Multiscale modelling of complex fluids: a mathematical initiation.

Tony Lelièvre

CERMICS, Ecole des Ponts, et projet MicMac, INRIA. http://cermics.enpc.fr/~lelievre

Reference (with Matlab programs, see Section 5): http://hal.inria.fr/inria-00165171.

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

Outline

- 1 Modeling
 - 1A Experimental observations
 - 1B Multiscale modeling
 - 1C Microscopic models for polymer chains
 - 1D Micro-macro models for polymeric fluids
 - 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

1A Experimental observations

We are interesting in complex fluids, whose non-Newtonian behaviour is due to some microstructures.

Cover page of Science, may 1994

Journal of Statistical Physics, 29 (1982) 813-848

More precisely, we study the case when the microstructures are:

- 1. very numerous (statistical mechanics),
- 2. small and light (Brownian effects),
- 3. within a Newtonian solvent.

This is not the case of granular materials.

A prototypical example is dilute solution of polymers.

Some examples of complex fluids:

- food industry: mayonnaise, egg white, jellies
- materials industry: plastic (especially during forming), polymeric fluids
- biology-medicine: blood, synovial liquid
- civil engineering: fresh concrete, paints
- environment: snow, muds, lava
- cosmetics: shaving cream, toothpaste, nail polish

Shearing experiments in a rheometer:

 $(\Omega, C) \iff (\dot{\gamma}, \tau)$

 $\tau = \frac{C}{2\pi R_{int}^2 h}$

1A Experimental observations

At stationary state:

A simple dynamics effect: the velocity overshoot for the start-up of shear flow.

Velocity profile as time evolves: Newtonian fluid vs Hookean dumbbell model.

These are two typical non-Newtonian effects : the open syphon effect and the rod climbing effect.

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

Momentum equations (incompressible fluid):

$$\rho \left(\partial_t + \mathbf{u} \cdot \nabla\right) \mathbf{u} = -\nabla p + \operatorname{div}(\boldsymbol{\sigma}) + \mathbf{f}_{ext},$$

 $\operatorname{div}(\mathbf{u}) = 0.$

Newtonian fluids (Navier-Stokes equations):

$$\boldsymbol{\sigma} = \eta \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right),\,$$

Non-Newtonian fluids:

$$\boldsymbol{\sigma} = \eta \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) + \boldsymbol{\tau},$$

 τ depends on the history of the deformation.

Differential models : $\frac{D\tau}{Dt} = f(\tau, \nabla \mathbf{u}),$ Integral models : $\tau = \int_{-\infty}^{t} m(t - t') \mathbf{S}_t(t') dt'.$

(Macroscopic approach: R. Keunings & al., B. van den Brule & al., M. Picasso & al.)

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

Micro-macro models require a microscopic model couped to a macroscopic description: difficulties wrt timescales and length scales.

The coupling requires some concepts from statistical mechanics: compute macroscopic quantities (stress, reaction rates, diffusion constants) from microscopic descriptions.

One needs a coarse description of the microstructures. How to model a microstructure evolving in a solvent ? Answer : molecular dynamics and the Langevin equations.

In Section 1C, we assume that the velocity field of the solvent is given (and is zero in a first stage).

Microscopic model: *N* particles (atoms, groups of atoms) with positions $(q_1, ..., q_N) = q \in \mathbb{R}^{3N}$, interacting through a potential $V(q_1, ..., q_N)$. Typically,

$$V(\boldsymbol{q}_1, \dots, \boldsymbol{q}_N) = \sum_{i < j} V_{\text{paire}}(\boldsymbol{q}_i, \boldsymbol{q}_j) + \sum_{i < j < k} V_{\text{triplet}}(\boldsymbol{q}_i, \boldsymbol{q}_j, \boldsymbol{q}_k) + \dots$$

For a polymer chain, for example, a fine description would be to model the conformation by the position of the carbon atoms (backbone atoms). The potential *V* typically includes some terms function of the dihedral angles along the backbone. Molecular dynamics (solvent at rest): Langevin dynamics

$$\begin{cases} d\mathbf{Q}_t = M^{-1}\mathbf{P}_t dt, \\ d\mathbf{P}_t = -\nabla V(\mathbf{Q}_t) dt - \zeta M^{-1}\mathbf{P}_t dt + \sqrt{2\zeta\beta^{-1}} d\mathbf{W}_t, \end{cases}$$

where \mathbf{P}_t is the momentum, M is the mass tensor, ζ is a friction coefficient and $\beta^{-1} = kT$.

Origin of the Langevin dynamics: description of a colloidal particle in a liquid (Brown).

The Langevin dynamics is a thermostated Newton dynamics: The fluctuation $(\sqrt{2\zeta\beta^{-1}}d\mathbf{W}_t)$ dissipation $(-\zeta M^{-1}\mathbf{P}_t dt)$ terms are such that the Boltzmann-Gibbs measure is left invariant:

$$\nu(d\mathbf{p}, d\mathbf{q}) = \overline{Z}^{-1} \exp\left(-\beta \left(\frac{\mathbf{p}^T M^{-1} \mathbf{p}}{2} + V(\mathbf{q})\right)\right) d\mathbf{p} d\mathbf{q}.$$

To explain this in a simpler context, let us make the following simplification $M/\zeta \rightarrow 0$:

$$d\mathbf{Q}_t = -\nabla V(\mathbf{Q}_t)\zeta^{-1} dt + \sqrt{2\zeta^{-1}\beta^{-1}} d\mathbf{W}_t.$$

This dynamics leaves invariant the Boltzmann-Gibbs measure: $\mu(d\mathbf{q}) = Z^{-1} \exp(-\beta V(\mathbf{q})) d\mathbf{q}$.

The Stochastic Differential Equation

$$d\mathbf{Q}_t = -\nabla V(\mathbf{Q}_t)\zeta^{-1} dt + \sqrt{2\zeta^{-1}\beta^{-1}} d\mathbf{W}_t$$

is discretized by the Euler scheme (with time step Δt):

$$\overline{\mathbf{Q}}_{n+1} - \overline{\mathbf{Q}}_n = -\nabla V(\overline{\mathbf{Q}}_n)\zeta^{-1}\,\Delta t + \sqrt{2\zeta^{-1}\beta^{-1}\Delta t}\boldsymbol{G}_n$$

where $(G_n^i)_{1 \le ile3, n \ge 0}$ are i.i.d. Gaussian random variables with zero mean and variance one. Indeed

$$(\boldsymbol{W}_{(n+1)\Delta t} - \boldsymbol{W}_{n\Delta t})_{n\geq 0} \stackrel{\mathcal{L}}{=} \sqrt{\Delta t} (\boldsymbol{G}_n)_{n\geq 0}.$$

The Itô formula. Let ϕ be a smooth test function. Then

 $d\phi(\mathbf{Q}_t) = \nabla \phi(\mathbf{Q}_t) \cdot d\mathbf{Q}_t + \Delta \phi(\mathbf{Q}_t) \zeta^{-1} \beta^{-1} dt.$

Proof (dimension 1):

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t$$

$$\overline{X}_{n+1} - \overline{X}_n = b(\overline{X}_n)\Delta t + \sigma(\overline{X}_n)\sqrt{\Delta t}G_n$$

and thus

$$\phi(\overline{X}_{n+1}) = \phi\left(\overline{X}_n + b(\overline{X}_n)\Delta t + \sigma(\overline{X}_n)\sqrt{\Delta t}G_n\right)$$
$$= \phi(\overline{X}_n) + \phi'(\overline{X}_n)(b(\overline{X}_n)\Delta t + \sigma(\overline{X}_n)\sqrt{\Delta t}G_n)$$
$$+ \frac{1}{2}\phi''(\overline{X}_n)\sigma^2(\overline{X}_n)\Delta tG_n^2 + o(\Delta t).$$

T. Lelièvre, CEMRACS, Juillet 2008 - p. 25

Then, summing over n and in the limit $\Delta t \rightarrow 0$,

$$\begin{split} \phi(X_t) &= \phi(X_0) + \int_0^t \phi'(X_s)(b(X_s)ds + \sigma(X_s) \, dW_s) \\ &+ \frac{1}{2} \int_0^t \sigma^2(X_s) \phi''(X_s) \, ds, \\ &= \phi(X_0) + \int_0^t \phi'(X_s) dX_s + \frac{1}{2} \int_0^t \sigma^2(X_s) \phi''(X_s) \, ds, \end{split}$$

which is exactly

$$d\phi(X_t) = \phi'(X_t)dX_t + \frac{1}{2}\sigma^2(X_t)\phi''(X_t)\,dt.$$

The Fokker-Planck equation. At fixed time t, Q_t has a density $\psi(t, q)$. The function ψ satisfies the PDE:

$$\zeta \partial_t \psi = \operatorname{div}(\nabla V \psi + \beta^{-1} \nabla \psi).$$

Proof (dimension 1):

$$dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t,$$

and we show that $X_t \stackrel{\mathcal{L}}{=} \psi(t, x) dx$ with

$$\partial_t \psi = \partial_x \left(-b\psi + \partial_x (\sigma\psi) \right).$$

We recall the Itô formula:

$$\phi(X_t) = \phi(X_0) + \int_0^t \phi'(X_s) dX_s + \frac{1}{2} \int_0^t \sigma^2(X_s) \phi''(X_s) ds.$$

By definition of ψ , $\mathbf{E}(\phi(X_t)) = \int \phi(x)\psi(t,x) dx$. Thus, we have

$$\int \phi \psi(t, \cdot) = \int \phi \psi(0, \cdot) + \int_0^t \int \phi' b \psi(s, \cdot) ds + \frac{1}{2} \int_0^t \int \sigma^2 \phi'' \psi(s, \cdot) ds.$$

We have used the fact that

$$\mathbf{E} \int_0^t \phi'(X_s) dX_s = \mathbf{E} \int_0^t \phi'(X_s) b(X_s) \, ds + \mathbf{E} \int_0^t \phi'(X_s) \sigma(X_s) \, dW_s$$
$$= \int_0^t \mathbf{E}(\phi'(X_s) b(X_s)) \, ds$$

since $\mathbf{E} \int_0^t \phi'(X_s) \sigma(X_s) \, dW_s \simeq \mathbf{E} \sum_{k=0}^n \phi'(\overline{X}_k) \sigma(\overline{X}_k) \sqrt{\Delta t} G_k = 0.$

Thus the Boltzmann-Gibbs measure

$$\mu(d\mathbf{q}) = Z^{-1} \exp(-\beta V(\mathbf{q})) \, d\mathbf{q}$$

is invariant for the dynamics

$$d\mathbf{Q}_t = -\nabla V(\mathbf{Q}_t)\zeta^{-1} dt + \sqrt{2\zeta^{-1}\beta^{-1}} d\mathbf{W}_t.$$

Proof: We know that Q_t has a density ψ which satisfies:

$$\zeta \partial_t \psi = \operatorname{div}(\nabla V \psi + \beta^{-1} \nabla \psi).$$

If $\psi(0, \cdot) = \exp(-\beta V)$, then $\forall t \ge 0$, $\psi(t, \cdot) = \exp(-\beta V)$.

A similar derivation can be done for the Langevin dynamics.

Back to polymers. Which description ? The fine description is not suitable for micro-macro coupling (computer cost, time scale). We need to coarse-grain. Idea : consider blobs (1 blob $\simeq 20 \ CH_2$ groups). The basic model (the dumbbell model): only two blobs. The conformation is given by the "end-to-end vector".

Coarse-graining at equilibrium: use the image of the Boltzmann-Gibbs measure by the end-to-end vector mapping ("collective variable"):

$$\xi: \begin{cases} \mathbb{R}^{3N} \longrightarrow \mathbb{R}^{3} \\ \mathbf{q} = (\mathbf{q}_1, \dots, \mathbf{q}_N) \longmapsto \mathbf{x} = \mathbf{q}_N - \mathbf{q}_1 \end{cases}$$

namely:

$$\xi * \left(Z^{-1} \exp(-\beta V(\mathbf{q})) \, d\mathbf{q} \right) = \exp(-\beta \Pi(\mathbf{x})) \, d\mathbf{x}.$$

Thus

$$\Pi(\mathbf{x}) = -\beta^{-1} \ln \left(\int \exp(-\beta V(\mathbf{q})) \delta_{\xi(\mathbf{q})-\mathbf{x}}(d\mathbf{q}) \right)$$

Coarse-graining for polymers: W. Briels, V.G. Mavrantzas.

Typically, two forces $\mathbf{F} = -\nabla \Pi$ are used:

$$\label{eq:F} \begin{split} \mathbf{F}(\mathbf{X}) &= H\mathbf{X} \\ H\mathbf{X} \\ \hline \mathbf{F}(\mathbf{X}) &= \frac{H\mathbf{X}}{1 - \|\mathbf{X}\|^2/(bkT/H)} \end{split} \quad \begin{aligned} \text{Hookean dumbbell}, \\ \text{FENE dumbbell}, \end{aligned}$$

(FENE = Finite Extensible Nonlinear Elastic).

Notice that this effective potential Π ("free energy") is correct wrt statistical properties at equilibrium: $\int \phi(\mathbf{x}) \exp(-\beta \Pi(\mathbf{x})) d\mathbf{x} = Z^{-1} \int \phi(\xi(\mathbf{q})) \exp(-\beta V(\mathbf{q})) d\mathbf{q}.$

We are now in position to write the basic model (the Rouse model).

References: R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, *Dynamic of Polymeric Liquids*, Wiley / M. Doi, S.F. Edwards, *The theory of polymer dynamics*, Oxford Science Publication) / H.C. Öttinger, *Stochastic processes in polymeric fluids*, Springer.

Forces on bead *i* (i = 1 or 2) of coordinate vector \mathbf{X}_t^i in a velocity field $\mathbf{u}(t, \mathbf{x})$ of the solvent (Langevin equation with negligible mass):

• Drag force:

$$-\zeta\left(\frac{d\mathbf{X}_t^i}{dt}-\mathbf{u}(t,\mathbf{X}_t^i)\right),$$

• Entropic force between beads 1 and 2 $(\mathbf{X} = (\mathbf{X}^2 - \mathbf{X}^1))$:

$$\label{eq:F} \begin{split} \mathbf{F}(\mathbf{X}) &= H\mathbf{X} & \text{Hookean dumbbell}, \\ \mathbf{F}(\mathbf{X}) &= \frac{H\mathbf{X}}{1 - \|\mathbf{X}\|^2/(bkT/H)} & \text{FENE dumbbell}, \end{split}$$

• "Brownian force": $\mathbf{F}_{b}^{i}(t)$ such that

$$\int_{0}^{t} \mathbf{F}_{b}^{i}(s) \, ds = \sqrt{2kT\zeta} \, \mathbf{B}_{t}^{i}$$

with \mathbf{B}_t^i a Brownian motion.

