Imaging in random media

Chrysoula Tsogka

tsogka@math.uchicago.edu

University of Chicago

In Collaboration with:

Liliana Borcea (Rice University) George Papanicolaou (Stanford University)

Passive Array Imaging in Clutter

- Array data: $P(\mathbf{x}_r, t)$ for (\mathbf{x}_r, t) a set of receiver locations in \mathbb{R}^2 and time in \mathbb{R}_+ .
- Object: continuous distribution of sources in \mathcal{D} with intensity $\varrho(\mathbf{y})$.

Passive Array Imaging in Clutter

• Objective: recover \mathcal{D} from $P(\mathbf{x}_r, t)$ when the background medium is cluttered.

Active Array Imaging in Clutter

- ▲ Array data: $P(\mathbf{x}_s, \mathbf{x}_r, t)$ for $(\mathbf{x}_s, \mathbf{x}_r, t)$ a set of source and receiver locations in \mathbb{R}^2 and time in \mathbb{R}_+ .
- Object: scatterrer with support in \mathcal{D} and reflectivity $\varrho(\mathbf{y})$.

Active Array Imaging in Clutter

- Objective: recover \mathcal{D} from $P(\mathbf{x}_s, \mathbf{x}_r, t)$ when the background medium is cluttered.
- Application: Imaging underground structures / Non-destructive testing (concrete imaging).

What is the clutter?

■ background velocity $c(\mathbf{x})$ consists of a smooth part $c_o(\mathbf{x})$, that is known or can be estimated, and the inhomogeneities (clutter) that cannot be precisely estimated \Rightarrow model as random process.

$$c(\mathbf{x}) = c_0(\mathbf{x}) \left(1 + \sigma \mu \left(\frac{x_1}{l_1}, \frac{x_2}{l_2} \right) \right)$$

- with μ a random process
- I l_1, l_2 the correlation lengths (scale of the inhomogeneities)

Velocity profile in the earth

background velocity c(x) consists of a smooth part c_o(x) (assumed known), and of the fluctuations, which cannot be estimated.

Modeling the clutter

We assume that the velocity is described by

$$c(\mathbf{x}) = c_0(\mathbf{x}) \left(1 + \sigma \mu(\mathbf{x})\right)$$

- with μ a real valued random process with $\langle \mu \rangle = 0$ and correlation function: $R(\mathbf{x}_1, \mathbf{x}_2) = \langle \mu(\mathbf{x}_1)\mu(\mathbf{x}_2) \rangle$
- or by introducing $\overline{\mathbf{x}} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \widetilde{\mathbf{x}} = \mathbf{x}_2 \mathbf{x}_1$

$$R(\overline{\mathbf{x}}, \widetilde{\mathbf{x}}) = \langle \mu(\overline{\mathbf{x}} - \widetilde{\mathbf{x}}/2)\mu(\overline{\mathbf{x}} + \widetilde{\mathbf{x}}/2) \rangle$$

We assume that μ is stationary so that the correlation function depends only on the distance

$$R(\overline{\mathbf{x}}, \widetilde{\mathbf{x}}) = R(\widetilde{\mathbf{x}})$$

- on a rectangular grid we generate a filter $F(\mathbf{x})$
- we compute the Fourier transform $\hat{F}(\mathbf{k})$ of $F(\mathbf{x})$
- we generate a white noise distribution $\hat{W}(\mathbf{k})$ (< $\hat{W} >= 0$, std=1)
- we compute $\mu(\mathbf{x}) = \mathcal{F}^{-1}(\hat{W}\hat{F})$
- the correlation function of $\mu(\mathbf{x})$ is $(\langle \widehat{W}(\mathbf{k}_1) \widehat{W}(\mathbf{k}_2) \rangle = \delta(\mathbf{k}_1 - \mathbf{k}_2))$

$$R(\widetilde{\mathbf{x}}) = (2\pi)^{-d} \int d\mathbf{k} e^{i\mathbf{k}\cdot\widetilde{\mathbf{x}}} \overline{\hat{F}(\mathbf{k})} \hat{F}(\mathbf{k})$$

 \blacksquare we chose F to obtain the desired R

- Examples of isotropic clutter correlation functions
- **•** Gaussian $R(|\mathbf{x}_1 \mathbf{x}_2|) = e^{-\frac{|\mathbf{x}_1 \mathbf{x}_2|^2}{2l^2}}$

