLN): θ̂ −→
n→∞

θ?

The MLE is asymptotically normal (CLT)

√
n(θ̂ − θ?) −→

n→∞
N (0, I(θ?)−1)

I(θ?) = −E∂2θ logL(θ?; y)/n is the Fisher Information Matrix

The MLE is asymptotically e�cient, (Cramér-Rao)
This means that no asymptotically unbiased estimator has lower

asymptotic mean squared error than the MLE.
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The regression model
Maximum likelihood estimation

yj = f (xj , β) + εj , 1 ≤ j ≤ n

εj ∼i .i .d . N (0, σ2)

y ∼ N (f (xj , β), σ2In)

L(θ; y) =
(
2πσ2

)− n
2 e−

1

2σ2

∑n
j=1(yj−f (xj ,β))2

β̂ = Argmax
β
L(β; y) = Argmin

β

n∑
j=1

(yj − f (xj , β))2

(Maximum Likelihood estimate of β = Least-Square estimate of β)
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The linear regression model

y1 = x11β1 + x12β2 + . . .+ x1pβp + ε1

y2 = x21β1 + x22β2 + . . .+ x2pβp + ε2
...

yn = xn1β1 + xn2β2 + . . .+ xnpβp + εn

Y = X β + ε
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The linear regression model
Maximum Likelihood Estimation

y = X β + ε

εj ∼ N (0, σ2)

θ = (β, σ2)

y ∼ N (Xβ, σ2In)

L(θ; y) =
(
2πσ2

)− n
2 e−

1

2σ2
‖y−Xβ‖2

β̂ = Argmax
β
L(β; y) = Argmin

β
‖y − Xβ‖2
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The linear regression model
Maximum Likelihood Estimation

y = X β + ε

β̂ = Argmin
β
‖y − Xβ‖2

= (X ′X )−1X ′y

= (X ′X )−1X ′(Xβ + ε)

= β + (X ′X )−1X ′ε

E (β̂) = β

Var(β̂) = σ2(X ′X )−1

− logL(θ?; y) =
n

2
log(2πσ2) +

1

2σ2
‖y − Xβ‖2

I(β) = −1

n
E∂2β logL(β, σ2; y) =

1

nσ2
(X ′X )
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The linear regression model
Maximum Likelihood Estimation

y = X β + ε

Let V = Var(β̂) = σ2(X ′X )−1 be the variance-covariance matrix of β̂.

The diagonal elements of V are the variances of the components of β̂:

Vk,k is the variance of β̂k√
Vk,k is the standard error (s.e.) of β̂k

90% con�dence interval for βk :

[β̂k − 1.645
√
Vk,k ; β̂k + 1.645

√
Vk,k ]



logo

Optimal design

Optimal designs are a class of experimental designs that are
optimal with respect to some statistical criterion.

In the design of experiments for estimating statistical models,
optimal designs allow parameters to be estimated without bias
and with minimum-variance.

A non-optimal design requires a greater number of
experimental runs to estimate the parameters with the same
precision as an optimal design.

In practical terms, optimal experiments can reduce the costs of
experimentation.

Fisher information is widely used in optimal experimental
design. Because of the reciprocity of estimator-variance and
Fisher information, minimizing the variance corresponds to
maximizing the information.

D-optimal design maximizes the determinant of the Fisher
information matrix I(θ?).
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Optimal design
The linear regression model

A D-optimal design maximizes the determinant of X ′X .

Example:
yj = a + bxj + ej

Here,

1

n
|X ′X | =

1

n

n∑
j=1

x2j −

1

n

n∑
j=1

xj

2

= Variance of (x1, x2, . . . , xn)

For a �xed number of measurements n, an optimal design has
maximum variance.
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Model selection

1 Compute the likelihood of the di�erent models

Let θ̂M be the maximum likelihood estimate of θ for modelM:

θ̂M = Argmax
θ
LM(θ; y)

Let LM = LM(θ̂M; y) be the likelihood of modelM.

Selecting the �most likely� models by comparing the likelihoods
favor models of high dimension (with many parameters)!