We introduce the end-to-end vector $\mathbf{X}_t = (\mathbf{X}_t^2 - \mathbf{X}_t^1)$ and the position of the center of mass $\mathbf{R}_t = \frac{1}{2} (\mathbf{X}_t^1 + \mathbf{X}_t^2)$. We have:

$$\begin{cases} d\mathbf{X}_t^1 = \mathbf{u}(t, \mathbf{X}_t^1) dt - \zeta^{-1} \mathbf{F}(\mathbf{X}_t) dt + \sqrt{2kT\zeta^{-1}} d\mathbf{B}_t^1 \\ d\mathbf{X}_t^2 = \mathbf{u}(t, \mathbf{X}_t^2) dt + \zeta^{-1} \mathbf{F}(\mathbf{X}_t) dt + \sqrt{2kT\zeta^{-1}} d\mathbf{B}_t^2 \end{cases}$$

By linear combinations of the two Langevin equations on \mathbf{X}^1 and \mathbf{X}^2 , one obtains:

$$d\mathbf{X}_{t} = \left(\mathbf{u}(t, \mathbf{X}_{t}^{2}) - \mathbf{u}(t, \mathbf{X}_{t}^{1})\right) dt - \frac{2}{\zeta}\mathbf{F}(\mathbf{X}_{t}) dt + 2\sqrt{\frac{kT}{\zeta}}d\mathbf{W}_{t}^{1},$$
$$d\mathbf{R}_{t} = \frac{1}{2}\left(\mathbf{u}(t, \mathbf{X}_{t}^{1}) + \mathbf{u}(t, \mathbf{X}_{t}^{2})\right) dt + \sqrt{\frac{kT}{\zeta}}d\mathbf{W}_{t}^{2},$$

where $W_t^1 = \frac{1}{\sqrt{2}} \left(B_t^2 - B_t^1 \right)$ and $W_t^2 = \frac{1}{\sqrt{2}} \left(B_t^1 + B_t^2 \right)$. Approximations:

- $\mathbf{u}(t, \mathbf{X}_t^i) \simeq \mathbf{u}(t, \mathbf{R}_t) + \nabla \mathbf{u}(t, \mathbf{R}_t) (\mathbf{X}_t^i \mathbf{R}_t),$
- the noise on \mathbf{R}_t is zero.

We finally get

$$d\mathbf{X}_{t} = \nabla \mathbf{u}(t, \mathbf{R}_{t}) \mathbf{X}_{t} dt - \frac{2}{\zeta} \mathbf{F}(\mathbf{X}_{t}) dt + \sqrt{\frac{4kT}{\zeta}} d\mathbf{W}_{t},$$
$$d\mathbf{R}_{t} = \mathbf{u}(t, \mathbf{R}_{t}) dt.$$

Eulerian version:

 $d\mathbf{X}_t(\boldsymbol{x}) + \mathbf{u}(t, \boldsymbol{x}) \cdot \nabla \mathbf{X}_t(\boldsymbol{x}) dt =$

$$abla \mathbf{u}(t, \boldsymbol{x}) \mathbf{X}_t(\boldsymbol{x}) dt - \frac{2}{\zeta} \mathbf{F}(\mathbf{X}_t(\boldsymbol{x})) dt + \sqrt{\frac{4kT}{\zeta}} d\mathbf{W}_t.$$

 $\mathbf{X}_t(\boldsymbol{x})$ is a function of time *t*, position \boldsymbol{x} , and probability variable ω .
1C Microscopic models for polymer chains

Discussion of the modelling (1/2).

Discussion of the coarse-graining procedure:

- The construction of ∏ has been done for zero velocity field (u = 0). How do the two operations : u ≠ 0 and "coarse-graining" commute ?
- Imagine $\mathbf{u} = 0$. The dynamics

$$d\mathbf{X}_t = -\frac{2}{\zeta} \mathbf{F}(\mathbf{X}_t) \, dt + \sqrt{\frac{4kT}{\zeta}} d\mathbf{W}_t$$

is certainly correct wrt the sampled measure $(\exp(-\beta\Pi))$. But what to say about the correctness of the dynamics ?

Discussion of the modelling (2/2).

Discussion of the approximations:

- the expansion used on the velocity requires some regularity on u: the term ∇u leads to some mathematical difficulties in the mathematical analysis.
- if the noise on R_t is not neglected, a diffusion term in space (x-variable) in the Fokker-Planck equation gives more regularity.

We have presented a suitable model for *dilute solution* of *polymers*.

Similar descriptions (kinetic theory) have been used to model:

- rod-like polymers and liquid crystals (Onsager, Maier-Saupe),
- polymer melts (de Gennes, Doi-Edwards),
- concentrated suspensions (Hébraud-Lequeux),
- blood (Owens).

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

To close the system, an expression of the stress tensor τ in terms of the polymer chain configuration is needed. This is the Kramers expression (assuming homogeneous system):

$$\boldsymbol{\tau}(t,\boldsymbol{x}) = n_p \Big(-kT\boldsymbol{I} + \mathbf{E} \left(\mathbf{X}_t(\boldsymbol{x}) \otimes \mathbf{F}(\mathbf{X}_t(\boldsymbol{x})) \right) \Big).$$

How to derive this formula? One approach is to use the principle of virtual work. Another idea is to go back to the definition of stress:

 $\boldsymbol{\tau} \boldsymbol{n} \, dS = \mathbf{E} \left(\mathsf{sgn}(\mathbf{X}_t \cdot \boldsymbol{n}) \mathbf{F}(\mathbf{X}_t) \mathbf{1}_{\{\mathbf{X}_t \text{ intersects plane}\}} \right).$

Since the system is assumed to be homogeneous, given \mathbf{X}_t , the probability that \mathbf{X}_t intersects the plane is $N_p \frac{dS|\mathbf{X}_t \cdot \boldsymbol{n}|}{V}$.

 $|\mathbf{X}_t \cdot \boldsymbol{n}|$

Thus we have:

 $\boldsymbol{\tau} \boldsymbol{n} \, dS = \mathbf{E} \left(\mathsf{sgn}(\mathbf{X}_t \cdot \boldsymbol{n}) \mathbf{F}(\mathbf{X}_t) \mathbf{1}_{\{\mathbf{X}_t \text{ intersects plane}\}} \right)$

 $= \mathbf{E} \left(\mathsf{sgn}(\mathbf{X}_t \cdot \boldsymbol{n}) \mathbf{F}(\mathbf{X}_t) \mathbf{P}(\mathbf{X}_t \text{ intersects plane} | \mathbf{X}_t) \right)$

$$= n_p \mathbf{E} \left(\mathbf{sgn} (\mathbf{X}_t \cdot \boldsymbol{n}) \mathbf{F} (\mathbf{X}_t) | \mathbf{X}_t \cdot \boldsymbol{n} | \right) \, dS$$

 $= n_p \mathbf{E} \left(\mathbf{X}_t \otimes \mathbf{F}(\mathbf{X}_t) \right) \boldsymbol{n} \, dS,$

where $n_p = N_p/V$.

This is the complete coupled system:

$$\begin{aligned} \rho \left(\partial_t + \mathbf{u} \cdot \nabla\right) \mathbf{u} &= -\nabla p + \eta \Delta \mathbf{u} + \operatorname{div}(\boldsymbol{\tau}) + \mathbf{f}_{ext}, \\ \operatorname{div}(\mathbf{u}) &= 0, \\ \boldsymbol{\tau} &= n_p \Big(-kT\boldsymbol{I} + \mathbf{E} \left(\mathbf{X}_t \otimes \mathbf{F}(\mathbf{X}_t) \right) \Big), \\ d\mathbf{X}_t + \mathbf{u} \cdot \nabla_{\boldsymbol{x}} \mathbf{X}_t \, dt &= \left(\nabla \mathbf{u} \mathbf{X}_t - \frac{2}{\zeta} \mathbf{F}(\mathbf{X}_t) \right) \, dt + \sqrt{\frac{4kT}{\zeta}} d\mathbf{W}_t. \end{aligned}$$

The S(P)DE is posed at each macroscopic point x. The random process X_t is space-dependent: $X_t(x)$. One can replace the SDE by the Fokker-Planck equation, which rules the evolution of the density probability function $\psi(t, \boldsymbol{x}, \mathbf{X})$ of $\mathbf{X}_t(\boldsymbol{x})$:

$$\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla_{\boldsymbol{x}} \psi = -\operatorname{div}_{\mathbf{X}} \left((\nabla \mathbf{u} \, \mathbf{X} - \frac{2}{\zeta} \mathbf{F}(\mathbf{X})) \psi \right) + \frac{2kT}{\zeta} \, \Delta_{\mathbf{X}} \psi,$$

and then:

$$\boldsymbol{\tau}(t,\boldsymbol{x}) = -n_p \, k \, T \boldsymbol{I} \, + \, n_p \, \int_{\mathbb{R}^d} (\mathbf{X} \otimes \, \mathbf{F}(\mathbf{X})) \, \psi(t,\boldsymbol{x},\mathbf{X}) \, d\mathbf{X}.$$

Once non-dimensionalized, we obtain:

$$\begin{aligned} &\mathsf{Re} \left(\partial_t + \mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla p + (1 - \epsilon) \Delta \mathbf{u} + \operatorname{div}(\boldsymbol{\tau}) + \mathbf{f}_{ext}, \\ &\operatorname{div}(\mathbf{u}) = 0, \\ &\boldsymbol{\tau} = \frac{\epsilon}{\operatorname{We}} (\mu \mathbf{E}(\mathbf{X}_t \otimes \mathbf{F}(\mathbf{X}_t)) - \boldsymbol{I}), \\ &d\mathbf{X}_t + \mathbf{u} \cdot \nabla_{\boldsymbol{x}} \mathbf{X}_t \, dt = \left(\nabla \mathbf{u} \cdot \mathbf{X}_t - \frac{1}{2\operatorname{We}} \mathbf{F}(\mathbf{X}_t) \right) dt + \frac{1}{\sqrt{\operatorname{We} \mu}} d\mathbf{W}_t, \end{aligned}$$
with the following non-dimensional numbers:
$$&\mathsf{Re} = \frac{\rho U L}{\eta}, \operatorname{We} = \frac{\lambda U}{L}, \epsilon = \frac{\eta p}{\eta}, \mu = \frac{L^2 H}{k_b T}, \end{aligned}$$

and $\lambda = \frac{\zeta}{4H}$: a relaxation time of the polymers, $\eta_p = n_p kT \lambda$: the viscosity associated to the polymers, *U* and *L*: characteristic velocity and length. Usually, *L* is chosen so that $\mu = 1$.

Link with macroscopic models. the Hookean dumbbell model is equivalent to the Oldroyd-B model: if F(X) = X, τ satisfies:

$$\frac{\partial \boldsymbol{\tau}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\tau} = \nabla \mathbf{u} \boldsymbol{\tau} + \boldsymbol{\tau} (\nabla \mathbf{u})^T + \frac{\epsilon}{\mathrm{We}} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{1}{\mathrm{We}} \boldsymbol{\tau}.$$

There is no macroscopic equivalent to the FENE model. However, using the closure approximation

$$\mathbf{F}(\mathbf{X}) = \frac{H\mathbf{X}}{1 - \|\mathbf{X}\|^2 / (bkT/H)} \simeq \frac{H\mathbf{X}}{1 - \mathbf{E}\|\mathbf{X}\|^2 / (bkT/H)}$$

one ends up with the FENE-P model.

The FENE-P model:

$$\left(\begin{array}{c} \lambda \left(\frac{\partial \boldsymbol{\tau}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\tau} - \nabla \mathbf{u} \boldsymbol{\tau} - \boldsymbol{\tau} (\nabla \mathbf{u})^T \right) + Z(\operatorname{tr}(\boldsymbol{\tau})) \boldsymbol{\tau} \\ -\lambda \left(\boldsymbol{\tau} + \frac{\eta_p}{\lambda} \boldsymbol{I} \right) \left(\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \ln \left(Z(\operatorname{tr}(\boldsymbol{\tau})) \right) \right) = \eta_p (\nabla \mathbf{u} + (\nabla \mathbf{u})^T),$$

with

$$Z(\operatorname{tr}(\boldsymbol{\tau})) = 1 + \frac{d}{b} \left(1 + \lambda \frac{\operatorname{tr}(\boldsymbol{\tau})}{d \eta_p} \right),$$

where d is the dimension.

Remark: The derivative $\frac{\partial \tau}{\partial t} + \mathbf{u} \cdot \nabla \tau - \nabla \mathbf{u} \tau - \tau (\nabla \mathbf{u})^T$ is called the Upper Convected derivative.

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

1E Conclusion and discussion

This system coupling a PDE and a SDE can be solved by adapted numerical methods. The interests of this micro-macro approach are:

- kinetic modelling is reliable and based on some clear assumptions (macroscopic models usually derive from kinetic models (e.g. Oldroyd B), sometimes *via* closure approximations, but some microscopic models have no macroscopic equivalent (e.g FENE)),
- it enables numerical explorations of the link between microscopic properties and macroscopic behaviour,
- the parameters of these models have a physical meaning and can be evaluated,
- it seems that the numerical methods based on this approach are more robust.

1E Conclusion and discussion

However, micro-macro approaches are not the solution:

- One of the main difficulties for the computation of viscoelastic fluid is the High Weissenberg Number Problem (HWNP). This problem is still present in micro-macro models (highly refined meshes would be needed ?).
- The computational cost is very high. Discretization of the Fokker-Planck equation rather than the set of SDEs may help, but this is restrained to low-dimensional space for the microscopic variables.

The main interest of micro-macro approaches as compared to macro-macro approaches lies at the modelling level. Macro-macro approach:

$$\begin{cases} \frac{D\mathbf{u}}{Dt} &= \mathcal{F}(\boldsymbol{\tau}_p, \mathbf{u}), \\ \frac{D\boldsymbol{\tau}_p}{Dt} &= \mathcal{G}(\boldsymbol{\tau}_p, \mathbf{u}). \end{cases}$$

Multiscale, or micro-macro approach:

$$\begin{cases} \frac{D\mathbf{u}}{Dt} &= \mathcal{F}(\boldsymbol{\tau}_p, \mathbf{u}), \\ \boldsymbol{\tau}_p &= \text{average over } \Sigma, \\ \frac{D\Sigma}{Dt} &= \mathcal{G}_{\mu}(\Sigma, \mathbf{u}). \end{cases}$$

1E Conclusion and discussion

Pros and cons for the macro-macro and micro-macro approaches:

I		MACRO	MICRO-MACRO	
ſ	modelling capabilities	low	high	
	current utilization	industry	laboratories	
			discretization by Monte Carlo	discretization of Fokker-Planck
	computational cost	low	high	moderate
_	computational bottleneck	HWNP	variance, HWNP	dimension, HWNP

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

The main difficulties for mathematical analysis: transport and (nonlinear) coupling.

$$\begin{aligned} &\mathsf{Re}\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = (1 - \epsilon)\Delta \mathbf{u} - \nabla p + \operatorname{div}(\boldsymbol{\tau}) ,\\ &\operatorname{div}(\mathbf{u}) = 0 ,\\ &\boldsymbol{\tau} = \frac{\epsilon}{\operatorname{We}}(\mathbf{E}(\mathbf{X} \otimes \mathbf{F}(\mathbf{X})) - \boldsymbol{I}) ,\\ &d\mathbf{X} + \mathbf{u} \cdot \nabla \mathbf{X} dt = \left(\nabla \mathbf{u} \mathbf{X} - \frac{1}{2\operatorname{We}}\mathbf{F}(\mathbf{X})\right) dt + \frac{1}{\sqrt{\operatorname{We}}} d\mathbf{W}_t. \end{aligned}$$

Similar difficulties with macro models (Oldroyd-B):

$$\frac{\partial \boldsymbol{\tau}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\tau} = \nabla \mathbf{u} \boldsymbol{\tau} + \boldsymbol{\tau} (\nabla \mathbf{u})^T + \frac{\epsilon}{\mathrm{We}} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{1}{\mathrm{We}} \boldsymbol{\tau}$$

2A Generalities

The state-of-the-art mathematical well-posedness analysis is local-in-time existence and uniqueness results, both for macro-macro and micro-macro models.