• Power low
$$R(|\mathbf{x}_1 - \mathbf{x}_2|) = (1 + \frac{|\mathbf{x}_1 - \mathbf{x}_2|}{l})e^{-\frac{|\mathbf{x}_1 - \mathbf{x}_2|}{l}}$$

here the correlation length l is the same in all directions of propagation ($l_{cr} = l_r = l$)

here the correlation length is infinite in the cross-range direction and finite in the range direction $l_r = l$

The forward model

Data:
$$\hat{P}(\mathbf{x}_s, \mathbf{x}_r, \omega) = \hat{f}(\omega)\hat{G}(\mathbf{x}_s, \mathbf{x}_r, \omega)$$

 $\widehat{G}(\mathbf{x},\mathbf{y},\omega)$ satisfying the wave equation

$$\Delta \hat{G}(\mathbf{x}, \mathbf{y}, \omega) + k^2 n^2(\mathbf{x}) \hat{G}(\mathbf{x}, \mathbf{y}, \omega) = -\delta(\mathbf{x} - \mathbf{y}) \text{ in } \mathbb{R}^3$$

- $k = \omega/c_0$: wavenumber
- $n(\mathbf{x}) = c_0/c(\mathbf{x})$: index of refraction

$$n^{2}(\mathbf{x}) = n_{BG}^{2}(\mathbf{x}) + \boldsymbol{\varrho}(\mathbf{x}) + \boldsymbol{\mu}(\mathbf{x})$$

• μ = random part of the refractive index.

The inverse problem

we can formulate the non-linear least squares problem:
Find $\varrho(\mathbf{x})$ by minimizing,

$$J(\boldsymbol{\varrho}) = \int_0^T dt \sum_{\mathbf{x}_s, \mathbf{x}_r} |P(\mathbf{x}_s, \mathbf{x}_r, t) - Q(\mathbf{x}_s, \mathbf{x}_r, t; \boldsymbol{\varrho})|^2$$

- with $Q(\mathbf{x}_s, \mathbf{x}_r, t; \boldsymbol{\varrho})$ the data model.
- this is typically not solvable for large array data (as in seismic applications)

Linearized inversion

Introduce \hat{G}_B solution of

 $\Delta \hat{G}_B(\mathbf{x}, \mathbf{y}, \omega) + k^2 (n_{BG}^2(\mathbf{x}) + \mu(\mathbf{x})) \hat{G}_B(\mathbf{x}, \mathbf{y}, \omega) = -\delta(\mathbf{x} - \mathbf{y}) \text{ in } \mathbb{R}^3$

the pressure field is given by,

$$\hat{P}(\mathbf{x}, \mathbf{y}, \omega) = \hat{f}(\omega)\hat{G}_B(\mathbf{x}, \mathbf{y}, \omega) + \hat{q}(\mathbf{x}, \mathbf{y}, \omega)$$

• with $\hat{q}(\mathbf{x}, \mathbf{y}, \omega)$ solution of,

$$\Delta + k^2 (n_{BG}^2(\mathbf{x}) + \mu(\mathbf{x})))\hat{q}(\mathbf{x}, \mathbf{y}, \omega) = -k^2 \varrho(\mathbf{x})(\hat{f}(\omega)\hat{G}_B(\mathbf{x}, \mathbf{y}, \omega) + \hat{q}(\mathbf{x}, \mathbf{y}, \omega))$$

Linearized inversion

So that,

$$\hat{q}(\mathbf{x}, \mathbf{y}, \omega) = -k^2 \hat{f}(\omega) \int \varrho(\mathbf{z}) \hat{G}_B(\mathbf{x}, \mathbf{z}, \omega) \hat{G}_B(\mathbf{z}, \mathbf{y}, \omega) d\mathbf{z}$$
$$-k^2 \int \varrho(\mathbf{z}) \hat{q}(\mathbf{x}, \mathbf{z}, \omega) \hat{G}_B(\mathbf{z}, \mathbf{y}, \omega) d\mathbf{z}$$

Linearization consists in (Born approximation)

$$\hat{q}(\mathbf{x}, \mathbf{y}, \omega) = -k^2 \hat{f}(\omega) \int \varrho(\mathbf{z}) \hat{G}_B(\mathbf{x}, \mathbf{z}, \omega) \hat{G}_B(\mathbf{z}, \mathbf{y}, \omega) d\mathbf{z}$$

- Let's assume that we know $n_{BG}^2(\mathbf{x})$, $\mu(\mathbf{x}) = 0$.
- The solution of the linearized least squares problem:

$$J(\boldsymbol{\varrho}) = \int d\omega \sum_{\mathbf{x}_s, \mathbf{x}_r} |\hat{P}(\mathbf{x}_s, \mathbf{x}_r, \omega) - \hat{Q}_L(\mathbf{x}_s, \mathbf{x}_r, \omega; \boldsymbol{\varrho})|^2$$