2 Penalize the models of high dimension
Select the model M̂ that minimizes the penalized criteria

−2LM + pen(M)

Bayesian Information Criteria (BIC) : pen(M) = log(n)× dim(M).

Akaike Information Criteria (AIC) : pen(M) = 2dim× (M).
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The mixed e�ects model
A pharmacokinetics example : theophylline

12 patients:

Each individual curve is described by the same parametric model,
with its own individual parameters.
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The mixed e�ects model
Population PK/PD

inter-subject variation in concentrations for same dose

inter-subject variation in response for same dose

=⇒ each subject may have same model but with di�erent PK/PD
parameters.

Complications:

- times of measurements depend on the subject

- observations contain errors (measurement, model
misspeci�cation,. . . )

- observations above some limit of quanti�cation (concentration,
viral load,. . . )

- part of the inter-variability explained by some known covariates
(weight, age, gender,. . . )

- . . .
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni
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The mixed e�ects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

ψi = h(Ci , β, ηi )

Ci is a vector of covariates
β is a p−vector of �xed e�ects
ηi is a q−vector of random e�ects

εij ∼ N (0, σ2)

ηi ∼ N (0,Ω)

Ω is the q × q variance-covariance matrix of the random e�ects

(Hyper)parameters of the model: θ = (β,Ω, σ2).
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The mixed e�ects model
Objectives

Estimation

Estimate the set of population parameters θ,

Compute con�dence intervals,

Model selection

Determine if a parameter varies in the population

Select the best combination of covariates

Compare several treatments

. . .

Optimal design

Determine the design (the measurement times) that yields the
most accurate estimation of the model
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The mixed e�ects model
Estimation of the population parameters

The maximum likelihood estimator of θ = (β,Ω, σ2) maximizes

L(θ; y) =
N∏
i=1

Li (θ; yi )

Li (θ; yi ) =

∫
p(yi , ηi ; θ)dηi

=

∫
p(yi |ηi ; θ)p(ηi ; θ)dηi

= C

∫
σ−ni |Ω|−

1
2 e−

1

2σ2
‖yi−f (xi ;h(Ci ,β,ηi ))‖2− 1

2
η′
i
Ω−1ηidηi

Example: ψi = β + ηi

Li (θ; yi ) = C

∫
σ−ni |Ω|−

1
2 e−

1

2σ2
‖yi−f (xi ;ψi ))‖2− 1

2
(ψi−β)′Ω−1(ψi−β)dψi
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The mixed e�ects model
Estimation of the individual parameters

Assume that θ = (β,Ω, σ2) is known (or was estimated previously)
ψ̂i maximizes the conditional distribution p(ψi |yi ; θ):

p(ψi |yi ; θ) =
p(ψi , yi ; θ)

p(yi ; θ)

=
p(yi |ψi ; θ)p(ψi ; θ)

p(yi ; θ)

= C p(yi |ψi ; θ)p(ψi ; θ)

Example: ψi = β + ηi

p(ψi |yi ; θ) = e−
1

2σ2
‖yi−f (xi ;ψi ))‖2− 1

2
(ψi−β)′Ω−1(ψi−β)

Then, ψ̂i minimizes a penalized least-square criteria:

ψ̂i = Argmin
ψ

{
‖yi − f (xi ;ψ))‖2 + σ2(ψ − β)′Ω−1(ψ − β)

}
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Some existing methods

1. Methods based on individual estimates

i) Estimate the individual parameters (ψi ),

ii) Estimate θ using (ψ̂i ).

=⇒ Requires a large number of observations per subject.
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Some existing methods

2. Methods based on approximations of the likelihood

First order methods (FO, Beal and Sheiner, 1982)

yij = f (xij , ψi ) + εij

ψi = β + ηi

yij ≈ f (xij , β) +
∂f

∂ψi
(xij , β)ηi + εij

i) NONMEM package (very popular in pharmacokinetics)

ii) SAS proc NLMIXED (using the method=�ro option)
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Some existing methods