One exception (P.L Lions, N. Masmoudi) concerns models with co-rotational derivatives rather than upper-convected derivatives, for which global-in-time existence results have been obtained. It consists in replacing

$$\frac{\partial \boldsymbol{\tau}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\tau} - \nabla \mathbf{u} \boldsymbol{\tau} - \boldsymbol{\tau} (\nabla \mathbf{u})^T$$

by

$$\frac{\partial \boldsymbol{\tau}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\tau} - W(\mathbf{u}) \boldsymbol{\tau} - \boldsymbol{\tau} W(\mathbf{u})^T,$$

where
$$W(\mathbf{u}) = \frac{\nabla \mathbf{u} - \nabla \mathbf{u}^T}{2}$$

T. Lelièvre, CEMRACS, Juillet 2008 - p. 56

These better results come from additional *a priori* estimates based on the fact that $(W(\mathbf{u})\boldsymbol{\tau} + \boldsymbol{\tau}W(\mathbf{u})^T) : \boldsymbol{\tau} = 0.$

For micro-macro models, it consists in using the SDE:

$$d\mathbf{X}_t + \mathbf{u} \cdot \nabla \mathbf{X}_t dt = \left(\frac{\nabla \mathbf{u} - \nabla \mathbf{u}^T}{2} \mathbf{X}_t - \frac{1}{2\text{We}} \mathbf{F}(\mathbf{X}_t)\right) dt + \frac{1}{\sqrt{\text{We}}} d\mathbf{W}_t.$$

However, these models are not considered as good models. For example, $\psi \propto \exp(-\Pi)$ is a stationary solution to the Fokker Planck equation whatever u.

Well-posedness results for micro-macro models:

- The uncoupled problem: SDE or FP.
 - SDE in the FENE case (B. Jourdain, TL: OK for $b \ge 2$),
 - the case of non smooth velocity field, transport term in the SDE or FP (C. Le Bris, P.L Lions).
- The coupled problem: PDE + SDE or PDE + FP.
 - PDE+SDE: shear flow for Hookean or FENE (C. Le Bris, B. Jourdain, TL / W. E, P. Zhang),
 - PDE+FP: FENE case (M. Renardy / J.W. Barrett, C. Schwab,

E. Süli: (mollification) OK for $b \ge 10$ / N. Masmoudi, P.L. Lions).

Another interesting (not only) theoretical issue is the long-time behaviour.

For numerics, the main difficulties both for micro-macro and macro-macro models are:

- An inf-sup condition is needed between the discretization space for *τ* and that for u (in the limit *ϵ* → 1). → use of special discretization spaces, use stabilization methods
- The discretization of the advection terms needs to be done properly. — use stabilization methods, use numerical characteristic method.
- The discretization of the nonlinear term raises difficulties.

2A Generalities

For High Weissenberg, difficulties are observed numerically in some geometries: instabilities, convergence under mesh refinement. As applied mathematicians, we would like to build safe numerical schemes, *e.g.* schemes which do not bring spurious "energy" (which one ?) in the system.

In the following, we focus on the specificities of discretization for micro-macro models. Two approaches: discretizing the Fokker-Planck equation, or discretizing the SDEs.

The basic method is called CONNFFESSIT (Laso, Öttinger / Hulsen, van Heel, van den Brule: BCF) (Calculation Of Non-Newtonian Flow: Finite Elements and Stochastic SImulation Technique.)

2A Generalities

Numerical questions:

- The uncoupled problem: SDE or FP.
 - SDE: Variance reduction by control variate methods (M. Picasso), the FENE-P model as a control variate (B. Jourdain, TL),
 - FP: Finite-difference methods, spectral methods, the bead-spring model (high-dimensional problem) (C. Liu / Q. Du / C. Chauvière/

R. Owens / A. Lozinski).

- The coupled problem
 - PDE+SDE: Convergence of the MC / Euler / FE discretization (C. Le Bris, B. Jourdain, TL / P. Zhang),
 - PDE+SDE: Dependency of the B.M on space

(C. Le Bris, B. Jourdain, TL).

2A Generalities

Two simplifications: (i) the case of a plane shear flow.

velocity profile

We keep the coupling, but we get rid of the transport (since $\mathbf{u} \cdot \nabla = 0$).

The equations in this case read ($0 \le t \le T$, $y \in \mathcal{O} = (0, 1)$):

$$\begin{aligned} \partial_t u(t,y) &- \partial_{yy} u(t,y) = \partial_y \tau(t,y) + f_{ext}(t,y), \\ \tau(t,y) &= \mathbf{E} \left(X_t(y) \, F_2(X_t(y), Y_t(y)) \right) = \mathbf{E} \left(Y_t(y) \, F_1(X_t(y), Y_t(y)) \right) \\ dX_t(y) &= \left(-\frac{1}{2} F_1(X_t(y), Y_t(y)) + \partial_y u(t,y) Y_t(y) \right) \, dt + dV_t, \\ dY_t(y) &= \left(-\frac{1}{2} F_2(X_t(y), Y_t(y)) \right) \, dt + dW_t, \end{aligned}$$

•
$$\mathbf{F}(\mathbf{X}_t) = \mathbf{X}_t = (X_t, Y_t)$$
 (Hookean), or

•
$$\mathbf{F}(\mathbf{X}_t) = \frac{\mathbf{X}_t}{1 - \frac{\|\mathbf{X}_t\|^2}{b}} = \left(\frac{X_t}{1 - \frac{X_t^2 + Y_t^2}{b}}, \frac{Y_t}{1 - \frac{X_t^2 + Y_t^2}{b}}\right)$$
 (FENE),

where $\mathbf{u}(t, x, y) = (u(t, y), 0), \boldsymbol{\tau} = \begin{bmatrix} * & \tau \\ \tau & * \end{bmatrix}$, and $\mathbf{F}(\mathbf{X}_t) = (F_1(X_t, Y_t), F_2(X_t, Y_t)).$ (ii) the case of a homogeneous velocity field:

$$\mathbf{u}(t, \boldsymbol{x}) = \boldsymbol{\kappa}(t) \boldsymbol{x}.$$

In this case, X_t does not depend on x and the polymer does not influence the flow (since $div(\tau) = 0$). Therefore, we simply have to study the following SDE:

$$d\mathbf{X} = \left(\boldsymbol{\kappa}(t)\mathbf{X} - \frac{1}{2\text{We}}\mathbf{F}(\mathbf{X})\right)dt + \frac{1}{\sqrt{\text{We}}}d\mathbf{W}_t$$

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

$$\begin{aligned} &\mathsf{Re}\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = (1 - \epsilon)\Delta \mathbf{u} - \nabla p + \operatorname{div}(\boldsymbol{\tau}) ,\\ &\operatorname{div}(\mathbf{u}) = 0 ,\\ &\boldsymbol{\tau} = \frac{\epsilon}{\operatorname{We}}(\mathbf{E}(\mathbf{X}_t \otimes \mathbf{F}(\mathbf{X}_t)) - \boldsymbol{I}) ,\\ &d\mathbf{X}_t + \mathbf{u} \cdot \nabla \mathbf{X}_t dt = \left(\nabla \mathbf{u} \mathbf{X}_t - \frac{1}{2\operatorname{We}}\mathbf{F}(\mathbf{X}_t)\right) dt + \frac{1}{\sqrt{\operatorname{We}}} d\mathbf{W}_t. \end{aligned}$$

Adopted approach :

- The SDEs are posed at each macroscopic point x (we need a pointwise defined ∇u),
- The PDEs are posed in a distributional sense (we need τ to be in $L^1_{\rm loc}$).

Fundamental *a priori* estimate (
$$\mathbf{F} = \nabla \Pi$$
):
(1) $\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + (1-\epsilon) \int_0^t \int_{\mathcal{D}} |\nabla \mathbf{u}|^2$
 $= \frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}_0|^2 - \frac{\epsilon}{\mathrm{We}} \int_0^t \int_{\mathcal{D}} \mathbf{E}(\mathbf{X}_s \otimes \mathbf{F}(\mathbf{X}_s)) : \nabla \mathbf{u}.$
(2) $\int_{\mathcal{D}} \mathbf{E}(\Pi(\mathbf{X}_t)) + \frac{1}{2\mathrm{We}} \int_0^t \int_{\mathcal{D}} \mathbf{E}(||\mathbf{F}(\mathbf{X}_s)||^2)$
 $= \int_{\mathcal{D}} \mathbf{E}(\Pi(\mathbf{X}_0)) + \int_0^t \int_{\mathcal{D}} \mathbf{E}(\mathbf{F}(\mathbf{X}_s) \cdot \nabla \mathbf{u} \mathbf{X}_s) + \frac{1}{2\mathrm{We}} \int_0^t \int_{\mathcal{D}} \Delta \Pi(\mathbf{X}_s).$
(1) $+ \frac{\epsilon}{\mathrm{We}} (2) \Longrightarrow \frac{\mathsf{Re}}{2} \frac{d}{dt} \int_{\mathcal{D}} |\mathbf{u}|^2 + (1-\epsilon) \int_{\mathcal{D}} |\nabla \mathbf{u}|^2 + \frac{\epsilon}{\mathrm{We}} \frac{d}{dt} \int_{\mathcal{D}} \mathbf{E}(\Pi(\mathbf{X}_t))$
 $+ \frac{\epsilon}{2\mathrm{We}^2} \int_{\mathcal{D}} \mathbf{E}(||\mathbf{F}(\mathbf{X}_t)||^2) = \frac{\epsilon}{2\mathrm{We}^2} \int_{\mathcal{D}} \Delta \Pi(\mathbf{X}_t).$

The Hookean dumbbell case in a shear flow: $\mathbf{F}(\mathbf{X}) = \mathbf{X}$

$$\begin{cases} \partial_t u(t,y) - \partial_{yy} u(t,y) = \partial_y \tau(t,y) + f_{ext}(t,y), \\ \tau(t,y) = \mathbf{E} \left(X(t,y) Y(t) \right), \\ dX(t,y) = \left(-\frac{1}{2} X(t,y) + \partial_y u(t,y) Y(t) \right) dt + dV_t, \\ dY(t) = -\frac{1}{2} Y(t) dt + dW_t, \end{cases}$$

with appropriate initial and boundary conditions.

No problem to solve the SDE.

The process Y_t can be computed externally. The nonlinearity of the coupling term $\partial_y u Y_t$ disappears: global-in-time existence result.

Notion of solution:

Let us be given $u_0 \in L^2_y$, $f_{ext} \in L^1_t(L^2_y)$, X_0 and (V_t, W_t) . (u, X) is said to be a solution if: $u \in L^\infty_t(L^2_y) \cap L^2_t(H^1_{0,y})$ and $X \in L^\infty_t(L^2_y(L^2_\omega))$ are s.t., in $\mathcal{D}'([0, T) \times \mathcal{O})$,

$$\partial_t u(t,y) - \partial_{yy} u(t,y) = \partial_y \mathbf{E} \left(X(t,y) Y(t) \right) + f_{ext}(t,y),$$

for a.e. (y, ω) , $\forall t \in (0, T)$,

$$X_t(y) = e^{-\frac{t}{2}}X_0 + \int_0^t e^{\frac{s-t}{2}} dV_s + \int_0^t e^{\frac{s-t}{2}} \partial_y u(s,y) Y_s \, ds,$$

where $Y_t = Y_0 e^{-t/2} + \int_0^t e^{\frac{s-t}{2}} dW_s$.

Theorem 1 [B. Jourdain, C. Le Bris, TL 02] Global-in-time existence and uniqueness.

Assuming $u_0 \in L_y^2$ and $f_{ext} \in L_t^1(L_y^2)$, this problem admits a unique solution (u, X) on (0, T), $\forall T > 0$. In addition, the following estimate holds:

$$\begin{aligned} \|u\|_{L^{\infty}_{t}(L^{2}_{y})}^{2} + \|u\|_{L^{2}_{t}(H^{1}_{0,y})}^{2} + \|X_{t}\|_{L^{\infty}_{t}(L^{2}_{y}(L^{2}_{\omega}))}^{2} + \|X_{t}\|_{L^{2}_{t}(L^{2}_{y}(L^{2}_{\omega}))}^{2} \\ \leq C\left(\|X_{0}\|_{L^{2}_{y}(L^{2}_{\omega})}^{2} + \|u_{0}\|_{L^{2}_{y}}^{2} + T + \|f_{ext}\|_{L^{1}_{t}(L^{2}_{y})}^{2}\right). \end{aligned}$$

Remarks:

- The "+T" comes from Itô's formula,
- For more regular data, one can obtain more regular solutions.

Sketch of the proof

- a priori estimate, $\frac{1}{2} \int_{\mathcal{O}} u(t,y)^2 - \frac{1}{2} \int_{\mathcal{O}} u_0(y)^2 + \int_0^t \int_{\mathcal{O}} (\partial_y u)^2 = -\int_0^t \int_{\mathcal{O}} \mathbb{E}(X_s(y)Y_s)\partial_y u(s,y) + \int_0^t \int_{\mathcal{O}} f_{ext}(s,y)u(s,y),$ $\frac{1}{2} \int_{\mathcal{O}} \mathbb{E}(X_t^2(y)) - \frac{1}{2} = \int_0^t \int_{\mathcal{O}} \mathbb{E}(X_s(y)Y_s)\partial_y u(s,y) - \frac{1}{2} \int_0^t \int_{\mathcal{O}} \mathbb{E}(X_s^2(y)) + \frac{1}{2}t,$
- Galerkin method (space discretization in a finite dimensional space V^m), (fixed point to find a solution u^m to the space-discretized problem),
- Convergence of the discretized problem. Difficulty: $\int_{\mathcal{O}} \mathbf{E}(Y_t X_t^m(y)) \partial_y v_i$, where $X_t^m = e^{-\frac{t}{2}} X_0 + \int_0^t e^{\frac{s-t}{2}} dV_s + \int_0^t e^{\frac{s-t}{2}} \partial_y u^m(s, y) Y_s ds.$
We use an explicit expression of τ (cf. Hookean Dumbbell = Oldroyd B): $\int_{\mathcal{O}} \mathbf{E}(Y_t X_t^m(y)) w = \int_{\mathcal{O}} \mathbf{E}\left(Y_t \int_0^t e^{\frac{s-t}{2}} \partial_y u^m Y_s \, ds\right) w$ and $\partial_y u^m \rightharpoonup \partial_y u$ in $L_t^2(L_y^2)$,

 Uniqueness: the problem is essentially linear, so the uniqueness of weak solution holds.