• with
$$Q_L(\mathbf{x}_s, \mathbf{x}_r, \omega; \boldsymbol{\varrho}) = \mathcal{A}\boldsymbol{\varrho}$$

$$\hat{Q}_L(\mathbf{x}_s, \mathbf{x}_r, \omega; \boldsymbol{\varrho}) = -k^2 \hat{f}(\omega) \int \boldsymbol{\varrho}(\mathbf{z}) \hat{G}_B(\mathbf{x}, \mathbf{z}, \omega) G_B(\mathbf{z}, \mathbf{y}, \omega) d\mathbf{z}$$

• is given by $\rho = \mathcal{A}^* P(\mathbf{x}_s, \mathbf{x}_r, t)$ because $\mathcal{A}^* \mathcal{A}$ acts as an identity operator on the singularities of ρ .

assuming $n_{BG}^2(\mathbf{x})$ is smooth and using HF assymptotics for the Green's function (neglecting amplitudes) we get that $\mathcal{I}^{KM}(\mathbf{y}^s)$ gives a good estimate of $\varrho(\mathbf{y}^s)$ (NOTE: we only recover the support - singularities of the function)

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^s) = \sum_{\mathbf{x}_s, \mathbf{x}_r} \int d\omega \hat{P}(\mathbf{x}_s, \mathbf{x}_r, \omega) e^{-i\omega(\tau(\mathbf{x}_s, \mathbf{y}^s) + \tau(\mathbf{y}^s, \mathbf{x}_r))}$$

• $\tau(\mathbf{x}, \mathbf{y})$ is the travel time $\tau(\mathbf{x}, \mathbf{y}) = \min \int \frac{1}{c(X(s))} ds$ where the minimum is over all paths *X* that start at \mathbf{x} and end at \mathbf{y} .

references:

- N. Bleistein, J.K. Cohen, and J.W. Stockwell Jr., Mathematics of multidimensional seismic imaging, migration, and inversion. Springer, New York, 2001.
- G. Beylkin and R. Burridge. Linearized inverse scattering problems in acoustics and elasticity. Wave Motion, Vol. 12, No. 1, pp. 15-52, 1990.
- Lewis and Symes, Inverse Problems, Vol. 7, pp. 597-632, 1991.
- W. Symes. Lecture notes in seismic imaging. Mathematical Geophysics Summer School, Stanford, available at www.trip.caam.rice.edu, 1998.
- C. Stolk and M. V. de Hoop. *Microlocal analysis of seismic inverse scattering in anisotropic elastic media*. Comm. Pure Appl. Math., Vol. 55, No. 3, pp. 261-301, 2002.
- C. Stolk and W. Symes. Smooth objective functionals for seismic velocity inversion. Inverse Problems, Vol. 19, pp. 73-89, 2003.

Kirchhoff migration resolution

• when
$$a, B \to \infty \Rightarrow$$

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^S) \approx \int_{\mathcal{D}} \delta(\mathbf{y} - \mathbf{y}^S) \boldsymbol{\varrho}(\mathbf{y}) d\mathbf{y}$$

Bleinstein, Cohen, Stockwell (2001)

- **•** for finite a and $B \Rightarrow$
 - range resolution (direction of propagation): $\sigma_r = \frac{c_0}{B}$

• cross-range resolution:
$$\sigma_{cr} = \frac{\lambda_0 L}{a}$$

The numerical setup

- the background velocity is $c_0 = 3km/sec$
- f(t): is the derivative of a gaussian with central frequency $f_0 = 100$ KHz and bandwidth 60 - 130kHz measured at 6dB.

The numerical setup

- the central wavelength is $\lambda_0 = 3cm$.
- array: 185 elements $\lambda_0/2$ apart, $a = 92\lambda_0$
- the range is $90\lambda_0$

The numerical setup

- the distance between the objects (sources or targets) is $d = 6\lambda_0$ (or $3\lambda_0$)
- the targets are disks with diameter λ_0 .

Data on the array: traces

- the cross-range is measured in cm.
- the time is measured in msec.