2. Methods based on approximations of the likelihood

First order conditional methods (FOCE, Lindstrom and Bates, 1990)

yij ≈ f (xij , ψ̂i ) +
∂f

∂ψi
(xij , ψ̂i )(ψi − ψ̂i ) + εij

ψ̂i maximizes the conditional distribution p(ψi |yi ; θ)

i) NONMEM package (FOCE option)

ii) SAS proc NLMIXED (using the method=eblup option)

iii) Splus/R function NLME

- theoretical drawbacks: no well-known statistical properties of
the algorithm,

- practical drawbacks: very sensitive to the initial guess, does
not always converge, poor estimation of some parameters,. . .
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Some existing methods

3. Methods based on numerical approximations of the likelihood

Laplace method

Gaussian quadrature method

- nice theoretical properties: maximum likelihood estimation is
performed,

- practical drawbacks : limited to few random e�ects.
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The MONOLIX Group
MOdèles NOn LInéaires à e�ets miXtes

This multi-disciplinary group, born in october 2003 develop
activities in the �eld of mixed e�ect models. It involves scientists
with varied backgrounds, interested both in the study and
applications of these models:

academic statisticians from several universities of Paris
(theoretical developments),

researchers from INSERM (U738, applications in
pharmacology)

researchers from INRA (applications in agronomy, animal
genetics. . . ),

scientists from the medical faculty of Lyon-Sud University
(applications in oncology).
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The MONOLIX Group

The objectives of the group are multiple:

develop new methodologies,

study the theoretical properties of these methodologies,

apply these methodologies to realistic problems,

implement these methodologies in a free software, available to
the whole community.
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MONOLIX 2
an �academic� (but promising) software

MONOLIX 2 is an open-source software using Matlab (a
StandAlone version is available)

MONOLIX 2 was developed from April 2007 to October 2008 :

Version 2.1: April 2007

Version 2.2: June 2007

Version 2.3: November 2007

- release 2.3.1: March 2008 (C++ package)
- release 2.3.2: April 2008 (categorical covariates ;
transformation of the individual parameters ...)

- release 2.3.4: May 2008 (Inter Occasion Variability)

Version 2.4: July 2008 (3 cpts PK models ; e�ect compartment
models ; "NMTRAN-like" interpreter)

- release 2.4 stable: October 2008
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MONOLIX 2
Downloads

About 100 downloads per month

Academics
Universities : Iowa, Utah, Massachusetts, Kentucky, Maryland,
Pennsylvania, Pittsburgh, Bu�alo, Brown, Uppsala, Utrecht, Bern,
Gdansk, Belfast, Melbourne, Auckland, Cape Town, Teheran,
Karachi, Heilongjiang, Kyushu, Kyoto, Yogyaka, Naresuan,
Okayama, Buenos-Aires,. . .
INSERM, CHU, CNRS, INRA, ENVT,. . .

Industry
Novartis, Roche, Johnson & Johnson, Sano�-Aventis, P�zer, GSK,
Merck, BMS, UCB, Servier, Otsuka, Tibotec, Solvay, Abbott,
Amgen, Chugai, Merrimack, Novo Nordisk,. . .

Consulting companies
Exprimo, Pharsight, Nektar, Freise, Rosa, . . .
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MONOLIX 2
Trainings

PAGE 2009, St-Petersbourg, Russie, Juin 2009

Université de Bu�alo, USA, Mars 2009

Université de She�eld, Angleterre, Janvier 2009

Ho�mann-La Roche, Bâle, Suisse, Décembre 2008

PAGE 2008, Marseille, France, Juin 2008

Johnson & Johnson, Beerse, Belgique, Mai 2008

Novartis Pharma, Cambridge, USA, Mai 2008

Novartis Pharma, East Hanover, USA, Mai 2008

UCB, Braine l'Allaud, Belgique, Mars 2008

Novartis Pharma, Bâle, Suisse, Novembre 2007

PAGANZ 2007, Singapour, Février 2007
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MONOLIX 3
toward a �professional� software

The MONOLIX project consists primarily in developing the
next versions of the MONOLIX software with a view to raising
its level of functionalities and responding to major
requirements of the bio-pharmaceutical industry.

The MONOLIX project is a 3-year software development
project by a 5-engineer Monolix team.