2B Some existence results: FENE

The FENE dumbbell case in a shear flow: $\mathbf{F}(\mathbf{X}) = \frac{\mathbf{X}}{1 - \|\mathbf{X}\|^2/b}$

$$\begin{aligned} \partial_t u(t,y) &- \partial_{yy} u(t,y) = \partial_y \tau(t,y) + f_{ext}(t,y), \\ \tau(t,y) &= \mathbf{E}\left(\frac{X_t^y Y_t^y}{1 - \frac{(X_t^y)^2 + (Y_t^y)^2}{b}}\right), \\ dX_t^y &= \left(-\frac{1}{2}\frac{X_t^y}{1 - \frac{(X_t^y)^2 + (Y_t^y)^2}{b}} + \partial_y u(t,y)Y_t^y\right) dt + dV_t, \\ dY_t^y &= \left(-\frac{1}{2}\frac{Y_t^y}{1 - \frac{(X_t^y)^2 + (Y_t^y)^2}{b}}\right) dt + dW_t. \end{aligned}$$

New difficulties:

- An explosive drift term in the SDE, which however yields a bound on the stochastic processes,
- The system is nonlinear (due to the term $\partial_y u Y_t^y$), and both X and Y depend on the space variable.

Two remarks:

- The global *a priori* estimate $u \in L_t^{\infty}(L_y^2) \cap L_t^2(H_{0,y}^1)$ is not sufficient to pass to the limit in the nonlinear term $\partial_y u Y_t^y$,
- What is the regularity of τ in function of the regularity of $\partial_y u$?

2B Some existence results: FENE

Notion of solution:

Let us be given $u_0 \in H_y^1$, $f_{ext} \in L_t^2(L_y^2)$, (X_0, Y_0) and (V_t, W_t) . (u, X, Y) is said to be a solution if: $u \in L_t^\infty(H_{0,y}^1) \cap L_t^2(H_y^2)$ is s.t., in $\mathcal{D}'([0, T] \times \mathcal{O})$,

$$\partial_t u(t,y) - \partial_{yy} u(t,y) = \partial_y \mathbf{E} \left(\frac{X_t^y Y_t^y}{1 - \frac{(X_t^y)^2 + (Y_t^y)^2}{b}} \right) + f_{ext}(t,y),$$

and for a.e. (y, ω) , $\forall t \in (0, T)$, $\int_0^t \left| \frac{1}{1 - \frac{(X_s^y)^2 + (Y_s^y)^2}{b}} \right| ds < \infty$ and

$$\begin{aligned} X_t^y &= X_0 + \int_0^t \left(-\frac{1}{2} \frac{X_s^y}{1 - \frac{(X_s^y)^2 + (Y_s^y)^2}{b}} + \partial_y u Y_s^y \right) \, ds + V_t, \\ Y_t^y &= Y_0 + \int_0^t -\frac{1}{2} \frac{Y_s^y}{1 - \frac{(X_s^y)^2 + (Y_s^y)^2}{b}} \, ds + W_t. \end{aligned}$$

Theorem 2 [B. Jourdain, C. Le Bris, TL 03] Local-in-time existence and uniqueness.

Under the assumptions b > 6, $f_{ext} \in L_t^2(L_y^2)$ and $u_0 \in H_y^1$, $\exists T > 0$ (depending on the data) s.t. the system admits a unique solution (u, X, Y) on [0, T). This solution is such that $u \in L_t^\infty(H_{0,y}^1) \cap L_t^2(H_y^2)$. In addition, we have:

- $\mathbf{P}(\exists t > 0, ((X_t^y)^2 + (Y_t^y)^2) = b) = 0$,
- (X_t^y, Y_t^y) is adapted / $\mathcal{F}_t^{V,W}$.

Sketch of the proof Existence of solution to the SDE For $g \in L^1_{loc}(\mathbb{R}_+)$, $b \ge 2$, the following system

$$dX_t^g = \left(-\frac{1}{2}\frac{X_t^g}{1-\frac{(X_t^g)^2 + (Y_t^g)^2}{b}} + g(t)Y_t^g\right)dt + dV_t,$$

$$dY_t^g = \left(-\frac{1}{2}\frac{Y_t^g}{1-\frac{(X_t^g)^2 + (Y_t^g)^2}{b}}\right)dt + dW_t,$$

admits a unique strong solution, which is with values in $B = \mathcal{B}(0, \sqrt{b})$.

The proof follows from general results on multivalued SDE (E. Cépa) and the fact that the FENE force derivates from a convex potential Π .

More precisely, one can show that:

- As soon as b > 0, there exists a unique solution with value in \overline{B} .
- If 0 < b < 2, the stochastic process hits the boundary of *B* in finite time: one can thus build many solutions to the SDE.
- If b ≥ 2, the stochastic process does not hit the boundary, and one thus has a unique strong solution to the SDE. Yamada Watanabe theorem then shows that there exists a unique weak solution.

Using Girsanov theorem, one can build a weak solution to the SDE using the solution (X_t, Y_t) for g = 0:

$$\begin{pmatrix} dX_t = \left(-\frac{1}{2}\frac{X_t}{1-\frac{(X_t)^2 + (Y_t)^2}{b}}\right) dt + dV_t, \\ dY_t = \left(-\frac{1}{2}\frac{Y_t}{1-\frac{(X_t)^2 + (Y_t)^2}{b}}\right) dt + dW_t, \end{cases}$$

By Girsanov, under \mathbf{P}^{g} defined by $\frac{d\mathbf{P}^{g}}{d\mathbf{P}}\Big|_{\mathcal{F}_{t}} = \mathcal{E}\left(\int_{0}^{\bullet} g(s)Y_{s} \, dV_{s}\right)_{t} = \exp\left(\int_{0}^{t} g(s)Y_{s} \, dV_{s} - \frac{1}{2}\int_{0}^{t} (g(s)Y_{s})^{2} \, ds\right),$ $(X_{t}, Y_{t}, V_{t} - \int_{0}^{t} g(s)Y_{s} \, ds, W_{t}, \mathbf{P}^{g}) \text{ is a weak solution of the SDE.}$

2B Some existence results: FENE

Regularity of τ in space

We choose $g(t) = \partial_y u(t)$ (y is fixed). By Girsanov, under \mathbf{P}^y defined by $\frac{d\mathbf{P}^y}{d\mathbf{P}}\Big|_{\mathcal{F}_t} = \mathcal{E}\left(\int_0^{\bullet} \partial_y u(s, y)Y_s \, dV_s\right)_t =$ $\exp\left(\int_0^t \partial_y uY_s \, dV_s - \frac{1}{2}\int_0^t (\partial_y uY_s)^2 \, ds\right),$ $(X_t, Y_t, V_t - \int_0^t \partial_y uY_s \, ds, W_t, \mathbf{P}^y)$ is a weak solution to the initial SDE, so that:

$$\tau = \mathbf{E}\left(\frac{X_t^y Y_t^y}{1 - \frac{(X_t^y)^2 + (Y_t^y)^2}{b}}\right) = \mathbf{E}^y\left(\frac{X_t Y_t}{1 - \frac{X_t^2 + Y_t^2}{b}}\right),$$
$$= \mathbf{E}\left(\left(\frac{X_t Y_t}{1 - \frac{X_t^2 + Y_t^2}{b}}\right) \mathcal{E}\left(\int_0^\bullet \partial_y u(s, y) Y_s \, dV_s\right)_t\right).$$

Therefore, one has (for a.e. y):

 \mathcal{T}

$$= \left| \mathbf{E} \left(\left(\frac{X_t Y_t}{1 - \frac{X_t^2 + Y_t^2}{b}} \right) \mathcal{E} \left(\int_0^{\bullet} \partial_y u(s, y) Y_s \, dV_s \right)_t \right) \right|$$

$$\leq \mathbf{E} \left(\left(\frac{1}{X_0^2 + Y_0^2} \right)^{\frac{q}{q-1}} \right)^{\frac{q-1}{q}} \mathbf{E} \left(\mathcal{E} \left(\int_0^{\bullet} \partial_y u Y_s \, dV_s \right)_t^q \right)^{1/q}$$

$$\leq C_q \exp \left((q-1) \int_0^t |\partial_y u(s, y)|^2 \, ds \right)$$

where C_q depends on b, q and $\mathbf{E}\left(\left(\frac{1}{X_0^2+Y_0^2}\right)^{\frac{q}{q-1}}\right)$. One can derive the same kind of estimate on $\partial_y \tau$.

2B Some existence results: FENE

Back to the coupled problem

 a priori estimates: global-in-time

 $\begin{aligned} \|u\|_{L^{\infty}_{t}(L^{2}_{y})} + \|\partial_{y}u\|_{L^{2}_{t}(L^{2}_{y})} + \|\Pi(X,Y)\|_{L^{\infty}_{t}(L^{1}_{y}(L^{1}_{\omega}))} \\ + \|\Upsilon(X,Y)\|_{L^{2}_{t}(L^{2}_{y}(L^{2}_{\omega}))} \leq C(T, \|u_{0}\|_{L^{2}_{y}}, \|f_{ext}\|_{L^{1}_{t}(L^{2}_{y})}) \end{aligned}$

where Π is a potential from which derivates the FENE force : $\Pi(x, y) = -\frac{b}{2} \ln \left(1 - \frac{x^2 + y^2}{b}\right)$ and $\Upsilon(x, y) = \frac{\sqrt{x^2 + y^2}}{1 - \frac{x^2 + y^2}{b}}$, <u>local-in-time</u>

 $||u||_{L^{\infty}_{t}(H^{1}_{y})} + ||u||_{L^{2}_{t}(H^{2}_{y})} \leq C(||\partial_{y}u_{0}||_{L^{2}_{y}}, ||f_{ext}||_{L^{2}_{t}(L^{2}_{y})}).$

(we use $H^1 \hookrightarrow L^\infty$: dimension 1 !)

2B Some existence results: FENE

• Galerkin method (Picard theorem to find a solution u^m to the space-discretized problem).

Remark: Using the first *a priori* estimate, the space-discretized solution is defined on [0, T].

 Convergence of the space-discretized problem. Difficulty:

$$\int_{\mathcal{O}} \mathbf{E} \left(\left(\frac{X_t Y_t}{1 - \frac{X_t^2 + Y_t^2}{b}} \right) \mathcal{E} \left(\int_0^{\bullet} \partial_y u^m Y_s \, dV_s \right)_T \right) \partial_y v_i$$

where v_i is a test function. We need a strong convergence of $\partial_y u^m$ (convergence a.e.) and therefore, we need a $L_t^2(H_u^1)$ estimate on $\partial_y u$...

Uniqueness follows from the estimates.

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

We consider again Hookean dumbbell: $\mathbf{F}(\mathbf{X}) = \mathbf{X}$ in shear flow

$$\begin{cases} \partial_t u(t,y) - \partial_{yy} u(t,y) = \partial_y \tau(t,y) + f_{ext}(t,y), \\ \tau(t,y) = \mathbf{E} \left(X(t,y) Y(t) \right), \\ dX(t,y) = \left(-\frac{1}{2} X(t,y) + \partial_y u(t,y) Y(t) \right) dt + dV_t, \\ dY(t) = -\frac{1}{2} Y(t) dt + dW_t, \end{cases}$$

with appropriate initial and boundary conditions.

Remember: The process Y_t can be computed externally. The nonlinearity of the coupling term $\partial_y u Y_t$ disappears: global-in-time existence result.

The numerical scheme: P1 finite element on u, Monte Carlo discretization for τ , Euler schemes in time.

Spacestep: $h = \delta y$, timestep: Δt , number of realizations: M.

$$\frac{1}{\Delta t} \int_{\mathcal{O}} \left(\overline{u}_{h}^{n+1} - \overline{u}_{h}^{n} \right) v_{h} + \int_{\mathcal{O}} \partial_{y} \overline{u}_{h}^{n+1} \partial_{y} v_{h} = -\int_{\mathcal{O}} \overline{\tau}_{h}^{n} \partial_{y} v_{h} + F_{ext}, \, \forall v_{h} \in V_{h}, \\
\overline{\tau}_{h}^{n} = \frac{1}{M} \sum_{j=1}^{M} \left(\overline{X}_{h}^{j,n} \overline{Y}^{j,n} \right), \\
\overline{X}_{h}^{j,n+1} = \overline{X}_{h}^{j,n} + \left(-\frac{1}{2} \overline{X}_{h}^{j,n} + \partial_{y} \overline{u}_{h}^{n+1} \overline{Y}^{j,n} \right) \, \Delta t + \left(V_{t_{n+1}}^{j} - V_{t_{n}}^{j} \right), \\
\overline{Y}^{j,n+1} = \overline{Y}^{j,n} + \left(-\frac{1}{2} \overline{Y}^{j,n} \right) \, \Delta t + \left(W_{t_{n+1}}^{j} - W_{t_{n}}^{j} \right).$$

We obtain a system of interacting particles. Difficulties:

- the $\overline{X}_{h,n}^{j}$ are not independent (mean field interaction),
- \overline{u}_h^n is a random variable.

Theorem 3 [B. Jourdain, C. Le Bris, TL 02] Convergence of the numerical scheme.

Assuming $u_0 \in H_y^2$, $f_{ext} \in L_t^1(H_y^1)$, $\partial_t f_{ext} \in L_t^1(L_y^2)$ and $\Delta t < \frac{1}{2}$, we have (for $V_h = P1$): $\forall n < \frac{T}{\Delta t}$,

$$\begin{aligned} \left\| u(t_n) - \overline{u}_h^n \right\|_{L^2_y(L^2_\omega)} & \left\| \mathbf{E}(X_{t_n}Y_{t_n}) - \frac{1}{M} \sum_{j=1}^M \overline{X}_{h,n}^j \overline{Y}_n^j \right\|_{L^1_y(L^1_\omega)} \\ & \leq C \left(\delta y + \Delta t + \frac{1}{\sqrt{M}} \right). \end{aligned}$$

Remark: [TL 02] One can actually show that the convergence in space is optimal:

$$\left\| \left\| u(t_n) - \overline{u}_h^n \right\|_{L^2_y(L^2_\omega)} \le C\left(\frac{\delta y^2 + \Delta t + \frac{1}{\sqrt{M}}}{\sqrt{M}}\right) \right\|$$

Sketch of the proof

- P1 discretization in space: $O(\delta y)$,
- Euler discretization in time: $O(\Delta t)$,
- Monte Carlo discretization: $O\left(\frac{1}{\sqrt{M}}\right)$.