- Passive array: imaging functional for KM at \mathbf{y}^{S} $\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^{s}) = \sum_{r} P(\mathbf{x}_{r}, \tau(\mathbf{x}_{r}, \mathbf{y}^{S})) = \sum_{r} \int_{B} \frac{d\omega}{2\pi} \hat{P}(\mathbf{x}_{r}, \omega) e^{-i\omega\tau(\mathbf{x}_{r}, \mathbf{y}^{S})}$
 - with $\tau(\mathbf{x}, \mathbf{y}) = |\mathbf{x} \mathbf{y}|/c_0$ travel time in the known smooth background (here homogeneous)
 - Active array: imaging functional for KM at y^S

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^{s}) = \sum_{r=1}^{N_{r}} P(\mathbf{x}_{s}, \mathbf{x}_{r}, \tau(\mathbf{x}_{s}, \mathbf{y}^{s}) + \tau(\mathbf{x}_{r}, \mathbf{y}^{s}))$$
$$= \sum_{r=1}^{N_{r}} \int \frac{d\omega}{2\pi} \hat{P}(\mathbf{x}_{s}, \mathbf{x}_{r}, \omega) \overline{G_{0}(\mathbf{x}_{s}, \mathbf{y}^{s}, \omega)G_{0}(\mathbf{x}_{r}, \mathbf{y}^{s}, \omega)}$$

$${\scriptstyle
ho}$$
 with $G_0(\mathbf{x}_s,\mathbf{y}^s,\omega)=e^{i\omega au(\mathbf{x}_s,\mathbf{y}^s)}$

Kirchhoff migration results

length is scaled by λ_0

- the search domain is a square $20\lambda_0 \times 20\lambda_0$ centered at the objects
- the pixel size is $\lambda_0/2$.

What happens in clutter?

 \checkmark Length scaled by λ_0

What happens in clutter?

- Length scaled by λ_0 and time by pulsewidth
- the clutter impedes the imaging process as the significant multipathing of the waves by the inhomogeneities results to noisy data traces (the noise is not simply additive)

Migration in clutter

Classic migration is statisticaly unstable

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^s) = \sum_{r=1}^{N_r} P(\mathbf{x}_s, \mathbf{x}_r, \tau(\mathbf{x}_s, \mathbf{y}^s) + \tau(\mathbf{x}_r, \mathbf{y}^s))$$

Migration in clutter

Classic migration is statisticaly unstable

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^s) = \sum_{r=1}^{N_r} P(\mathbf{x}_s, \mathbf{x}_r, \tau(\mathbf{x}_s, \mathbf{y}^s) + \tau(\mathbf{x}_r, \mathbf{y}^s))$$

- To make migration work we should remove the delay spread:
 - x trace denoising ? (noise is not additive)
 - ✓ we use time-reversal based techniques

Migration in frequency domain

the migration functional

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^s) = \sum_{r=1}^{N_r} P(\mathbf{x}_s, \mathbf{x}_r, \tau(\mathbf{x}_s, \mathbf{y}^s) + \tau(\mathbf{x}_r, \mathbf{y}^s))$$

can be written as

$$\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^s) = \sum_{r=1}^{N_r} \int d\omega \hat{P}(\mathbf{x}_s, \mathbf{x}_r, \omega) \overline{G_0(\mathbf{x}_s, \mathbf{y}^s, \omega) G_0(\mathbf{x}_r, \mathbf{y}^s, \omega)}$$

• with
$$G_0(\mathbf{x}_s, \mathbf{y}^s, \omega) = e^{i\omega\tau(\mathbf{x}_s, \mathbf{y}^s)}$$

Coherent interferometry (CINT)

- an ideal way to image would be to backpropagate with the exact $G(\mathbf{x}_s, \mathbf{y}^s, \omega)$. This is called time reversal and has two fundemental properties in clutter:
 - statistical stability
 - super-resolution
- But we do not know the clutter ! ($G(\mathbf{x}_s, \mathbf{y}^s, \omega)$ is unknow)

Coherent interferometry (CINT)

- we cross-correlate the traces locally in space and time:
 - cross-correlation in space is limitted by the decoherence length X_d
 - cross-correlation in time is limitted by the delay spread T_d
- we call these local cross-corelations coherent interferograms
- CINT consists in migrating the coherent interferograms to the search point y^s using $G_0(\mathbf{x}_s, \mathbf{y}^s, \omega)$