The MONOLIX Project is carried out by INRIA, and sponsored
by the Industry

Members of the project: Novartis, Roche, Johnson & Johnson,
Sano�-Aventis,

The MONOLIX Scienti�c Guidance Committee involves
representatives of the sponsors.

Version 3.1: July 2009 (discrete data models, HMM, complex
PK models, . . . )
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The algorithms used in MONOLIX

Intensive use of powerful and well-known algorithms in the
MONOLIX software:

Estimation of the population parameters: Maximum
likelihood estimation with the SAEM (Stochastic
Approximation of EM) algorithm, combined with MCMC
(Markov Chain Monte Carlo) and Simulated Annealing,

Estimation of the individual parameters:
Estimation/Maximization of the conditional distributions with
MCMC,

Estimation of the objective (likelihood) function: Monte
Carlo and minimum variance Importance Sampling,

Model selection and assessment: Information criteria (AIC,
BIC), Statistical Tests (LRT, Wald test), Goodness of �t plots
(Individual �ts, Weighted residuals, NPDE, VPC,. . . ).
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The non-linear mixed e�ects model
Distribution of the individual parameters

1) Some examples without covariates

ψi = (ψik , 1 ≤ k ≤ p)

= h(β, ηi )

ψpop = h(β, 0) (population parameter)

Normal distribution (ψik can take any value in R)

ψik = βk + ηik = ψpop
k + ηik

log-normal distribution (assuming that ψik > 0)

ψik = eβk+ηik = ψpop
k eηik

logit transformation (assuming that 0 < ψik < 1)

ψik =
1

1 + e−βk−ηik
=

ψpop
k

ψpop
k + (1− ψpop

k )e−ηik
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The non-linear mixed e�ects model
Distribution of the individual parameters

2) An example with Weight as a covariate

ψi = (ψik , 1 ≤ k ≤ p)

= h(Wi , β, ηi )

ψik = eβk1+ηik

(
Wi

Wpop

)βk2
= ψpop

k

(
Wi

Wpop

)βk2
eηik

log(ψik) = log(ψpop
k ) + βk2 log

(
Wi

Wpop

)
+ ηik
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The non-linear mixed e�ects model
Categorical covariates

Assume that some categorical covariate Ci takes M values

ψik = ψref
k +

M∑
m=1

βk,m1Ci=m + ηik

m?: reference group ⇐⇒ βk,m? = 0

The variances of the random e�ects can also depend on this
categorical covariate.
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The non-linear mixed e�ects model
The residual error model

yij = f (xij , ψi ) + g(xij , ψi )εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

The residual errors (εij) are supposed to be i.i.d. Gaussian random
variables with mean zero and variance σ2 = 1.

Example : g(xij , ψi ) = a + bf c(xij , ψi )

the constant error model: y = f + aε,

the proportional error model: y = f (1 + bε),

combined error model: y = f + (a + bf )ε.
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The non-linear mixed e�ects model
The residual error model

Extension:

t(yij) = t(f (xij , ψi )) + g(xij , ψi )εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

Examples

the exponential error model: t(y) = log(y):

y = fegε

,

the logit error model: t(y) = log(y/(1− y)),

y =
f

f + (1− f )e−gε



logo

The non-linear mixed e�ects model
Modeling data below the LOQ

Statistical model:

yij = f (xij , ψi ) + g(xij , ψi )εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

εij ∼ N (0, 1)

Observed data

yobsij =

{
yij if yij > LOQ

LOQ if yij ≤ LOQ

Left-censored data y cens = {yij |yij ≤ LOQ}
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The non-linear mixed e�ects model
Multi-responses models

y
(1)
ij = f1(x

(1)
ij , ψi ) + ε

(1)
ij

...

y
(L)
ij = fL(x

(L)
ij , ψi ) + ε

(L)
ij

PKPD model: the input of the PD model x
(2)
ij is the output of the

PK model f1(x
(1)
ij , ψi ) (the concentration).