Basic idea: use the following a priori estimate, $\frac{1}{2} \int_{\mathcal{O}} u(t,y)^2 - \frac{1}{2} \int_{\mathcal{O}} u_0(y)^2 + \int_0^t \int_{\mathcal{O}} (\partial_y u)^2 = -\int_0^t \int_{\mathcal{O}} \mathbb{E}(X_s(y)Y_s)\partial_y u(s,y) + \int_0^t \int_{\mathcal{O}} f_{ext}(s,y)u(s,y),$

 $\frac{1}{2} \int_{\mathcal{O}} \mathbb{E}(X_t^2(y)) - \frac{1}{2} = \int_0^t \int_{\mathcal{O}} \mathbb{E}(X_s(y)Y_s) \partial_y u(s,y) - \frac{1}{2} \int_0^t \int_{\mathcal{O}} \mathbb{E}(X_s^2(y)) + \frac{1}{2}t,$ Main difficulty in the stability proof: we need that $\Delta t \frac{1}{M} \sum_{j=1}^M (\overline{Y}_n^j)^2 < 1.$ We introduce a cut-off.

Let A > 0. We set $\overline{Y}^{j,n+1} = \max(-A, \min(A, Y^{j,n+1}))$, where

$$Y^{j,n+1} = Y^{j,n} + \left(-\frac{1}{2}Y^{j,n}\right) \Delta t + \left(W^{j}_{t_{n+1}} - W^{j}_{t_n}\right).$$

Two types of result :

- $A = \infty$: without cut-off,
- $0 < A < \sqrt{\frac{3}{5\Delta t}}$: with cut-off.

The precise result is the following:

$$\left| u(t_n) - \overline{u}_h^n \mathbf{1}_{\mathcal{A}_n} \right| \left| \mathbf{E}(X_{t_n} Y_{t_n}) - \frac{1}{M} \sum_{j=1}^M \overline{X}_{h,n}^j \overline{Y}_n^j \mathbf{1}_{\mathcal{A}_n} \right| \left| \mathbf{E}(X_{t_n} Y_{t_n}) - \frac{1}{M} \sum_{j=1}^M \overline{X}_{h,n}^j \overline{Y}_n^j \mathbf{1}_{\mathcal{A}_n} \right| \right|_{L^1_y(L^1_\omega)} \le C \left(\delta y + \Delta t + \frac{1}{\sqrt{M}} \right),$$

with
$$\mathcal{A}_n = \left\{ \forall k \le n, \frac{1}{M} \sum_{j=1}^M (\overline{Y}_k^j)^2 < \frac{13}{20} \frac{1}{\Delta t} \right\}.$$

Two types of results: without cut-off: : $\overline{Y}^{j,n} = Y^{j,n}$ but $\mathcal{A}_n \subsetneq \Omega$, $A = \infty$ with cut-off: $0 < A < \sqrt{\frac{3}{5\Delta t}}$: $\mathcal{A}_n = \Omega$ but $\overline{Y}^{j,n} \neq Y^{j,n}$. without cut-off: A_n is s.t. for $\Delta t < \frac{13}{40}$, $P(A_n) \ge 1 - \frac{1}{\Delta t} \exp\left(-\frac{M}{2}\left(\frac{13}{40\Delta t} - 1 - \ln\left(\frac{13}{40\Delta t}\right)\right)\right)$. Notice that $P\left(\mathcal{A}_{\left|\frac{t}{\Delta t}\right|}\right) \longrightarrow 1$ as $\Delta t \longrightarrow 0$, or as $M \longrightarrow \infty$.

with cut-off: one can show that the cut-off is used with very small probability for a "reasonable" timestep. Generalizations: T. Li and P. Zhang.

2C The CONNFFESSIT method: variance reduction

One important question in Monte Carlo methods is variance reduction.

Recall that for $(Q_n)_{n\geq 1}$ i.i.d. random variables, we have (CLT)

$$\frac{1}{N}\sum_{n=1}^{N} f(Q_n) \in \left[\mathbf{E}(f(Q_1)) \pm 1.96\sqrt{\frac{\operatorname{Var}(f(Q_1))}{N}} \right]$$

How to reduce the variance in multiscale models ? One idea is to use control variate method with, as a control variate (Bonvin, Picasso):

- the system at equilibrium,
- or a "close" model which has a macroscopic equivalent.

2C The CONNFFESSIT method: variance reduction

For example, for the FENE model, one writes:

$$\mathbf{E}\left(\frac{\mathbf{X}_t \otimes \mathbf{X}_t}{1 - \|\mathbf{X}_t\|^2/b}\right) = \mathbf{E}\left(\frac{\mathbf{X}_t \otimes \mathbf{X}_t}{1 - \|\mathbf{X}_t\|^2/b} - \tilde{\mathbf{X}}_t \otimes \tilde{\mathbf{F}}(\tilde{\mathbf{X}}_t)\right) \\ + \mathbf{E}\left(\tilde{\mathbf{X}}_t \otimes \tilde{\mathbf{F}}(\tilde{\mathbf{X}}_t)\right),$$

with suitable $\tilde{\mathbf{F}}$ and $\tilde{\mathbf{X}}_t$, like

•
$$\tilde{\mathbf{F}} = \mathbf{F}$$
 and
 $d\tilde{\mathbf{X}}_t + \mathbf{u} \cdot \nabla \tilde{\mathbf{X}}_t dt = -\frac{1}{2\text{We}} \tilde{\mathbf{F}}(\tilde{\mathbf{X}}_t) dt + \frac{1}{\sqrt{\text{We}}} d\mathbf{W}_t.$

•
$$\tilde{\mathbf{F}}(\tilde{\mathbf{X}}) = \tilde{\mathbf{X}}$$
 and
 $d\tilde{\mathbf{X}}_t + \mathbf{u} \cdot \nabla \tilde{\mathbf{X}}_t dt = \left(\nabla \mathbf{u} \tilde{\mathbf{X}}_t - \frac{1}{2\text{We}} \tilde{\mathbf{F}}(\tilde{\mathbf{X}}_t) \right) dt + \frac{1}{\sqrt{\text{We}}} d\mathbf{W}_t$

The Brownian motion driving $\tilde{\mathbf{X}}_t$ needs to be the same as the Brownian motion driving \mathbf{X}_t .

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

We consider Hookean dumbbells in a shear flow.

$$\partial_t u(t, y) - \partial_{yy} u(t, y) = \partial_y \tau(t, y) + f_{ext}(t, y),$$

$$\tau(t, y) = \mathbf{E} \left(X(t, y) Y(t) \right),$$

$$dX(t, y) = \left(-\frac{1}{2} X(t, y) + \partial_y u(t, y) Y(t) \right) dt + dV_t,$$

$$dY(t) = -\frac{1}{2} Y(t) dt + dW_t.$$

Question: (V_t, W_t) or $(V_t(y), W_t(y))$?

- The convergence result still holds,
- The deterministic continuous solution (u, τ) does not depend on the correlation in space of the Brownian motions,

but the variance of the numerical results is sensitive to this dependency (Keunings / Bonvin, Picasso).

I=10 N=500 M=100 NbTest=10000

t

T. Lelièvre, CEMRACS, Juillet 2008 - p. 98

Two cases: A B.M. not depending on space (V_t) and a B.M. uncorrelated from one cell to another ($V_t(y)$).

		Going from V_t to $V_t(y)$
	$\operatorname{Var}(u)$	Variance increases (short time : *15 - long time : *1000)
	$\operatorname{Var}(\tau)$	Variance decreases (short time : /4 - long time : /2)

Can we "explain" this phenomenon ? On u, the equation contains a derivative in space:

$$\int_{\mathcal{O}} \partial_t u_h(t) v_h + \int_{\mathcal{O}} \partial_y u_h(t) \partial_y v_h = -\int_{\mathcal{O}} \frac{1}{R} \sum_{j=1}^R \left(\overline{X}_h^j(t) \overline{Y}^j(t) \right) \partial_y v_h + F_{ext}.$$

If $V_t(y)$ is a random process w.r.t. y, one derives this process and it is therefore natural to expect large variances. But on τ ?

Once discretized in space, we have (stationary solution) :

$$-MU(t) = Y_t B X_t + bc,$$

$$dX_t = \left(Y_t C U(t) + bc Y_t - \frac{X_t}{2}\right) dt + dV_t,$$

$$Y_t = e^{-\frac{t}{2}} Y_0 + \int_0^t e^{\frac{s-t}{2}} dW_s,$$

with (on a uniform mesh)

- M matrix of Δ ,
- *B*, $C = -^{t}B$ discretizations of div and ∇ ,

• bc : vectors depending on boundary conditions. We want to compute $\operatorname{Covar}(U(t))$ and $\operatorname{Covar}(X_t)$ where $\operatorname{Covar}(v) := \operatorname{E}(v \otimes v) - \operatorname{E}(v) \otimes \operatorname{E}(v)$.

With the (unnecessary) simplifying assumption $Y_t^2 = 1$, we have:

$$\operatorname{Covar}(X(t)) = \operatorname{Covar}\left(\exp(At)X_0 + \int_0^t \exp(A(t-s))\operatorname{bc}Y_s \, ds\right)$$
$$+ \int_0^t \exp(A(t-s)) \, dV_s \, d$$

with $A = -CM^{-1}B - \frac{1}{2}Id$. We have BC = M, and $CM^{-1}B = Id - P$ where *P* is a projector on Ker(*B*). Idea: $\nabla \Delta^{-1}$ div is a projector on irrotational fields.

$$\exp(As) = \left(\exp\left(-\frac{s}{2}\right) - \exp\left(-\frac{3s}{2}\right)\right)P + \exp\left(-\frac{3s}{2}\right)Id.$$

We can now understand the behaviour of the variance on τ . In $Covar(X_t)$, there is a term involving PdV_s , i.e.

$$\sum_{i=1}^{I} \left(V_i(t_{n+1}) - V_i(t_n) \right)$$

(in the case of a uniform space step) with $V_i(t)$ the Brownian motion in the i-th cell of discretization. And it is clear that :

$$\operatorname{Var}\left(\sum_{i=1}^{I} G^{i}\right) < \operatorname{Var}\left(\sum_{i=1}^{I} G\right)$$

if G^i i.i.d., so that $Covar(X_t)$ decreases using $V_t(y)$.

In the limit $t \longrightarrow \infty$, we finally obtain :

$$\operatorname{Covar}(X_t) = 2\operatorname{bc} \otimes \operatorname{bc} + \frac{1}{3}(K + PK + PKP)$$

Covar
$$(U(t)) = \frac{1}{3}M^{-1}BK({}^{t}(M^{-1}B)),$$

with

$$K = \frac{1}{t} \mathbf{E}(V_t \otimes V_t),$$

the discrete space correlation matrix of V_t . We can use these results to understand the behaviour in the cases K = Id and K = J, and also to find the optimal K in some sense. In the case of a uniform discretization in space, K = Idin the case V_t and K = J in the case $V_t(y)$ so that

$t \longrightarrow \infty$	$\operatorname{Covar}(X_t)$	$\operatorname{Covar}(U(t))$
V_t	$2bc \otimes bc + J$	0
$V_t(y)$	$2bc \otimes bc + \frac{2\delta y}{3}J + \frac{1}{3}Id$	$-\frac{1}{3}M^{-1}$

Remark: in the limit $\delta y \rightarrow 0$, with $V_t(y)$, U becomes deterministic !

- [B. Jourdain, C. Le Bris, TL, 04]:
 - the variance of the results comes from an interplay between the space discretized operators and the dependency of the Brownian motion on space,
 - the minimum of the variance of *u* is obtained for a Brownian constant in space,
 - the minimum of the variance of τ is NOT obtained with some Brownian motions independent from one cell to another. One can further reduce the variance by using a Brownian motion W_t multiplied alternatively by +1 or -1 from one cell to another.

Generalizations: R. Kupferman, Y. Shamai

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

We are interested in the long-time behaviour of the coupled system. More precisely, we want to prove exponential convergence of (\mathbf{u}, τ) to $(\mathbf{u}_{\infty}, \tau_{\infty})$, or (\mathbf{u}, ψ) to $(\mathbf{u}_{\infty}, \psi_{\infty})$.

Outline:

- preliminary: the decoupled case: FP (entropy methods) and SDE (coupling methods),
- the coupled case: PDE-SDE and PDE-FP.

2E Long-time behaviour: FP

When dealing with the FP equation itself, a classical approach is the following (see e.g. A. Arnold, P. Markowich, G.Toscani and A. Unterreiter, Comm. Part. Diff. Eq., 2001):

$$\frac{\partial \psi}{\partial t} = \operatorname{div}_{\mathbf{X}} \left(\left(-\boldsymbol{\kappa} \mathbf{X} + \frac{1}{2\operatorname{We}} \nabla \Pi(\mathbf{X}) \right) \psi \right) + \frac{1}{2\operatorname{We}} \Delta_{\mathbf{X}} \psi.$$

Let *h* be a convex function s.t. h(1) = h'(1) = 0 and

$$H(t) = \int h\left(\frac{\psi}{\psi_{\infty}}\right) \psi_{\infty}(\mathbf{X}) \, d\mathbf{X},$$

where ψ_{∞} is defined as a stationary solution. The relative entropy *H* is zero iff $\psi = \psi_{\infty}$. Some examples of admissible functions *h*: $h(x) = x \ln(x) - x + 1$ or $h(x) = (x - 1)^2$.
Differentiating *H* w.r.t. *t*, one obtains (using the fact that ψ_{∞} is a stationary solution)

$$\frac{d}{dt}\int h\left(\frac{\psi}{\psi_{\infty}}\right)\psi_{\infty} = -\frac{1}{2\text{We}}\int h''\left(\frac{\psi}{\psi_{\infty}}\right)\left|\nabla\left(\frac{\psi}{\psi_{\infty}}\right)\right|^{2}\psi_{\infty}.$$

Then, one uses a functional inequality: $\forall \phi \geq 0$, $\int \phi = 1$,

$$\int h\left(\frac{\phi}{\psi_{\infty}}\right)\psi_{\infty} \leq C\int h''\left(\frac{\phi}{\psi_{\infty}}\right)\left|\nabla\left(\frac{\phi}{\psi_{\infty}}\right)\right|^{2}\psi_{\infty},$$

to show exponential decay of H,

 $H(t) \le H(0) \exp(-t/(2C \mathrm{We})).$

2E Long-time behaviour: FP

Example 1: If $h(x) = (x - 1)^2$, one needs a Poincaré inequality: $\forall f, \int |\nabla f|^2 \psi_{\infty} < \infty$, $\int \left| f - \int f \psi_{\infty} \right|^2 \psi_{\infty} \leq C \int |\nabla f|^2 \psi_{\infty}$,

with $f = \psi/\psi_{\infty} - 1$, and obtains convergence in L^2 -norm. *Example 2:* If $h(x) = x \ln(x) - x + 1$, one needs a log-Sobolev inequality: $\forall f, \int |\nabla f|^2 \psi_{\infty} < \infty$,

$$\int f^2 \ln\left(\frac{f^2}{\int f^2 \psi_{\infty}}\right) \psi_{\infty} \le C \int |\nabla f|^2 \psi_{\infty},$$

with $f = \sqrt{\psi/\psi_{\infty}}$, and obtains convergence in L^1 -norm. *Remark:* (LSI) implies (PI), but $L^2 \subset L^1 \ln(L^1)$. The case $\kappa = 0$:

In the case $\kappa = 0$, we have $\psi_{\infty} \propto \exp(-\Pi)$ which satisfies the detailed balance:

$$\left(-\boldsymbol{\kappa}\mathbf{X} + \frac{1}{2\mathrm{We}}\nabla\Pi\right)\psi_{\infty} + \frac{1}{2\mathrm{We}}\nabla\psi_{\infty} = 0.$$

and not only $-\operatorname{div}(\bullet) = 0$. In this case, one can actually "directly" prove that:

$$H(t) \le H(0) \exp(-t/(2CWe))$$

without using the functional inequality, but using the fact that: $(1/h'')'' \leq 0$, Π is α -convex, ψ_{∞} satisfies the detailed balance. Proof: compute H''(t).