CINT imaging functional

$$\mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^{s};\Omega_{d},\kappa_{d})\sim\int_{\overline{\omega}\in B}d\overline{\omega}\int_{\overline{\mathbf{x}}\in a}d\overline{\mathbf{x}}\int d\tilde{\omega}\ \hat{\Psi}(\tilde{\omega};\Omega_{d})\int d\widetilde{\mathbf{x}}\ \hat{\Phi}\left(\frac{\overline{\omega}}{c_{0}}\widetilde{\mathbf{x}};\kappa_{d}^{-1}\right)$$
$$\hat{P}\left(\overline{\mathbf{x}}+\frac{\widetilde{\mathbf{x}}}{2},\mathbf{x}_{s},\overline{\omega}+\frac{\tilde{\omega}}{2}\right)\exp\left\{-i(\overline{\omega}+\frac{\tilde{\omega}}{2})\left[\tau(\overline{\mathbf{x}}+\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^{s})+\tau(\mathbf{x}_{s},\mathbf{y}^{s})\right]\right\}$$
$$\overline{\hat{P}\left(\overline{\mathbf{x}}-\frac{\widetilde{\mathbf{x}}}{2},\mathbf{x}_{s},\overline{\omega}-\frac{\tilde{\omega}}{2}\right)}\exp\left\{+i(\overline{\omega}-\frac{\tilde{\omega}}{2})\left[\tau(\overline{\mathbf{x}}-\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^{s})+\tau(\mathbf{x}_{s},\mathbf{y}^{s})\right]\right\}$$

using the midpoint and offset variables

$$\overline{\mathbf{x}} = \frac{\mathbf{x}_r + \mathbf{x}_r'}{2}, \widetilde{\mathbf{x}} = \mathbf{x}_r - \mathbf{x}_r'; \ \overline{\omega} = \frac{\omega + \omega'}{2}, \widetilde{\omega} = \omega - \omega'$$

CINT imaging functional

$$\mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^{s};\Omega_{d},\kappa_{d})\sim\int_{\overline{\omega}\in B}d\overline{\omega}\int_{\overline{\mathbf{x}}\in a}d\overline{\mathbf{x}}\int d\tilde{\omega}\ \hat{\Psi}(\tilde{\omega};\Omega_{d})\int d\widetilde{\mathbf{x}}\ \hat{\Phi}\left(\frac{\overline{\omega}}{c_{0}}\widetilde{\mathbf{x}};\kappa_{d}^{-1}\right)$$
$$\hat{P}\left(\overline{\mathbf{x}}+\frac{\widetilde{\mathbf{x}}}{2},\mathbf{x}_{s},\overline{\omega}+\frac{\tilde{\omega}}{2}\right)\exp\left\{-i(\overline{\omega}+\frac{\tilde{\omega}}{2})\left[\tau(\overline{\mathbf{x}}+\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^{s})+\tau(\mathbf{x}_{s},\mathbf{y}^{s})\right]\right\}$$
$$\overline{\hat{P}\left(\overline{\mathbf{x}}-\frac{\widetilde{\mathbf{x}}}{2},\mathbf{x}_{s},\overline{\omega}-\frac{\tilde{\omega}}{2}\right)}\exp\left\{+i(\overline{\omega}-\frac{\tilde{\omega}}{2})\left[\tau(\overline{\mathbf{x}}-\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^{s})+\tau(\mathbf{x}_{s},\mathbf{y}^{s})\right]\right\}$$

- $\tilde{\omega}$ is restricted by window $\hat{\Psi}$ to $|\tilde{\omega}| \leq \Omega_d$, with Ω_d the decoherence frequency $(\sim 1/T_d)$
- $\widetilde{\mathbf{x}}$ is restricted by window $\hat{\Phi}$ to $|\widetilde{\mathbf{x}}| \leq X_d(\overline{\omega})$, with $X_d(\overline{\omega})$ the decoherence length (the TR spot size at frequency $\overline{\omega}$). The support of $\hat{\Phi}$ is $\kappa_d^{-1} = \overline{\omega} X_d(\overline{\omega})/c_0$

CINT and statistical smoothing

 \checkmark for small $|\widetilde{\mathbf{x}}|$ we can linearize the phase

 $\exp\left\{-i\overline{\omega}\left[\tau(\overline{\mathbf{x}}+\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^s)-\tau(\overline{\mathbf{x}}-\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^s)\right]\right\}\approx\exp\left\{-i\overline{\omega}\widetilde{\mathbf{x}}\cdot\nabla_{\overline{\mathbf{x}}}\tau(\overline{\mathbf{x}},\mathbf{y}^s)\right\}$

 $\exp\left\{-i\tilde{\omega}\left[\tau(\overline{\mathbf{x}}+\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^s)+\tau(\overline{\mathbf{x}}-\frac{\widetilde{\mathbf{x}}}{2},\mathbf{y}^s)\right]\right\}\approx\exp\left\{-i2\tilde{\omega}\tau(\overline{\mathbf{x}},\mathbf{y}^s)\right\}$