Viral dynamics: y (1) is the viral load and y (2) is the CD4+ count.
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The non-linear mixed e�ects model
Modeling the inter-occasion variability

yikj = f (xikj , ψik) + g(xikj , ψik)εikj

- i = 1, . . . ,N is the subject

- k = 1, . . . ,K is the occasion

- j = 1, . . . , nik is the measure

- yikj is the jth observation of occasion k and subject i

- ψik individual parameter of subject i at occasion k
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The non-linear mixed e�ects model
Modeling the inter-occasion variability

ψik = ψpop + ηi + κik

- µ (px1) population parameter

- ηi (px1) random e�ect of subject i : ηi ∼ N (0,Ω)

- κik (px1) random e�ect of subject i at occasion k :
κik ∼ N (0, Γ)

- ηi et κik are assumed to be independent

- Ω (pxp) inter-subject variability

- Γ (pxp) inter-occasion variability

Model with covariate:

ψik = µ+ βCi + β̃C̃ik + ηi + κik
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The incomplete data model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

We are in a classical framework of �incomplete data�:

the measurement y = (yij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni ) are the
�observed data�

the individual random parameters φ = (ψi , 1 ≤ i ≤ N), are
the �non observed data� ,

the �complete data� of the model is (y , φ).

Estimation of the population parameters:
compute θ̂, the maximum likelihood estimate of the un-
known set of parameters θ = (β,Ω, σ2), by maximizing
the likelihood of the observations `(y , θ), without any ap-
proximation on the model.
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The incomplete data model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

We are in a classical framework of �incomplete data�:

the measurement y = (yij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni ) are the
�observed data�

the individual random parameters φ = (ψi , 1 ≤ i ≤ N), are
the �non observed data� ,

the �complete data� of the model is (y , φ).

Estimation of the individual parameters:
compute/maximize the conditional distributions of the in-
dividual parameters p(φi |yi ; θ̂ ), without any approxima-
tion on the model.
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The incomplete data model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

We are in a classical framework of �incomplete data�:

the measurement y = (yij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni ) are the
�observed data�

the individual random parameters φ = (ψi , 1 ≤ i ≤ N), are
the �non observed data� ,

the �complete data� of the model is (y , φ).

Estimation of the likelihood function:
compute the observed likelihood `(y , θ̂ ), without any ap-
proximation on the model.
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The EM algorithm (Expectation-Maximization)

(Dempster, Laird et Rubin, JRSSB, 1977)

Since φ is not observed, log p(y , φ; θ) cannot be directly used for
estimating θ. Then

Iteration k of the algorithm:

step E : evaluate the quantity

Qk(θ) = E[log p(y , φ; θ)|y ; θk−1]

step M : update the estimation of θ:

θk = Argmax Qk(θ)
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estimating θ. Then
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Convergence of EM

Theorem

Convergence of (θk) to a stationary point θ̂` of the observed
likelihood is ensured under some regularity conditions.

Some practical drawbacks of EM:

Convergence depends on the initial guess.

Slow convergence of EM.

Evaluation of Qk(θ) = E [log p(y , φ; θ)|y ; θk−1] during step E.
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Stochastic Approximation
Estimation of the mean

Assume that we can observe (or we can draw) x1, x2, . . .

E (xk) = m ; Var(xk) = σ2

We aim to estimate m = E (xk)
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Stochastic Approximation
Estimation of the mean

Assume that we can observe (or we can draw) x1, x2, . . .

E (xk) = m ; Var(xk) = σ2

We aim to estimate m = E (xk)
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Stochastic Approximation
Estimation of the mean

1) approximate m by xk

unbiased estimate since E (xk) = m

not consistant estimate since Var(xk) = σ2.
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Stochastic Approximation
Estimation of the mean

2) approximate m by xk = 1/k
∑k

i=1 xi

unbiased estimate since E (xk) = m,

consistant estimate since Var(xk)→ 0.