The exponential decay $H(t) \le H(0) \exp(-t/(2CWe))$ then implies that the functional inequality holds:

$$\int h\left(\frac{\phi}{\psi_{\infty}}\right)\psi_{\infty} \leq C \int h''\left(\frac{\phi}{\psi_{\infty}}\right) \left|\nabla\left(\frac{\phi}{\psi_{\infty}}\right)\right|^{2}\psi_{\infty},$$

for $\phi = \psi_{\infty}(t=0)$.

Proof: expansion of the inequality $H(t) \leq H(0) \exp(-t/(2CWe))$ around t = 0.

Thus we obtain that a LSI or a PI holds with respect to a density ψ_{∞} if $-\ln(\psi_{\infty})$ is α -convex (with $C \leq \frac{1}{2\alpha}$).

The case $\kappa \neq 0$: If κ is antisymmetric, $\psi_{\infty} \propto \exp(-\Pi)$ is a stationary solution so that, by using the LSI inequality w.r.t. ψ_{∞} , $H(t) \leq H(0) \exp(-t/2C)$. Here, ψ_{∞} does not satisfy the detailed balance.

To treat other cases, we need the perturbation result: **Lemma 1** Suppose that

- a LSI holds for $\psi_{\infty} \propto \exp(-\Pi)$,
- $\tilde{\Pi}$ is a bounded function,

then a LSI holds for the density $\widetilde{\psi_{\infty}} \propto \exp(-\Pi + \widetilde{\Pi})$. Moreover, $C_{\text{LSI}}(\widetilde{\psi_{\infty}}) \leq C_{\text{LSI}}(\psi_{\infty}) \exp(2 \operatorname{osc}(\widetilde{\Pi}))$ where $\operatorname{osc}(\widetilde{\Pi}) = \sup(\widetilde{\Pi}) - \inf(\widetilde{\Pi})$.

The same lemma holds for PI.

If κ is symmetric, we have again an explicit expression for a stationary solution:

$$\psi_{\infty}(\mathbf{X}) \propto \exp(-\Pi(\mathbf{X}) + \operatorname{We} \mathbf{X}^T \boldsymbol{\kappa} \mathbf{X}).$$

For FENE dumbbells, Lemma 1 shows that a LSI holds for ψ_{∞} , and therefore, one obtains $H(t) \leq H(0) \exp(-t/2C)$.

For Hookean dumbbells, OK if $\int \exp(-\Pi(\mathbf{X}) + \operatorname{We} \mathbf{X}^T \boldsymbol{\kappa} \mathbf{X}) < \infty$.

For a general κ , exponential decay is obtained if ψ_{∞} is a stationary solution such that $\operatorname{osc}\left(\ln\left(\frac{\psi_{\infty}}{\exp(-\Pi)}\right)\right) < \infty$. For FENE dumbbell, we will prove that there exists such a stationary solution if $\kappa + \kappa^T$ is small enough 2008 - p.114 Convergence of the stress tensor: in this decoupled framework, we can deduce from the exponential convergence of ψ to ψ_{∞} (Csiszar-Kullback inequality):

$$\int |\psi - \psi_{\infty}| \le C \exp(-\lambda t)$$

and the fact that there exists a polynomial P(t) s.t.

$$\mathbf{E}(\mathbf{X}_t \otimes \nabla \Pi(\mathbf{X}_t)) \le P(t)$$

that τ converges exponentially fast to τ_∞ . Proof: use Hölder inequality.

The polynomial growth in time of $E(\mathbf{X}_t \otimes \nabla \Pi(\mathbf{X}_t))$ holds for Hookean (for $\kappa \in L_t^p$, $1 \le p < \infty$) or FENE dumbbells (for $\kappa \in L_t^2 + L_t^\infty$ and *b* sufficiently large). Thinking of the Monte-Carlo / Euler discretized problem, let us now try to do the same on the SDE (here, we suppose $\mathbf{u} = 0$. This can be generalized to an exponentially fast decaying $\nabla \mathbf{u}$):

$$d\mathbf{X}_t = -\frac{1}{2\text{We}}\nabla\Pi(\mathbf{X}_t)\,dt + \frac{1}{\sqrt{\text{We}}}\,d\mathbf{W}_t.$$

Let us introduce

$$d\mathbf{X}_t^{\infty} = -\frac{1}{2\text{We}} \nabla \Pi(\mathbf{X}_t^{\infty}) \, dt + \frac{1}{\sqrt{\text{We}}} \, d\mathbf{W}_t,$$

with $\mathbf{X}_0^{\infty} \sim \psi_{\infty}(\mathbf{X}) \, d\mathbf{X}$.

Then (using α -convexity of Π),

$$\begin{aligned} \|\mathbf{X}_t - \mathbf{X}_t^{\infty}\|^2 &= -\frac{1}{2\text{We}} \left(\nabla \Pi(\mathbf{X}_t) - \nabla \Pi(\mathbf{X}_t^{\infty}) \right) \cdot \left(\mathbf{X}_t - \mathbf{X}_t^{\infty} \right) \, dt \\ &\leq -\frac{\alpha}{2\text{We}} |\mathbf{X}_t - \mathbf{X}_t^{\infty}|^2, \end{aligned}$$

and therefore $E(\phi(X_t)) - E(\phi(X_t^{\infty}))$ goes exponentially fast to 0 (for ϕ Lipschitz-continuous e.g.).

Since $E(\phi(X_t)) = \int \phi(X)\psi(t, X) dX$ and $E(\phi(X_t^{\infty})) = \int \phi(X)\psi_{\infty}(X) dX$, this also means exponentially fast (weak) convergence of $\psi(t, X)$ to $\psi_{\infty}(X)$.

Here again, the α -convexity of Π plays a crucial role.

Let us now consider the coupled system. If we consider the coupled PDE-SDE system (with zero boundary conditions on u), we have the following estimate:

$$\frac{\operatorname{\mathsf{Re}}}{2} \frac{d}{dt} \int_{\mathcal{D}} |\mathbf{u}|^2 + (1 - \epsilon) \int_{\mathcal{D}} |\nabla \mathbf{u}|^2 + \frac{\epsilon}{\operatorname{We}} \frac{d}{dt} \int_{\mathcal{D}} \operatorname{E}(\Pi(\mathbf{X}_t)) + \frac{\epsilon}{2\operatorname{We}^2} \int_{\mathcal{D}} \operatorname{E}(\|\mathbf{F}(\mathbf{X}_t)\|^2) = \frac{\epsilon}{2\operatorname{We}^2} \int_{\mathcal{D}} \operatorname{E}(\Delta \Pi(\mathbf{X}_t)).$$

The r.h.s. is positive: it seems difficult to use such kinds of estimate to study the limit $t \to \infty$. It is actually possible to combine this kind of estimate with the former SDE approach, but for Hookean dumbbells in shear flow.

2E Long-time behaviour: PDE-SDE

$$\begin{cases} \partial_t u(t,y) - \partial_{yy} u(t,y) = \partial_y \tau(t,y) + f_{ext}(t,y), \\ \tau(t,y) = \mathbf{E} \left(X(t,y) Y(t) \right), \\ dX(t,y) = \left(-\frac{1}{2} X(t,y) + \partial_y u(t,y) Y(t) \right) dt + dV_t, \\ dY(t) = -\frac{1}{2} Y(t) dt + dW_t, \end{cases}$$

IC: $u(0, y) = u_0(y)$, $(X_0(y), Y_0(y))$, BC: $u(t, 0) = f_0(t) \to a_0$, $u(t, 1) = f_1(t) \to a_1$, as $t \to \infty$.

$$\begin{cases} -\partial_{y,y}u_{\infty}(y) = \partial_{y}\tau_{\infty}, \\ \tau_{\infty} = \mathbf{E}\left(X_{t}^{\infty}Y_{t}^{\infty}\right), \\ dX_{t}^{\infty} = \left(-\frac{1}{2}X_{t}^{\infty} + \partial_{y}u_{\infty}(y)Y_{t}^{\infty}\right)dt + dV_{t}, \\ dY_{t}^{\infty} = -\frac{1}{2}Y_{t}^{\infty}dt + dW_{t}, \end{cases}$$

 $u_{\infty}(y) = a_0 + y(a_1 - a_0)$, $(X_t^{\infty}, Y_t^{\infty})$ is a stationary Gaussian process not depending on *y*.

2E Long-time behaviour: PDE-SDE

Lemma 2 Long-time behaviour for Hookean. We assume that $\forall y, Y_0(y)$ is independent from Y_0^{∞} , $f_0, f_1 \in W_{\text{loc}}^{1,1}(\mathbb{R}_+)$ and $\lim_{t\to\infty} \dot{f}_0(t) = \lim_{t\to\infty} \dot{f}_1(t) = 0$. Then,

$$\lim_{t \to \infty} \|u(t, y) - u_{\infty}(y)\|_{L^{2}_{y}} = 0,$$

$$\lim_{t \to \infty} \|X_t(y) - X_t^{\infty}\|_{L^2_y(L^2_\omega)} + \|Y_t(y) - Y_t^{\infty}\|_{L^2_y(L^2_\omega)} = 0,$$

 $\lim_{t \to \infty} \|\mathbf{E}(X_t(y)Y_t(y)) - (a_1 - a_0)\|_{L^1_y} = 0.$

Remark: The convergence is exponential if the convergences on f_0 , f_1 , \dot{f}_0 and \dot{f}_1 are exponential. How to proceed for general geometry and nonlinear force ? The Fokker-Planck version of the coupled system is:

$$\operatorname{\mathsf{Re}}\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u}.\nabla \mathbf{u}\right) = (1 - \epsilon)\Delta \mathbf{u} - \nabla p + \operatorname{div} \boldsymbol{\tau}$$
$$\operatorname{div}(\mathbf{u}) = 0$$
$$\boldsymbol{\tau} = \frac{\epsilon}{\operatorname{We}} \left(\int_{\mathbb{R}^d} (\mathbf{X} \otimes \nabla \Pi(\mathbf{X})) \psi \, d\mathbf{X} - \boldsymbol{I} \right)$$
$$\cdot \mathbf{u} \cdot \nabla_{\boldsymbol{x}} \psi = -\operatorname{div}_{\mathbf{X}} \left(\left(\nabla_{\boldsymbol{x}} \mathbf{u} \, \mathbf{X} - \frac{1}{2\operatorname{We}} \nabla \Pi(\mathbf{X}) \right) \psi \right) + \frac{1}{2\operatorname{We}} \Delta_{\mathbf{X}} \psi.$$
We suppose $\boldsymbol{x} \in \mathcal{D}$ (bounded domain of \mathbb{R}^d) and that

We suppose $x \in D$ (bounded domain of \mathbb{R}^d) and that $\Pi(\mathbf{X}) = \pi(||\mathbf{X}||)$ (so that τ is symmetric).

Let us start with the case $\mathbf{u} = 0$ on $\partial \mathcal{D}$.

We introduce the kinetic energy:

$$E(t) = \frac{\operatorname{\mathsf{Re}}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2$$

and the entropy:

$$H(t) = \int_{\mathcal{D}} \int_{\mathbb{R}^d} \Pi \psi + \int_{\mathcal{D}} \int_{\mathbb{R}^d} \psi \ln(\psi) + C$$
$$= \int_{\mathcal{D}} \int_{\mathbb{R}^d} \psi \ln\left(\frac{\psi}{\psi_{\infty}}\right)$$

with

 $\psi_{\infty}(\mathbf{X}) \propto \exp(-\Pi(\mathbf{X})).$

2E Long-time behaviour: PDE-FP

Let us introduce F(t) = E(t) + H(t). One has, by differentiating *F* w.r.t. time:

$$\frac{d}{dt} \left(\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \int_{\mathcal{D}} \int_{\mathbb{R}^d} \psi \ln\left(\frac{\psi}{\psi_{\infty}}\right) \right)$$
$$= -(1-\epsilon) \int_{\mathcal{D}} |\nabla \mathbf{u}|^2 - \frac{\epsilon}{2\mathrm{We}^2} \int_{\mathcal{D}} \int_{\mathbb{R}^d} \psi \left| \nabla \ln\left(\frac{\psi}{\psi_{\infty}}\right) \right|^2$$

This yields a new energy estimate, which holds on \mathbb{R}_+ .

First consequence: The stationary solutions of the coupled problem are $\mathbf{u} = \mathbf{u}_{\infty} = 0$ and $\psi = \psi_{\infty} \propto \exp(-\Pi)$.

Moreover, using the following inequalities:

• Poincaré inequality:

$$\int |\mathbf{u}|^2 \le C \int |\nabla \mathbf{u}|^2$$

• Sobolev logarithmic inequality for ψ_{∞} (which holds *e.g.* for α -convex potentials Π):

$$\int \psi \ln\left(\frac{\psi}{\psi_{\infty}}\right) \le C \int \psi \left|\nabla \ln\left(\frac{\psi}{\psi_{\infty}}\right)\right|^2$$

we obtain $\frac{dF}{dt} \leq -CF$ so that: Second consequence: The free energy *F* (and thus the velocity **u**) decreases exponentially fast to 0 when $t \rightarrow \infty$. *Remark:* If one considers a more general entropy $H(t) = \int h\left(\frac{\psi}{\psi_{\infty}}\right) \psi_{\infty}$, one ends up with (written here for a shear flow with Re = 1/2, We = 1, $\epsilon = 1/2$):

$$\frac{dF}{dt} = -\int_{\mathcal{D}} |\partial_y u|^2 - \frac{1}{2} \int_{\mathcal{D}} \int_{\mathbb{R}^2} \left| \nabla \left(\frac{\psi}{\psi_{\infty}} \right) \right|^2 h'' \left(\frac{\psi}{\psi_{\infty}} \right) \psi_{\infty}$$
$$- \int_{\mathcal{D}} \int_{\mathbb{R}^2} Y \,\psi \,\partial_y u \,\partial_X \Pi \left(1 - h' \left(\frac{\psi}{\psi_{\infty}} \right) - h \left(\frac{\psi}{\psi_{\infty}} \right) \frac{\psi_{\infty}}{\psi} \right).$$

Sufficient condition to have exponential decay: h'(x) - h(x)/x = 0 i.e. $h(x) = x \ln(x)$.