CINT and statistical smoothing

the imaging functional becomes

$$\mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^{S};\Omega_{d},\kappa_{d}) = \int dt \int d\mathbf{k} \Phi(c_{0}\nabla_{\overline{\mathbf{x}}}\tau(\overline{\mathbf{x}},\mathbf{y}^{s}) - \mathbf{k};\kappa_{d})$$
$$\Psi(\tau(\overline{\mathbf{x}},\mathbf{y}^{s}) + \tau(\mathbf{x}_{s},\mathbf{y}^{s}) - t;T_{d}) \int d\overline{\omega}W(\overline{\mathbf{x}},\frac{\overline{\omega}}{c_{0}}\mathbf{k},t),$$

• with $W(\cdot)$ the Wigner distribution of the data

$$W(\overline{\mathbf{x}}, \frac{\overline{\omega}}{c_0} \mathbf{k}, t) = \int d\tilde{\omega} \int d\widetilde{\mathbf{x}} e^{-i\tilde{\omega}t - i\frac{\overline{\omega}}{c_0}\widetilde{\mathbf{x}} \cdot \mathbf{k}} \hat{P}\left(\overline{\mathbf{x}} + \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_s, \overline{\omega} + \frac{\widetilde{\omega}}{2}\right)$$
$$\frac{\hat{P}\left(\overline{\mathbf{x}} - \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_s, \overline{\omega} - \frac{\widetilde{\omega}}{2}\right)}{\hat{P}\left(\overline{\mathbf{x}} - \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_s, \overline{\omega} - \frac{\widetilde{\omega}}{2}\right)}$$

W(·) is highly fluctuating but decorrelates rapidly in
 ϖ and k
 → in CINT we have stability by smoothing

CINT as smooth migration

CINT can be also written as

$$\begin{aligned} \mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^{S};\Omega_{d},\kappa_{d}) &= \int d\overline{\mathbf{x}} \int d\widetilde{\mathbf{x}} \left[P\left(\overline{\mathbf{x}} + \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_{s}, t + \frac{\mathbf{k} \cdot \widetilde{\mathbf{x}}}{2c_{0}}\right) \right. \\ & \left. P\left(\overline{\mathbf{x}} - \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_{s}, t - \frac{\mathbf{k} \cdot \widetilde{\mathbf{x}}}{2c_{0}}\right) \right] \\ & \left. \star_{\mathbf{k}} \left. \Phi(\mathbf{k};\kappa_{d}) \right|_{\mathbf{k}=c_{0}\nabla_{\overline{\mathbf{x}}}\tau(\overline{\mathbf{x}},\mathbf{y}^{s})} \star_{t} \left. \Psi(t;T_{d}) \right|_{t=\tau(\overline{\mathbf{x}},\mathbf{y}^{s})+\tau(\mathbf{x}_{s},\mathbf{y}^{s})} \right. \end{aligned}$$

when Φ , Ψ are δ functions (no smoothing) we obtain

$$\mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^{S};\Omega_{d},\kappa_{d}) = \left[\mathcal{I}^{\mathsf{KM}}(\mathbf{y}^{s})\right]^{2}$$

CINT is a statistically stable smoothed migration method !

CINT as smooth migration

CINT can be also written as

$$\begin{aligned} \mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^{S};\Omega_{d},\kappa_{d}) &= \int d\overline{\mathbf{x}} \int d\widetilde{\mathbf{x}} \left[P\left(\overline{\mathbf{x}} + \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_{s}, t + \frac{\mathbf{k} \cdot \widetilde{\mathbf{x}}}{2c_{0}}\right) \right. \\ & \left. P\left(\overline{\mathbf{x}} - \frac{\widetilde{\mathbf{x}}}{2}, \mathbf{x}_{s}, t - \frac{\mathbf{k} \cdot \widetilde{\mathbf{x}}}{2c_{0}}\right) \right] \\ & \star_{\mathbf{k}} \left. \Phi(\mathbf{k};\kappa_{d}) \right|_{\mathbf{k}=c_{0}\nabla_{\overline{\mathbf{x}}}\tau(\overline{\mathbf{x}},\mathbf{y}^{s})} \star_{t} \left. \Psi(t;T_{d}) \right|_{t=\tau(\overline{\mathbf{x}},\mathbf{y}^{s})+\tau(\mathbf{x}_{s},\mathbf{y}^{s})} \end{aligned}$$

- Smoothing over arrival time by convolution with $\Psi(t; T_d)$ of support $T_d \approx 1/\Omega_d$ affects range resolution c_0/Ω_d .
- Smoothing in direction of arrival by convol. with $\Phi(\mathbf{k}; \kappa_d)$ with supp. in ball of radius $\kappa_d \rightsquigarrow$ cross range resolution $L\kappa_d \approx \lambda_0 L/X_d(\omega_0)$.