Thus, xk → m when k →∞.

xk = xk−1 +
1

k
(xk − xk−1)
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Stochastic Approximation
Estimation of the mean
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The SAEM algorithm (Stochastic Approximation of EM)
Delyon, Lavielle and Moulines (the Annals of Statistics, 1999)

First stage of the algorithm:

Iteration k of the algorithm:

step E :

Simulation: draw the non observed data φ(k) with the
conditional distribution p(φ |y ; θk−1)

step M: update the estimation of θ:

θk = Argmax p(y , φ(k); θ)
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First stage of the algorithm:

Iteration k of the algorithm:

step E :

Simulation: draw the non observed data φ(k) with the
conditional distribution p(φ |y ; θk−1)

step M: update the estimation of θ:

θk = Argmax p(y , φ(k); θ)
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The SAEM algorithm (Stochastic Approximation of EM)
Delyon, Lavielle and Moulines (the Annals of Statistics, 1999)

Second stage of the algorithm:

Iteration k of the algorithm:

step E :

Simulation: draw the non observed data φ(k) with the
conditional distribution p(φ |y ; θk−1)
Stochastic approximation:

Qk(θ) = Qk−1(θ) + γk

[
log p(y , φ(k); θ)− Qk−1(θ)

]
(γk) is a decreasing sequence:

∑
γk = +∞,

∑
γ2k < +∞.

step M: update the estimation of θ:

θk = Argmax Qk(θ)
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The SAEM algorithm (Stochastic Approximation of EM)
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Coupling SAEM with MCMC
Kuhn and Lavielle, ESAIM P&S, 2004

Let Πθ be the transition probability of an ergodic Markov Chain

with limiting distribution pΦ|Y (·|y ; θ).

Iteration k of the algorithm:

Simulation : draw φ(k) according to the transition probability
Πθk−1

(φ(k−1), ·).

Stochastic approximation:

Qk(θ) = Qk−1(θ) + γk

[
log p(y , φ(k); θ)− Qk−1(θ)

]
Maximization:

θk = Argmax Qk(θ)
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The main convergence Theorem

Theorem

Under very general technical conditions, the SAEM sequence (θk)
converges a.s. to some (local) maximum of the observed likelihood

g(y ; θ).

Proof.

See

1. Delyon, Lavielle & Moulines The Annals of Statistics (1999)

2. Kuhn & Lavielle ESAIM P&S (2004)
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Convergence of the algorithm
(Kuhn & Lavielle, 2004)

C1 The chain (φk)k≥0 takes its values in a compact subset E of
Rl .

C2 For any compact subset V of Θ, there exists a real constant L
such that for any (θ, θ′) in V 2

sup
(x ,y)∈E2

|Πθ(x , y)− Πθ′(x , y)| ≤ L|θ − θ′|.

C3 The transition probability Πθ generates a uniformly ergodic
chain whose invariant probability is p(·|y ; θ): there exists
Kθ ∈ R+ and ρθ ∈]0, 1[ such that

∀φ ∈ E , ∀k ∈ N, ||Πk
θ (φ, ·)− p(·|y ; θ)||TV ≤ Kθρ

k
θ ,

K , sup
θ

Kθ < +∞ and ρ , sup
θ
ρθ < 1.
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Convergence of the algorithm
(Kuhn & Lavielle, 2004)

Theorem

- Assume that the regularity conditions required for the
convergence of EM are satis�ed

- Assume that assumptions C1-C3 hold

- Assume that for any θ ∈ Θ, the sequence (Qk(θ))k≥0 takes its
values in a compact subset of S.

Then, w.p. 1, limk→+∞ d(θk ,L) = 0 where d(x ,A) denotes the
distance of x to the closed subset A and
L = {θ ∈ Θ, ∂θg(y ; θ) = 0} is the set of stationary points of g .

(Some weak hypothesis ensure the convergence to a (local)
maximum of the likelihood)
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Estimation of the Fisher Information matrix

An estimate of the asymptotic covariance matrix of θ̂` is the inverse
of the observed Fisher Information matrix :

−∂2θ log g(y ; θ̂`)

Louis's missing information principle (1982)

∂2θ log g(y ; θ) = Ey ;θ[∂2θ log f (y ,Z ; θ)]+Covy ;θ[∂θ log f (y ,Z ; θ)]

where

Covy ;θ[∂θ log f (y ,Z ; θ)] = Ey ;θ[
(
∂θ log f (y ,Z ; θ)