Convergence of the stress tensor:

• for FENE dumbbells: (b > 2)

$$\int_0^\infty \int_{\mathcal{D}} |\boldsymbol{\tau}(t, \boldsymbol{x}) - \boldsymbol{\tau}_\infty(\boldsymbol{x})| < \infty.$$

• for Hookean dumbbells:

$$\int_{\mathcal{D}} |\boldsymbol{\tau}(t, \boldsymbol{x}) - \boldsymbol{\tau}_{\infty}(\boldsymbol{x})| \le C e^{-\beta t}.$$

For FENE dumbbell, the difficulty comes from the fact that we have only $L^2_{\boldsymbol{x}}(L^1_{\mathbf{X}})$ exponential convergence of ψ to ψ_{∞} , and $\mathbf{X} \otimes \nabla \Pi(\mathbf{X})$ is not $L^{\infty}_{\mathbf{X}}$.

Let us now consider the case $\mathbf{u} \neq 0$ on $\partial \mathcal{D}$ (constant). We introduce (Re = 1/2, We = 1, $\epsilon = 1/2$)

$$E(t) = \frac{1}{2} \int_{\mathcal{D}} |\overline{\mathbf{u}}|^2(t, \boldsymbol{x}),$$

$$H(t) = \int_{\mathcal{D}} \int_{\mathbb{R}^d} \psi(t, \boldsymbol{x}, \mathbf{X}) \ln\left(\frac{\psi(t, \boldsymbol{x}, \mathbf{X})}{\psi_{\infty}(\boldsymbol{x}, \mathbf{X})}\right),$$

$$F(t) = E(t) + H(t),$$

where $\overline{\mathbf{u}}(t, \boldsymbol{x}) = \mathbf{u}(t, \boldsymbol{x}) - \mathbf{u}_{\infty}(\boldsymbol{x})$.

Here, $(\mathbf{u}_{\infty}, \psi_{\infty})$ is a stationary solution (no *a priori* explicit expressions).

By differentiating *F* w.r.t. time, one obtains:

$$\frac{d}{dt} \left(\frac{1}{2} \int_{\mathcal{D}} |\overline{\mathbf{u}}|^{2} + \int_{\mathcal{D}} \int_{\mathbb{R}^{d}} \psi \ln \left(\frac{\psi}{\psi_{\infty}} \right) \right)$$

$$= -\int_{\mathcal{D}} |\nabla \overline{\mathbf{u}}|^{2} - \frac{1}{2} \int_{\mathcal{D}} \int_{\mathbb{R}^{d}} \psi \left| \nabla \mathbf{x} \ln \left(\frac{\psi}{\psi_{\infty}} \right) \right|^{2}$$

$$-\int_{\mathcal{D}} \overline{\mathbf{u}} \cdot \nabla \mathbf{u}_{\infty} \overline{\mathbf{u}} - \int_{\mathcal{D}} \int_{\mathbb{R}^{d}} \overline{\mathbf{u}} \cdot \nabla_{\mathbf{x}} (\ln \psi_{\infty}) \overline{\psi}$$

$$-\int_{\mathcal{D}} \int_{\mathbb{R}^{d}} (\nabla \mathbf{x} (\ln \psi_{\infty}) + \nabla \Pi(\mathbf{X})) \cdot \nabla \overline{\mathbf{u}} \mathbf{X} \overline{\psi},$$

where $\overline{\psi}(t, \boldsymbol{x}, \mathbf{X}) = \psi(t, \boldsymbol{x}, \mathbf{X}) - \psi_{\infty}(\boldsymbol{x}, \mathbf{X})$. Difficulties: (i) estimate these 3 additional terms, (ii) prove a LSI w.r.t. to ψ_{∞} . We consider the case of homogeneous stationary flows: $\mathbf{u}_{\infty}(x) = \nabla \mathbf{u}_{\infty} x$. ψ_{∞} is defined as a stationary solution which does not depend on x. Then, the only remaining term is:

$$-\int_{\mathcal{D}} \int_{\mathbb{R}^d} \left(\nabla_{\mathbf{X}} (\ln \psi_{\infty}) + \nabla \Pi(\mathbf{X}) \right) \cdot \nabla \overline{\mathbf{u}} \mathbf{X} \, \overline{\psi} \\ = -\int_{\mathcal{D}} \int_{\mathbb{R}^d} \nabla_{\mathbf{X}} \ln \left(\frac{\psi_{\infty}}{\exp(-\Pi)} \right) (\mathbf{X}) \cdot \nabla \overline{\mathbf{u}} \mathbf{X} \, \overline{\psi}$$

We need a $L_{\mathbf{X}}^{\infty}$ estimate on $\left\| \nabla_{\mathbf{X}} \ln \left(\frac{\psi_{\infty}}{\exp(-\Pi)} \right) \right\| \| \mathbf{X} \|$.

If $\nabla \mathbf{u}_{\infty}$ is antisymmetric, take $\psi_{\infty} \propto \exp(-\Pi)$ and one obtains exponential decay.

Let us now consider non-antisymmetric $\nabla \mathbf{u}_{\infty}$.

For Hookean dumbbells, it seems difficult to control this term.

For FENE dumbbells, a $L_{\mathbf{X}}^{\infty}$ estimate on $\left\| \nabla_{\mathbf{X}} \ln \left(\frac{\psi_{\infty}}{\exp(-\Pi)} \right) \right\|$ is sufficient, and also yields a LSI w.r.t. to ψ_{∞} , by Lemma 1.

If $\nabla \mathbf{u}_{\infty}$ is symmetric, take $\psi_{\infty} \propto \exp(-\Pi + \mathbf{X}^T \nabla \mathbf{u}_{\infty} \mathbf{X})$. The only remaining term in the right hand side is

$$-\int_{\mathcal{D}} \int_{\mathbb{R}^d} \nabla_{\mathbf{X}} \ln\left(\frac{\psi_{\infty}}{\exp(-\Pi)}\right) (\mathbf{X}) \cdot \nabla \overline{\mathbf{u}} \mathbf{X} \overline{\psi}$$
$$= -2 \int_{\mathcal{D}} \int_{\mathbb{R}^d} \nabla \mathbf{u}_{\infty} \mathbf{X} \cdot \nabla \overline{\mathbf{u}} \mathbf{X} \overline{\psi}.$$

Then, for **FENE** dumbbells:

Theorem 4 In the case of a stationary potential homogeneous flow ($\mathbf{u}_{\infty}(\mathbf{x}) = \kappa \mathbf{x}$ with $\kappa = \kappa^T$) in the FENE model, if

 $C_{\mathrm{PI}}(\mathcal{D})|\boldsymbol{\kappa}| + 4b^2|\boldsymbol{\kappa}|^2 \exp(4b|\boldsymbol{\kappa}|) < 1,$

then u converges exponentially fast to \mathbf{u}_{∞} in L_x^2 norm and the entropy $\int_{\mathcal{D}} \int_{\mathcal{B}} \psi \ln \left(\frac{\psi}{\psi_{\infty}}\right)$, where $\psi_{\infty} \propto \exp(-\Pi(\mathbf{X}) + \mathbf{X}.\kappa \mathbf{X})$, converges exponentially fast to 0. Therefore ψ converges exponentially fast in $L_x^2(L_{\mathbf{X}}^1)$ norm to ψ_{∞} .

The proof is based on the free energy estimate and on the perturbation result Lemma 1.

2E Long-time behaviour: PDE-FP

For a general $\nabla \mathbf{u}_{\infty} = \boldsymbol{\kappa}$, for FENE dumbbells, we have:

Proposition 1 For FENE dumbbells, if κ is a traceless matrix such that $|\kappa^s| < 1/2$, there exists a unique non negative solution $\psi_{\infty} \in C^2(\mathcal{B}(0,\sqrt{b}))$ of

$$-\operatorname{div}\left(\left(\boldsymbol{\kappa}\mathbf{X} - \frac{1}{2}\nabla\Pi(\mathbf{X})\right)\psi_{\infty}(\mathbf{X})\right) + \frac{1}{2}\Delta\psi_{\infty}(\mathbf{X}) = 0 \text{ in } \mathcal{B}(0,\sqrt{b}),$$

normalized by $\int_{\mathcal{B}(0,\sqrt{b})} \psi_{\infty} = 1$, and whose boundary behavior is characterized by:

$$\inf_{\mathcal{B}(0,\sqrt{b})} \frac{\psi_{\infty}}{\exp(-\Pi)} > 0, \qquad \sup_{\mathcal{B}(0,\sqrt{b})} \left| \nabla \left(\frac{\psi_{\infty}}{\exp(-\Pi)} \right) \right| < \infty.$$

Furthermore, it satisfies: $\forall \mathbf{X} \in \mathcal{B}(0, \sqrt{b})$ *,*

$$\left|\nabla\left(\ln\left(\frac{\psi_{\infty}(\mathbf{X})}{\exp(-\Pi(\mathbf{X}))}\right)\right) - 2\boldsymbol{\kappa}^{s}\mathbf{X}\right| \leq \frac{2\sqrt{b}\left|[\boldsymbol{\kappa},\boldsymbol{\kappa}^{T}]\right|}{1-2|\boldsymbol{\kappa}^{s}|},$$

where $\kappa^s = (\kappa + \kappa^T)/2$ and [.,.] is the commutator bracket: $[\kappa, \kappa^T] = \kappa \kappa^T - \kappa^T \kappa$.

The proof is based on an regularization procedure around the boundary, and on a *a priori* estimate based on a maximum principle on the equation satisfied by $\left|\nabla \ln \left(\frac{\psi_{\infty}(\mathbf{X})}{\exp(-\Pi(\mathbf{X})+\mathbf{X}^{T}\boldsymbol{\kappa}^{s}\mathbf{X})}\right)\right|^{2}$ (Bernstein estimate).

2E Long-time behaviour: PDE-FP

For the stationary solution ψ_{∞} we have obtained, using the free energy estimate, we have:

Theorem 5 In the case of a stationary homogeneous flow for the FENE model, if $|\kappa^s| < \frac{1}{2}$, ψ_{∞} is the stationary solution built in Proposition 1 and

 $M^2 b^2 \exp(4bM) + C_{\rm PI}(\mathcal{D})|\boldsymbol{\kappa}^s| < 1,$

where $M = 2|\kappa^s| + \frac{2|[\kappa,\kappa^T]|}{1-2|\kappa^s|}$, then u converges exponentially fast to \mathbf{u}_{∞} in L_x^2 norm and the entropy $\int_{\mathcal{D}} \int_{\mathcal{B}} \psi \ln\left(\frac{\psi}{\psi_{\infty}}\right)$ converges exponentially fast to 0. Therefore ψ converges exponentially fast in $L_x^2(L_{\mathbf{X}}^1)$ norm to ψ_{∞} .

Open problems:

- Convergence of the stress tensor in the case u ≠ 0 on ∂D ?
- Extend the results in the PDE-SDE framework ?
- What about the Monte-Carlo discretized system ?

Outline

1 Modeling

- 1A Experimental observations
- 1B Multiscale modeling
- 1C Microscopic models for polymer chains
- 1D Micro-macro models for polymeric fluids
- 1E Conclusion and discussion
- 2 Mathematics and numerics
 - 2A Generalities
 - 2B Some existence results
 - 2C Convergence of the CONNFFESSIT method
 - 2D Dependency of the Brownian on the space variable
 - 2E Long-time behaviour
 - 2F Free-energy dissipative schemes for macro models

- Some macroscopic models have microscopic interpretation.
- We have derived some entropy estimates for micro-macro models

It is thus natural to try to recast the entropy estimate for macroscopic models. For example, for the Oldroyd-B model, one obtains:

$$\frac{d}{dt} \left(\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}} \int_{\mathcal{D}} (-\ln(\det(\mathbf{A})) - d + \operatorname{tr}(\mathbf{A})) \right) \\ + (1 - \varepsilon) \int_{\mathcal{D}} |\nabla \mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}^2} \int_{\mathcal{D}} \operatorname{tr}((\mathbf{I} - \mathbf{A}^{-1})^2 \mathbf{A}) = 0,$$

where $A = \frac{\text{We}}{\varepsilon} \tau + I$ is the conformation tensor. In this section, u = 0 on ∂D .

Compared to the "classical" estimate:

$$\frac{d}{dt} \left(\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}} \int_{\mathcal{D}} \mathrm{tr} \mathbf{A} \right) \\ + (1 - \varepsilon) \int_{\mathcal{D}} |\nabla \mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}^2} \int_{\mathcal{D}} \mathrm{tr} (\mathbf{A} - \mathbf{I}) = 0,$$

the interest is that

$$\frac{d}{dt} \left(\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}} \int_{\mathcal{D}} \left(-\ln(\det(\mathbf{A})) - d + \operatorname{tr}(\mathbf{A}) \right) \right) \le 0$$

while we have no sign on

$$\frac{d}{dt} \left(\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}} \int_{\mathcal{D}} \mathrm{tr} \boldsymbol{A} \right).$$

Moreover, since for any symmetric positive matrix M of size $d \times d$,

 $0 \le -\ln(\det M) - d + \operatorname{tr} M \le \operatorname{tr}((I - M^{-1})^2 M)$

we obtain from the free energy estimate exponential convergence to equilibrium:

$$\frac{d}{dt}\left(\frac{\mathsf{Re}}{2}\int_{\mathcal{D}}|\mathbf{u}|^{2}+\frac{\varepsilon}{2\mathrm{We}}\int_{\mathcal{D}}\left(-\ln(\det(\mathbf{A}))-d+\mathrm{tr}(\mathbf{A})\right)\right)\leq C\exp(-\lambda t).$$

This is the result we obtained on the micro-macro Hookean dumbbells model, that we recast on the macro-macro Oldroyd-B model.

The Oldroyd-B case can be use as a guideline to derive "free energy" estimates for other macroscopic models that are not equivalent to the "simple" micro-macro models we studied. For example, for the FENE-P model

$$\boldsymbol{\tau} = \frac{\varepsilon}{\mathrm{We}} \left(\frac{\boldsymbol{A}}{1 - \mathrm{tr}(\boldsymbol{A})/b} - \boldsymbol{I} \right),$$
$$\frac{\partial \boldsymbol{A}}{\partial t} + \boldsymbol{u}.\nabla \boldsymbol{A} = \nabla \boldsymbol{u} \boldsymbol{A} + \boldsymbol{A} (\nabla \boldsymbol{u})^T - \frac{1}{\mathrm{We}} \frac{\boldsymbol{A}}{1 - \mathrm{tr}(\boldsymbol{A})/b} + \frac{1}{\mathrm{We}} \boldsymbol{I},$$

we have...

$$\frac{d}{dt} \left(\frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}} \int_{\mathcal{D}} \left(-\ln(\det \mathbf{A}) - b\ln\left(1 - \mathrm{tr}(\mathbf{A})/b\right) \right) \right) + (1 - \varepsilon) \int_{\mathcal{D}} |\nabla \mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{We}^2} \int_{\mathcal{D}} \left(\frac{\mathrm{tr}(\mathbf{A})}{(1 - \mathrm{tr}(\mathbf{A})/b)^2} - \frac{2d}{1 - \mathrm{tr}(\mathbf{A})/b} + \mathrm{tr}(\mathbf{A}^{-1}) \right) = 0.$$

Using the fact for any symmetric positive matrix M of size $d \times d$, $0 \leq -\ln(\det(M)) - b\ln(1 - \operatorname{tr}(M)/b) + (b+d)\ln\left(\frac{b}{b+d}\right)$ $\leq \left(\frac{\operatorname{tr}(M)}{(1 - \operatorname{tr}(M)/b)^2} - \frac{2d}{1 - \operatorname{tr}(M)/b} + \operatorname{tr}(M^{-1})\right).$

we again obtain that the "free energy" $\frac{\text{Re}}{2} \int_{\mathcal{D}} |\mathbf{u}|^2 + \frac{\varepsilon}{2\text{We}} \int_{\mathcal{D}} \left(-\ln(\det \mathbf{A}) - b\ln(1 - \operatorname{tr}(\mathbf{A})/b)\right)$ decreases exponentially fast to 0.