Resolution summary

- migration resolution in homogeneous media
 - in range : $O\left(\frac{c_0}{B}\right)$
 - in cross-range : $O\left(\lambda \frac{L}{a}\right) = O\left(\frac{c_0 L}{\omega_0 a}\right)$
- CINT resolution in clutter ($\Omega_d < B \& X_d < a$)

• in range : $O\left(\frac{c_0}{\Omega_d}\right)$

• in cross-range :
$$O(L\kappa_d) = O\left(\frac{c_0L}{\omega_0X_d(\omega_0)}\right)$$

• for $\Omega_d \ll B \& X_d \ll a$

✓ incoherent imaging should be used (diffusion)

$$D = \frac{c_0 l^*}{3}$$

• CINT works for $L < l^*$ (in numerics $l^* = 75\lambda_0$)

- $I e How can we find \Omega_d and \kappa_d ?$
- Solution We may derive (theoretical) formulae for Ω_d and κ_d . But this will be model dependent.
- We can estimate the decoherence parameters using statistical data processing techniques, but this can be tricky.
- We found that a more efficient approach is to do an adaptive estimation of the smoothing parameters, during the image formation process.

- Solution View the imaging function as $\mathcal{I}^{\mathsf{CINT}}(\mathbf{y}^s; \Omega_d, \kappa_d)$ and seek parameters Ω_d and κ_d by achieving an optimal balance between statistical smoothing and resolution.
- Penalize the speckles (left image) by using a norm of the gradient. To obtain a tight image, we should also penalize the blur (see right image) by using a sparsity measure. The "optimal" result is given in the middle.

- Ω_d and κ_d are determined by minimizing $\mathcal{O}(\mathbf{y}^s; \Omega_d, \kappa_d) =$ $\|\mathcal{J}_{\mathcal{N}}(\mathbf{y}^s; \Omega_d, \kappa_d)\|_{L^1(\mathcal{D})} + \alpha \|\nabla_{\mathbf{y}^s} \mathcal{J}_{\mathcal{N}}(\mathbf{y}^s; \Omega_d, \kappa_d)\|_{L^1(\mathcal{D})},$
- with $\mathcal{J}_{\mathcal{N}}(\mathbf{y}^s) = \sqrt{|\mathcal{J}(\mathbf{y}^s)|} / \sup_{\mathbf{y}^s \in \mathcal{D}_s} \sqrt{|\mathcal{J}(\mathbf{y}^s)|}$
- **•** for point targets we use $\alpha = 1$

- Ω_d and κ_d are determined by minimizing $\mathcal{O}(\mathbf{y}^s; \Omega_d, \kappa_d) =$ $\|\mathcal{J}_{\mathcal{N}}(\mathbf{y}^s; \Omega_d, \kappa_d)\|_{L^1(\mathcal{D})} + \alpha \|\nabla_{\mathbf{y}^s} \mathcal{J}_{\mathcal{N}}(\mathbf{y}^s; \Omega_d, \kappa_d)\|_{L^1(\mathcal{D})},$
- This is very different from usual denoising, $\|\mathcal{N}(\mathbf{y}^s) - \mathcal{I}(\mathbf{y}^s)\|_{\text{prox}} + \alpha \|\mathcal{I}(\mathbf{y}^s)\|_{\text{reg}}$
- where \mathcal{N} is a given noisy image, \mathcal{I} is the desired denoised image, $\|\cdot\|_{\text{prox}}$ is a proximity norm, usually $L^2(D)$, and $\|\cdot\|_{reg}$ is a regularization norm, usually TV.
- We do not have an image N so there is no proximity norm part. We use instead the L¹ norm of the image which is small, when the image is sparse. We do have however the regularization term.

Adaptive CINT results I

We use the NOMADm software package (C. Audet, J. Dennis, M. Abramson), that uses a mesh-adaptive direct search method for constrained, nonlinear, mixed variable problems.

Adaptive CINT Results II

Top: mono-scale, Bottom: multi-scale random medium with standard deviation 3%.

Anisotropic clutter

• $c_0 = 3$ Km/s, B = 0.6 - 1.3 KHz, $\lambda_0 = 3$ m

$$l = \lambda_0/10, L = 80\lambda_0 = 800l$$

- strong fluctuations std s = 30%,
- In this regime we have pulse stabilization (ODA) and in the limit $\lambda_0/L = \epsilon \rightarrow 0$ KM is stable
- CINT here is obtained using only window $\Psi(t; T_d)$, i.e $\Phi(\kappa; \kappa_d)$ is a δ function

Anisotropic clutter: traces

• The ordinate in the pictures is time scaled by the pulse-width and the abscissa is the array element position in λ_0 .