)(
∂θ log f (y ,Z ; θ)

)′
]

− Ey ;θ[∂θ log f (y ,Z ; θ)]Ey ;θ[∂θ log f (y ,Z ; θ)]′

and
∂θ log g(y ; θ) = Ey ;θ[∂θ log f (y ,Z ; θ)]
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Estimation of the Fisher Information matrix

Stochastic approximation:

∆k = ∆k−1 + γk [∂θ log f (y , φk ; θk)−∆k−1]

Dk = Dk−1 + γk
[
∂2θ log f (y , φk ; θk)− Dk − 1

]
Gk = Gk−1 + γk

[
∂θ log f (y , φk ; θk)∂θ log f (y , φk ; θk)t − Gk−1

]
Hk = Dk + Gk −∆k∆t

k

Under some regularity conditions, the sequence (Hk) converges
almost surely to the Fisher Information matrix
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MCMC (Markov Chain Monte Carlo)
An iterative procedure for the simulation of p(φ|y ; θ)

At iteration `

1 draw a new value φc with a proposal distribution q,

2 accept this new value, that is set φ` = φc with probability

α(φc) =
q(φc , φ(`−1))p(φc |y ; θ)

q(φc , φ(`−1))p(φ(`−1)|y ; θ)

In the model

y = f (x ;φ) + g(x ;φ)ε,

computing α(φc) only requires to compute f (x , φc) and
g(x , φc) but not the derivatives of f and g
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MCMC (Markov Chain Monte Carlo)
Some proposals used in MONOLIX

Three following proposal kernels for 1 ≤ i ≤ N:

1 q
(1)
θk

is the prior distribution of φi at iteration k , that is the
Gaussian distribution N (Aiµk , Γk)

2 q
(2)
θk

is the multidimensional random walk N (φi , τkΓk).

τk = τk−1(1 + a(ρk−1 − ρ?)) 0 < a < 1; ρ? ≈ 0.4

ρk−1: proportion of acceptation at iteration k − 1.

3 q
(3)
θk

is a succession of d unidimensional Gaussian random
walks: each component of φi are successively updated.
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MCMC (Markov Chain Monte Carlo)
Some proposals used in MONOLIX

Then, the simulation-step at iteration k consists in running

1 m1 iterations of the Hasting-Metropolis with proposal q
(1)
θk

,

2 m2 iterations with proposal q
(2)
θk

3 m3 iterations with proposal q
(3)
θk

.
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A Simulated Annealing version of SAEM

Conditional distribution of φ:

pΦ|Y ( φ |y ; θ) = C (y ; θ)e−U(φ,y ;θ)

Temperature parameter T :

p
(T )
Φ|Y ( φ |y ; θ) = CT (y ; θ)e−

U(φ,y ;θ)
T

Choose a decreasing Temperature sequence (Tk) converging to 1.
Then, at iteration k of SAEM,

E-step: draw the non observed data φ(k) with the conditional

distribution p
(Tk)
Φ|Y ( · |y ; θk−1)

M-step remains unchanged
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Importance Sampling for estimating the marginal likelihood

The Importance Sampling algorithm computes an estimate `M(y)
of the observed likelihood.

`(y , θ) =

∫
p(y , φ)dφ

=

∫
h(y |φ)π(φ)dφ

=

∫ (
h(y |φ)

π(φ)

π̃(φ)

)
π̃(φ)dφ

1 Draw φ(1), φ(2), . . . , φ(M) with the distribution π̃,

2 Let

`M(y) =
1

M

M∑
j=1

h(y |φ(j))
π(φ(j))

π̃(φ(j))
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Importance Sampling for estimating the marginal likelihood

`M(y) =
1

M

M∑
j=1

h(y |φ(j))
π(φ(j))

π̃(φ(j))

E`M(y) = `(y) and Var`M(y) = O(1/M)

The instrumental distribution used in MONOLIX:

1) Estimate the conditional mean and variance of φ,

2) Use for π̃ a decentred t-distribution with ν d.f.

φ
(j)
i = E (φi |yi ; θ̂ ) + s.d .(φi |yi ; θ̂ )× T (ν)
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