The interest of this remark is twofold:

- Theoretically: Obtain new estimates for macroscopic models (longtime behaviour, existence and uniqueness result ?, etc...)
- Numerically: Analyze the stability of numerical schemes / build more stable numerical schemes.

Let us recall the variational formulation for the Oldroyd-B model ($\sigma = A$ is the conformation tensor):

$$0 = \int_{\mathcal{D}} \mathsf{Re} \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) \cdot v + (1 - \varepsilon) \nabla u : \nabla v - p \operatorname{div} v \\ + \frac{\varepsilon}{\mathsf{We}} \sigma : \nabla v + q \operatorname{div} u \\ \frac{\partial \sigma}{\partial t} + u \cdot \nabla \sigma \right) : \phi - ((\nabla u)\sigma + \sigma (\nabla u)^T) : \phi + \frac{1}{\mathsf{We}} (\sigma - I) : \phi$$

Taking as test functions $(\boldsymbol{v}, q, \boldsymbol{\phi}) = (\boldsymbol{u}, p, \frac{\varepsilon}{2We}(\boldsymbol{I} - \boldsymbol{\sigma}^{-1}))$, one obtains the free energy estimate

$$\frac{d}{dt}F + (1-\varepsilon)\int_{\mathcal{D}} |\boldsymbol{\nabla}\boldsymbol{u}|^2 + \frac{\varepsilon}{2\mathsf{W}\mathbf{e}^2}\int_{\mathcal{D}} \operatorname{tr}(\boldsymbol{\sigma} + \boldsymbol{\sigma}^{-1} - 2\boldsymbol{I}) = 0.$$

where

$$F(\boldsymbol{u}, p, \boldsymbol{\sigma}) = \frac{\mathsf{Re}}{2} \int_{\mathcal{D}} |\boldsymbol{u}|^2 + \frac{\varepsilon}{2\mathsf{We}} \int_{\mathcal{D}} \operatorname{tr}(\boldsymbol{\sigma} - \ln \boldsymbol{\sigma} - \boldsymbol{I}).$$

Moreover, using Poincaré inequality and the inequality $tr(\boldsymbol{\sigma} - \ln \boldsymbol{\sigma} - \boldsymbol{I}) \leq tr(\boldsymbol{\sigma} + \boldsymbol{\sigma}^{-1} - 2\boldsymbol{I})$, one obtains exponential decay of *F* to 0.
Question: Is it possible to find a numerical scheme which yields similar estimates ?

Interest: Build more stable numerical schemes / get an insight on some instabilities observed in numerical simulations (?)

Difficulties: Time discretization, test functions in the Finite Element space...

A numerical scheme for which everything works well: Scott-Vogelius finite elements and characteristic method. $(\boldsymbol{u}_h^{n+1}, p_h^{n+1}, \boldsymbol{\sigma}_h^{n+1}) \in (\mathbb{P}_2)^2 \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^3$ solution to:

$$0 = \int_{\mathcal{D}} \mathsf{Re} \left(\frac{\boldsymbol{u}_{h}^{n+1} - \boldsymbol{u}_{h}^{n}}{\Delta t} + \boldsymbol{u}_{h}^{n} \cdot \boldsymbol{\nabla} \boldsymbol{u}_{h}^{n+1} \right) \cdot \boldsymbol{v} - p_{h}^{n+1} \operatorname{div} \boldsymbol{v} + q \operatorname{div} \boldsymbol{u}_{h}^{n+1} + (1 - \varepsilon) \boldsymbol{\nabla} \boldsymbol{u}_{h}^{n+1} : \boldsymbol{\nabla} \boldsymbol{v} + \frac{\varepsilon}{\mathsf{We}} \boldsymbol{\sigma}_{h}^{n+1} : \boldsymbol{\nabla} \boldsymbol{v} + \frac{1}{\mathsf{We}} (\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{I}) : \boldsymbol{\phi} + \left(\frac{\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ X^{n}(t^{n})}{\Delta t} \right) : \boldsymbol{\phi} - \left((\boldsymbol{\nabla} \boldsymbol{u}_{h}^{n+1}) \boldsymbol{\sigma}_{h}^{n+1} + \boldsymbol{\sigma}_{h}^{n+1} (\boldsymbol{\nabla} \boldsymbol{u}_{h}^{n+1})^{T} \right) : \boldsymbol{\phi},$$

$$\begin{cases} \frac{d}{dt}X^n(t) = \boldsymbol{u}_h^n(X^n(t)), & \forall t \in [t^n, t^{n+1}], \\ X^n(t^{n+1}) = x. \end{cases}$$

T. Lelièvre, CEMRACS, Juillet 2008 – p. 146

One can prove that:

- for given $(\boldsymbol{u}_h^n, p_h^n, \boldsymbol{\sigma}_h^n)$ and $\boldsymbol{\sigma}_h^n$ spd, there exists $C_n > 0$ s.t. $\forall 0 < \Delta t < C_n$ there exists a unique solution $(\boldsymbol{u}_h^{n+1}, p_h^{n+1}, \boldsymbol{\sigma}_h^{n+1})$ with $\boldsymbol{\sigma}_h^{n+1}$ spd.
- such a solution satisfy a discrete free energy estimate:

$$\begin{aligned} F_h^{n+1} - F_h^n + \int_{\mathcal{D}} \frac{\mathsf{Re}}{2} |\boldsymbol{u}_h^{n+1} - \boldsymbol{u}_h^n|^2 \\ + \Delta t \int_{\mathcal{D}} (1 - \varepsilon) |\boldsymbol{\nabla} \boldsymbol{u}_h^{n+1}|^2 + \frac{\varepsilon}{2\mathsf{We}^2} \operatorname{tr} \left(\boldsymbol{\sigma}_h^{n+1} + (\boldsymbol{\sigma}_h^{n+1})^{-1} - 2I\right) \leq 0 \end{aligned}$$

 And thus, there exists a C₀ such that ∀0 < Δt < C₀, there exists a unique solution (uⁿ_h, pⁿ_h, σⁿ_h) ∀n ≥ 0.

Key ingredients for the proof:

• Take as test functions (since $\sigma_h^{n+1} \in (\mathbb{P}_0)^3$): $(\boldsymbol{u}_h^{n+1}, p_h^{n+1}, \frac{\varepsilon}{2\text{We}} (\boldsymbol{I} - (\boldsymbol{\sigma}_h^{n+1})^{-1})).$

• Treatment of the advection term $(\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{\sigma}$:

$$\begin{pmatrix} \boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ X^{n}(t^{n}) \end{pmatrix} : (\boldsymbol{\sigma}_{h}^{n+1})^{-1} = \operatorname{tr} \left([\boldsymbol{\sigma}_{h}^{n} \circ X^{n}(t^{n})] [\boldsymbol{\sigma}_{h}^{n+1}]^{-1} - \boldsymbol{I} \right)$$

$$\geq \operatorname{ln} \det \left([\boldsymbol{\sigma}_{h}^{n} \circ X^{n}(t^{n})] [\boldsymbol{\sigma}_{h}^{n+1}]^{-1} \right)$$

$$= \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n} \circ X^{n}(t^{n})) - \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n+1})$$

 $\sigma, \tau \text{ spd } \Rightarrow \operatorname{tr}(\sigma \tau^{-1} - I) \ge \ln \det(\sigma \tau^{-1}) = \operatorname{tr}(\ln \sigma - \ln \tau)$

• Strong incompressibility div $\boldsymbol{u}_h = 0$ and thus $\int_{\mathcal{D}} \operatorname{tr} \ln(\boldsymbol{\sigma}_h^n \circ X^n(t^n)) = \int_{\mathcal{D}} \operatorname{tr} \ln(\boldsymbol{\sigma}_h^n).$

Another possible discretization: Scott-Vogelius finite elements and Discontinuous Galerkin Method. $(\boldsymbol{u}_h^{n+1}, p_h^{n+1}, \boldsymbol{\sigma}_h^{n+1}) \in (\mathbb{P}_2)^2 \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^3$ solution to: $0 = \sum_{k=1}^{N_K} \int_{K_k} \operatorname{Re}\left(\frac{\boldsymbol{u}_h^{n+1} - \boldsymbol{u}_h^n}{\Delta t} + \boldsymbol{u}_h^n \cdot \boldsymbol{\nabla} \boldsymbol{u}_h^{n+1}\right) \cdot \boldsymbol{v} - p_h^{n+1} \operatorname{div} \boldsymbol{v} + q \operatorname{div} \boldsymbol{u}_h^{n+1}$ $+ (1 - \varepsilon) \nabla \boldsymbol{u}_h^{n+1} : \nabla \boldsymbol{v} + \frac{\varepsilon}{\mathbf{W} \boldsymbol{\rho}} \boldsymbol{\sigma}_h^{n+1} : \nabla \boldsymbol{v} + \frac{1}{\mathbf{W} \boldsymbol{\rho}} (\boldsymbol{\sigma}_h^{n+1} - \boldsymbol{I}) : \boldsymbol{\phi}$ $+\left(\frac{\boldsymbol{\sigma}_{h}^{n+1}-\boldsymbol{\sigma}_{h}^{n}}{\Delta t}\right):\boldsymbol{\phi}-((\boldsymbol{\nabla}\boldsymbol{u}_{h}^{n+1})\boldsymbol{\sigma}_{h}^{n+1}+\boldsymbol{\sigma}_{h}^{n+1}(\boldsymbol{\nabla}\boldsymbol{u}_{h}^{n+1})^{T}):\boldsymbol{\phi}$ $+\sum_{i=1}^{N_E}\int_{E_i}oldsymbol{u}_h^n\cdotoldsymbol{n}_{E_j}[\![oldsymbol{\sigma}_h^{n+1}]\!]:oldsymbol{\phi}^+$

With this discretization a similar result can be proved under the weak incompressibility constraint $\int q \operatorname{div}(\boldsymbol{u}_h^n) = 0.$

Summary: what we need for discrete free energy estimates with piecewise constant σ_h :

Advection	Characteristic	DG
for $oldsymbol{\sigma}_h$:		
For \boldsymbol{u}_h :	$\operatorname{div} \boldsymbol{u}_h = 0$	$\int_{\mathcal{D}} q \operatorname{div} \boldsymbol{u}_h = 0, \ \forall q \in \mathcal{D}$
	$(\Rightarrow \det(\nabla_{\boldsymbol{x}} X^n) \equiv 1)$	\mathbb{P}_0
	$(\Rightarrow oldsymbol{u}_h \cdot oldsymbol{n} ext{well de-}$	and
	fined on $\{E_j\}$)	$oldsymbol{u}_h{\cdot}oldsymbol{n}$ well defined on
		$\{E_j\}$

These results can be extended to discontinuous piecewise affine discretization for σ using the projection operator π_h with values in $(\mathbb{P}_0)^3$ s.t.

$$\pi_h(\boldsymbol{\phi})|_{K_k} = \boldsymbol{\phi}(\theta_{K_k}),$$

where θ_{K_k} is the barycenter of the triangle K_k . The properties we use:

- π_h commutes with nonlinear functional (like $^{-1}$)
- π_h coincides with L^2 orthogonal projection from $(\mathbb{P}_{1,disc})^3$ onto $(\mathbb{P}_0)^3$.

Stability for the log-formulation (Fattal, Kupferman): $\psi = \ln(\sigma)$

$$\begin{cases} \mathsf{Re}\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla}\boldsymbol{u}\right) = -\boldsymbol{\nabla}p + (1-\varepsilon)\Delta\boldsymbol{u} + \frac{\varepsilon}{\mathsf{We}}\operatorname{div} e^{\boldsymbol{\psi}}\\ \operatorname{div}\boldsymbol{u} = 0\\ \frac{\partial \boldsymbol{\psi}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{\psi} = \Omega\boldsymbol{\psi} - \boldsymbol{\psi}\Omega + 2B + \frac{1}{\mathsf{We}}(e^{-\boldsymbol{\psi}} - \boldsymbol{I}) \end{cases}$$

with decomposition (σ spd):

$$\nabla \boldsymbol{u} = \Omega + B + N e^{-\boldsymbol{\psi}}$$

 Ω , *N* antisymmetric, *B* symmetric and commutes with $e^{-\psi}$.

Since e^{ψ} naturally enforces spd-ness, one can prove (for Scott-Vogelius FEM and characteristic or DG method):

∀∆t > 0, there exists a solution (uⁿ_h, pⁿ_h, ψⁿ_h) ∀n ≥ 0.
 (no CFL, but no uniqueness !)

Proof : use free energy estimate and Brouwer fixed point theorem.

Is this related to the better stability properties that have been reported for the log-formulation ?

would like to thank my co-authors on the subject:

- S. Boyaval (CERMICS)
- D. Hu (Peking University)
- B. Jourdain (CERMICS)
- C. Le Bris (CERMICS)
- C. Mangoubi-Pigier (the Hebrew University)
- F. Otto (Bonn)

Some references

- BJ, TL, CLB, Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case, *M3AS*, **12(9)**, 1205–1243, (2002).
- BJ, TL, CLB, Existence of solution for a micro-macro model of polymeric fluid: the FENE model, *Journal of Functional Analysis*, **209**, 162–193, (2004).
- BJ, CLB, TL, On a variance reduction technique for micro-macro simulations of polymeric fluids, *J. Non-Newtonian Fluid Mech.*, **122**, 91–106, (2004).
- BJ, CLB, TL, An elementary argument regarding the long-time behaviour of the solution to a SDE, Annals of Craiova University, 32, 39–47, (2005).
- BJ, CLB, TL, FO, Long-time asymptotics of a multiscale model for polymeric fluid flows, Archive for Rational Mechanics and Analysis, 181(1), 97–148, (2006).
- DH, TL, New entropy estimates for the Oldroyd-B model, and related models, Commun. Math. Sci., 5(4), 909–916 (2007).
- SB, TL, CM, Free-Energy-dissipative schemes for the Oldroyd-B model, http://hal.inria.fr/inria-00204620/fr/, (2008).
- CLB, TL, Multiscale modelling of complex fluids: a mathematical initiation, http://hal.inria.fr/inria-00165171, (2007).