Anisotropic clutter: KM vs CINT

References

Finely Layered media

- M. Asch, W. Kohler, G. Papanicolaou, M. Postel, and B. White, Frequency content of randomly scattered signals, SIAM Rev., 33 (1991), pp. 519-625.
- J. F. Clouet and J. P. Fouque, Spreading of a pulse travelling in random media, Ann. Appl. Probab., 4 (1994), pp. 1083-1097.
- J. Chillan and J. P. Fouque, Pressure fields generated by acoustical pulses propagating in randomly layered media, SIAM J. Appl. Math., 58 (1998), pp. 1532-1546.
- J. P. Fouque, S. Garnier, A. Nachbin, and K. Solna, Time-reversal refocusing for point source in randomly layered media, Wave Motion, 42 (2005), pp. 238-260.
- J. Garnier, Imaging in randomly layered media by cross-correlating noisy signals, Multiscale Model. Simul., 4 (2005), pp. 610-640.
- L. Borcea, G. Papanicolaou and CT, Coherent interferometry in finely layered random media, SIAM Journal on Multiscale Modeling and Simulation, vol 5, (2006), pp. 62 - 83.
- L. Borcea, G. Papanicolaou and CT, Coherent Interferometric Imaging, to appear in "Geophysics", 2006.

References

Isotropic clutter

- L. Borcea, G. Papanicolaou and CT, Theory and applications of time reversal and interferometric imaging, Inverse Problems, vol 19, (2003), pp. 5139-5164.
- L. Borcea, G. Papanicolaou and CT, Interferometric array imaging in clutter, Inverse Problems, vol 21, (2005), pp. 1419-1460.
- L. Borcea, G. Papanicolaou and CT, Adaptive interferometric imaging in clutter and optimal illumination, to appear in Inverse Problems, 2006.
- G. Bal, G. Papanicolaou and L. Ryzhik, Self-averaging in time reversal for the parabolic wave equation, Stochastics and Dynamics, 2, (2002), pp. 507-531.
- G. Bal and L. Ryzhik, Time reversal and refocusing in random media: SIAM Journal on Applied Mathematics, 63 (2003), 1475 -1498.
- G. Papanicolaou, L. Ryzhik and K. Solna, Statistical stability in time reversal, SIAM J. on Appl. Math., 64 (2004), pp. 1133-1155.

Concrete structure to be imaged

x,z-Slice 1 at y: 0 m, max:58

- data provided by K. Mayer, University of Kassel, Germany.
- simulation in homog. medium: $f_0 = 200$ KHz, $c_0 = 4207$ m/s
- experimental data: $f_0 = 150$ KHz, $c_L = 4150$ m/s
- Transmitter and receiver: Krautgrämer G0,2R

Simulated data traces in homogeneous structure

The CINT functional

• We rewrite the CINT imaging functional $\mathcal{I}^{\text{CINT}}(\mathbf{y}^S, \Omega_d, \kappa_d) = \int d\omega \int d\omega' \sum$

$$JB \qquad J|\omega - \omega'| \leq \Omega_d \qquad \mathbf{x}_m \in a \ |\mathbf{x}_m - \mathbf{x}_m'| \leq X_d(\omega)$$

$$\hat{\mathcal{F}}(\mathbf{x}_m - \frac{d}{2}, \mathbf{x}_m + \frac{d}{2}, \omega, \mathbf{y}^s) \hat{\mathcal{F}}(\mathbf{x}_m' - \frac{d}{2}, \mathbf{x}_m' + \frac{d}{2}, \omega', \mathbf{y}^s)$$
$$\hat{\mathcal{F}}(\mathbf{x}_s, \mathbf{x}_r, \omega, \mathbf{y}^S) = \hat{P}(\mathbf{x}_s, \mathbf{x}_r, \omega) e^{-i\omega \left(\tau(\mathbf{x}_s, \mathbf{y}^S) + \tau(\mathbf{x}_r, \mathbf{y}^S)\right)}$$

with

- \mathbf{x}_m : the midpoint moving on the array.
 - d: distance between transmitter and receiver (fixed).

•
$$\mathbf{x}_s = \mathbf{x}_m - \frac{d}{2}, \, \mathbf{x}_r = \mathbf{x}_m + \frac{d}{2}$$

Adaptive CINT results on real data

Kirchhoff migration results

Adaptive CINT results on real data

Kirchhoff migration results

Adaptive CINT results on real data

Kirchhoff migration results

